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Chap. 9 Finite element method (Read Chap 7 of Prof Bower’s notes)

Principle of virtual work:

[ oy05,0v = | foudv +jAT t,5u,dS

Principle of minimum potential energy

Min(v :L%aijgijdv —L fu,dVv _L\T tiuide

We can represent the displacement by interpolation through its values at a network of nodes
(discretization),

where N is the number of FEM nodes, U®is the nodal displacement, and Na(X) are the

interpolation functions.

N?(x)=

1, if x=x°
0, atallothernodes

Recall such interpolation function for 1D element as follows.

Na

Y\ N
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More non-local forms of N? have been proposed in meshless/element-free FEM methods.

FEM formulation based on principle of virtual work

Consider a virtual displacement field: oU(X)= N"(X)ou® (Note summation convention over
repeated indices).

Inserting G(X)=N?0*, su(X)=N"(x)Sa"® into Principle of Virtual Work, the left side of the
equation becomes

ON? ON®

Uy

— suldv
OX, OX

[ 0y0e,dV = [ Caude,dV =[ Cyuou, v =[ C,

= Kaibkul?é‘uib
The right side of the equation becomes
[, foudv + [ touds = (L fNCaV + | tiNbdsjauib
Ar Ar
The principle of virtual work becomes
(Kaibkus - Fib)guib =0

Since this must be true for any 5uib ,

Kaibkulf - Fib =0

In matrix form, this is a set of linear algebraic equations:

i Ky Ky, Ky w0 oer oo Kl,3n ] _ul(l)_ _Fl(l)_
K, K,, Ky oor oee oo K2,3n ugl) |:2(l)
: : : : : : : Ugl) Fs(l)
u£2) = |:1(2)
ug2) |:2(2)
: : A : ul? F®
_KSn,l Ksn,z K3n‘3 K3n'3n_3n><3n_ S N | : Jama

or

FEM formulation based on principle of minimum potential enerqgy
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1 1 1 . ON? ON°®
‘[/Eo_ijgijdv = _[/Ecijklui,judeV :Eui uk«[/Cijkla_Xja_deV

Ly k)

2

[ fudv +jAT tu,dS = (L f,N2dV +jAT t NadS)u?
={uj'{F)

where [K], {U }, {F} are as defined in the previous page. The potential energy of the system can

thus be written as

Minimizing V requires

ﬂ—o foralla=12,---,n,i=12,3

oud

which leads to the same FEM equation:

Comment:

ON? ON°®
[K] is a sparse matrix since | C.,——
_[/ jkl an I

dV =0 unless a and b are close to each other.

N2 NP N&NP®
a b a b

SR [C NNy L
OX; 0X OX; OX,

Recall the 1D problem:
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(111111
A

X
PO |l |L

Y
17777777
a b a b
Kab=LEaN oN dvzstEaN N o
OoX OX 0 oOX OX

Fo=[ fN%dV =sj0L f N2dx

where S is the cross section area of the bar. In this case, the FEM equation becomes

L_ON®ON® o L,
Kiul=F = [ E Pl = [ fN*dx

which is the same equation used in the beginning of the class.

Implementation of FEM in 2D solids

5 4 3

1 2

In the above configuration, we can identify the following concepts:

FEM nodes: 1, 2,3,4,5
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Elements: @ @ @

Nodal coordinates:

g B W N -
o PP A
S E=lE=)

Local nodes of a generic element:

#3

#1 #2

Element connectivity table:

Element
No.

@ 1| 4 | 5
@ 1| 2 | 4
® 2 3 | 4

#1 #2 #3

Assume linear triangular element (linear interpolation function):

(xl#3 - xfz)—(x —x? )(xﬁ3 - xgz)
) ’)

#3 #2
2 _Xz )




ENO0175 11/ 29/ 06

( _ #1)( # #1)_( _ #1)( #2 _ #1)
N 3()(1, X, ) = (X)ié ~ ))((il )())((iz _ ))((1#1)_ ())((is —Xi(l#l ))(()2(#2 _X)z(#l)
2 2 J\M 1 1 2 2

(%, %)= D> N*(x,x, )0 = N'o™ + N?0" + N°0™

a=1

The strain vector can be expressed in terms of local nodal displacements as:

AN L 2 3
ON 0 ON 0 oN 0
&, au, /ox, OX, 1 X, 2 0X, .
oN oN oN
e=| &, |= du, /X, = 0 — 0 0
OX, OX, OX,
26 ] [OW/[0X+0U, 0K ] | sNT aNT O ONZ ONZ ON? ON®
| OX, Ox, OX, OX OX, OX
For plane stress problems, the constitutive law is
E
O = m(‘gn +‘/‘922)
E
Oy = m(‘gzz +V511)
E
12 :mglz
This can be written as,
o, . 1 v O &y
O =0y |= Slv 1 0 &, |=DBuy
1-v 1-v
01, 0 0 —/|[2¢
2
The strain energy density is
&

1
2"

The total strain energy in the element is obtained from integration

1+

el

where K, = A, B" DB is called the element stiffness matrix.

6

2,

1 1
W=_—0;¢&; 25(011811"‘0-22522 T 0,8, +O—21‘921):E[O-11 Oy 012] €y :E

=Bu

el

T

o &

1 1 1 1
U, = '[Ve. EQ edV = E A, QT &= E A, !Zl ET DBu, = EQ; [Ae| ET QELeI = EQ; KUy
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The total Stain energy in the entire body is the sum of strain energy in all elements,

U = teI = z lgl-lﬁell-_'lel :%QTKH

elements elements

where u and K are the global displacement vector and global stiffness matrix.

The question is how to assemble global displacement, stiffness matrix and nodal force from their
counterparts on the element level. For this we use the connectivity table:

(#1, #2,#3)= (a, b, ¢

2nx1

For stiffness entry:
a(1,2,3,4,5,6)=z,(2a-1,2a,2b-1,2b, 2c -1, 2¢)
We can thus assemble stiffness matrix according to the connectivity rule:

K )= K, 2+ KZ,'B (assembly of global stiffness matrix over all the elements)

7,2

Assembly of nodal force:

#3

#1 #2



ENO0175 11/ 29/ 06

For the element shown above, the potential energy of the applied traction is:
L
element
P = —L t.u,ds

Using linear interpolation functions, the displacement can be written as

u = uf‘li+uf3(1—ij
L L

elemen L S - S
i [0 S - 151 Josur = Fuu

Assembly into global nodal force vector:

I:2 a-1
Fl#l I:2 a
F s
#2
Eel = El#z = F;bl
2 2b
F* :
FZ#S 6x1 Faca
FZC
2nx1

or

a(1,2,3,4,5,6)=z,(2a-1, 2a, 2b -1, 2b, 2c -1, 2¢)

F, =F, +F/

z

After the global matrices are assembled, the FEM problem is to solve the linear algebraic equation

ﬁanZn anxl = E2n><l



