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Principle of minimum potential energy (continued) 
 
The potential energy of a system is 

∫∫∫ −−=
S iiV iiV

SutVufVwV ddd  

Principle of minimum potential energy states that for all kinematically admissible , the actual 

displacement field minimizes . 

iu

V
 
Example 1: 

gρ
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We have shown in the beginning of the semester that the exact solution is: ( )xLx
E
gu −=

2
ρ

. 

Now we discuss how to solve the same problem by using the principle of minimum potential 
energy. 
 
Procedure: 

1) Pick any displacement such that ( ) ( ) 00 == Luu . 

2) Minimize  for the chosen parameters. V
 

An obvious choice is ( ) ( ) ( )xfxLxxu −=  since this satisfies the clamped displacement 

boundary conditions for any . We can assume ( )xf ( )xf  to be a polynomial function. 
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This gives  algebraic equations to determine 1+N 1+N  parameters . NCCCC ,,,, 210 L

 

For the present example, take the simplest form that ( ) 0Cxf = . 
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The potential energy of the system is 
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To minimize ,  V
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Therefore ( xLx )
E
gu −=

2
ρ

, which is identical to the exact solution for this problem. 

 

Suppose ( ) xCCxf 10 +=  is assumed, we will get a function of potential energy in terms of 

 and , 0C 1C
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Minimizing the potential energy requires that  
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The parameters turned out to be 

E
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= , 01 =C  

Again we get the exact solution. 
 
Re-derivation of the theory of beam bending 
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Kinematic assumptions (Kirchhoff): 
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The axial strain is integrated to be 

yx κκε −=−= 211  

The axial stress is 1111 εσ E= . All other stress components are zero. Therefore the strain energy 

density can be easily calculated 
2''22
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Then the potential energy of the system is 
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where  is the moment of inertia. IAy
A

=∫ d2

 

Recall that the governing equation of beam bending is  plus boundary conditions. 

Let’s see if we get the same equation by using the principle of minimum potential energy. 

0'''' =− qEIw
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Since  is minimum, V
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The first term can be integrated by parts 
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The second terms vanish due to the displacement boundary conditions at the ends, therefore 
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which is exactly the governing equation and moment-free boundary conditions for the simply 
supported beam. 
 
 
Example 2: 

P
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The potential energy of the system is 
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Pick  that satisfies , ( )xw ( ) 00 =w ( ) 00' =w , a simple guess is 
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Minimizing potential energy requires  
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Let us compare the resulted solution to exact one, 
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The relative error is: %25
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Te above solution can be improved by taking more terms.  

Suppose . The system potential energy becomes ( ) 3
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The same conditions that minimize potential energy 
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The parameters are determined as 
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which is the exact solution. 
 
 
Extend the analysis to plate bending 
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Kinematic assumption (Kirchhoff): 
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Assume @ , 03 =x 0122211 === εεε  (neutral plane), the strain components can be 

integrated out, respectively 
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The strain energy density is 
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The system potential energy is 
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This is the classical governing equation for plate bending. In the following, we illustrate the 
application of energy theorem in solving plate bending problems. 
 
Example 3: Simply supported circular plate under uniform pressure 
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Displacement boundary condition 0=
=ar

w . 

To satisfy the boundary condition, pick the kinematically admissible displacement 

( ) ( )22222 ayxCarCw −+=−= . With this assumption, 
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The system potential energy can be easily integrated as 
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To minimize potential energy,  
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The deflection of the plate is 
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The maximum deflection occurs at the center, 
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The exact solution to this problem shows: 
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We see that a simple guess leads to a solution fairly close to exact. 
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