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Principle of minimum potential energy (continued)

The potential energy of a system is

V= [wdv - fudv —jstiuids

Principle of minimum potential energy states that for all kinematically admissible U;, the actual

displacement field minimizes V .
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We have shown in the beginning of the semester that the exact solution is: U = 'g—gx(L - x).

Now we discuss how to solve the same problem by using the principle of minimum potential
energy.

Procedure:
1) Pick any displacement such that u(0)=u(L)=0.

2) Minimize V for the chosen parameters.

An obvious choice is u(x): X(L - X)f (X) since this satisfies the clamped displacement

boundary conditions for any f (X) . We can assume  f (X) to be a polynomial function.
f(x)=Cy+Cx+Cox?* +---+Cy x"

To minimize the potential energy V(CO, C.C,,--,Cy ) we take
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This gives N +1 algebraic equations to determine N +1 parameters C,,C,,C,,---,C,, .

For the present example, take the simplest form that f (X) =C,.

u(x)=Cyx(L-x)

ou
E=—=

OX
o=Eg=EC,(L-2x)

C,(L—-2x)

1 1
W=os=2 ECZ(L-2x)

The potential energy of the system is

V= J‘OLde'A—IOLngOX(L—x)dx- A

- IOL% EC2(L —2x)2dx- A—jOLngoX(L —x)dx- A

1 L0
=§AE(EC§ - pgC,)
To minimize V ,
ov ol
=0=2EC,-pg=0=C,="—
ac, 0o~ PY =

g

Therefore u = oE x(L - x), which is identical to the exact solution for this problem.

Suppose f(x): C, +C,x is assumed, we will get a function of potential energy in terms of

C, and C,,
V(C,.C,)
Minimizing the potential energy requires that
oV _0, ﬂ _0
oC, oC,
The parameters turned out to be
Pr9
C,==—, C, =0
0 2E 1

Again we get the exact solution.

Re-derivation of the theory of beam bending
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Kinematic assumptions (Kirchhoff):

UZ(Xl’ Xz):W(Xl)
512:1(%+%J:0
2\ 0X, 0%

88—12:0: 0 [%J+W“(Xl)=0
0%,

& 0%,

98y _ 0

axz axz [aulJ — —W" (Xl): —K, (911 = O @ X2 = O (neutral plane)

0%,
The axial strain is integrated to be

&y = —KX, =—KY

The axial stress is o;; = E&;; . All other stress components are zero. Therefore the strain energy

density can be easily calculated

1 1 1 "2
W= 50-11511 D) Eel) = 2 Ey*w

Then the potential energy of the system is

V= IOL dxjA%Eyzw"sz— IOL q(x)w(x )dx

- J‘OL% Elw *dx - J;L qwdx

where J.Aysz: | is the moment of inertia.

Recall that the governing equation of beam bending is EIw" —q =0 plus boundary conditions.

Let’s see if we get the same equation by using the principle of minimum potential energy.
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Since V' is minimum,
N = IL Elw"5w"dx—qu&Ndx =0
0 0
The first term can be integrated by parts
L " " M L L .
[ Elwswdx = Ew'sw| - [ Elw swdx
" L L L
= EIw'ow| —Elw'sw| + [ Elw”swdx
0 0 0
The second terms vanish due to the displacement boundary conditions at the ends, therefore
oV = Elwﬁw‘0 +_[0 (EIW —q)&wdx=0:> Elw —q=0 and w =0 @ x=0,L

which is exactly the governing equation and moment-free boundary conditions for the simply
supported beam.

Example 2:

AN \l AN

Vv

The potential energy of the system is

V= j;% Elwdx - Pw(L)
Pick W(x) that satisfies W(0)=0, w'(0)=0, asimple guess is
w(x) = Cx?
w =2C

Vv :%EI IOL(zc)de— PCL® = 2C°EIL - PCL?

Minimizing potential energy requires

ﬂ=0:>4CEIL—PL2 =0=C =i
oC 4E|
Let us compare the resulted solution to exact one,
PL? PL®
w(L)= Exact solution: w(L)=——
( ) 4E| ( ( ) 3ElI )
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The relative error is: ]/3;;/4 =25%

Te above solution can be improved by taking more terms.

Suppose W(x) = Clx2 + sz3 . The system potential energy becomes

1 L
V=EEWJKQ+m;@%x—NqB+CJﬁ

The same conditions that minimize potential energy

N N
oc, ' oC,
The parameters are determined as
C = —L L, C,= P
2El 6El
Therefore:
PL®
w(L)=C,L*+C,L>=—
(L-cL+el -

which is the exact solution.

Extend the analysis to plate bending

—>
X, /V X
X3

Kinematic assumption (Kirchhoff):

u3(X1’ Xy X3)=W(Xl, Xz)

£13 =853 =0
OX; 0%
OXy  OX,
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a(1) _Oa o*w

ox,  OX,  OX’

1 (5(1) N a(z)j _ Osy __ O'W

2\ ox,  ox X, OXOX,

Assume @ X; =0, &,=¢, =&,=0 (neutral plane), the strain components can be

integrated out, respectively

_o'w o*w . o'w

The strain energy density is

1 1
W= 50'11511 + 50'22522 +E(O'12‘912 + 0'21521)

E
= Y (6‘121 + 5222 +2vE €, + 2(1— V)8122)

= 2 1EV2 (Wil + W,222 + 2VW111W122 + 2(1_ V)Wfl2 >X§

The system potential energy is
V= LWdV —IAquA
Eh’
- 7_)24 — J'A (W,211 + Wy + 2VW W, + 201V W2, )dA— IA qwdA

Eh®

1-v

Define D= and minimize V . We have

2

oV = Lwdv - J'AqwdA
=D _[A (W3 SW 1y + W 5y SW 5y + VW 1, W 5, + VW, W, + 21—V )W, W, JA - '[A qowdA
= IA(DVZVZW - q)éwdA + boundary terms = 0

= DV?*V?w-q=0
This is the classical governing equation for plate bending. In the following, we illustrate the
application of energy theorem in solving plate bending problems.

Example 3: Simply supported circular plate under uniform pressure
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Displacement boundary condition W|r:a =0.
To satisfy the boundary condition, pick the kinematically admissible displacement

W= C(r2 —a2)= C(X2 +y°i— az). With this assumption,

Wy, =W, =2C, w;, =0

The system potential energy can be easily integrated as

v :%jA((zc)2 +(2CY +2v(2C) HA~ [ qC(r ~a® A
=4D(L+v)C? 7’ + 7 aloC

To minimize potential energy,

2

ov

N _0=8D+v)C-mi+Lalq=C=—— 32
e L+vic 53

16D(1+v)
The deflection of the plate is

2

W= ga r2_a2
e )

16D(1+v

The maximum deflection occurs at the center,

IR Y
W =W, g = 16D(1+v)

_qa* 5+v
=0 64D 1+v

The exact solution to this problem shows: W| . The relative error is

(5+v)/64-116 1+v

= ~25%.
G+v)6s By

We see that a simple guess leads to a solution fairly close to exact.



