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1. The figure shows a stretched string with an initial 
triangular displacement near its center.   Assume the string 
has a wave speed c.    Sketch the shape of the string at the 
following times (you don’t need to solve all the equation 
from scratch, just use your physical understanding of wave 
propagation and reflection to work out what you expect to 
see – the animations in class notes might be helpful) 
 
1.1  / 2t L c=   
 
The wave will split into two running in opposite 
directions, and in time L/2c will run a distance L/2.   
 
 
 
 
 
 

[2 POINTS] 
1.2 3 / 2t L c=  
 
The wave will have reflected off both ends at this point.   
The wave will flip at each reflection to satisfy the zero 
displacement boundary condition. 
 
 
 
 
 

[2 POINTS] 
 
1.3 7 / 2t L c= .   The waves will have traveled a distance 2L in 

between 1.2 and 1.3 – so there will be another reflection off 
the ends, and we return to the configuration in 1.1. 

 
 
 

 
 

[2 POINTS] 
 
 
 

e1

e3

w0
T0

2L
L

a a

e1

e3
w0/2 T0

2L
L/2

a a

e1

e3

T0

2L
L/2

e1

e3
w0/2 T0

2L
L/2

a a



2. The surface of an infinite linear elastic half-space with Young’s 
modulus E and Poisson’s ratio ν .  It is at rest for time t<0, and is 
subjected to a harmonic pressure on its surface, given by 

0( ) sinp t p tω=  t>0, with p=0 for t<0. 
   
2.1 What are the distributions of stress and velocity in the solid 

(you can express your answer in terms of 0 3, , , ,p t xω ρ ν,  and 
the wave speed Lc   )? 
 
From class we know that  
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We also know 11 22 0ε ε= =  so the elastic stress-strain relations give 

11 22 33(1 )
νσ σ σ
ν

= =
−

  

[3 POINTS] 
2.2 Hence, calculate the displacement of the solid at the surface as a function of time. 
 
We can just integrate the velocity as a function of time 
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[2 POINTS] 

 
2.3 Calculate the total work done by the applied pressure in one cycle of loading and hence 

determine the rate of work done by the pressure. This energy is radiated in kinetic energy away 
from the surface (ie the power expended by whatever is applying the pressure).   Does the rate 
of work depend on the frequency? 

 

The work done is 
2 / 2 / 2 2
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The power is 2
0/ 2 / LW p cω π ρ=  .   There is no frequency dependence. 

 
[2 POINTS] 
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4. This website lists the vibration modes for a ceramic resonator (an electromechanical circuit element used 
to make precise electrical oscillator circuits – for further reading you could check this reference for a huge 
range of creative static and dynamic applications of piezoelectric materials).   The goal of this problem is to 
calculate a formula for the frequency of the 5th vibration mode (through-thickness vibrations).   Assume that 
the resonator is a rectangular plate with thickness h<<L, and that the displacement in the plate has the form 

3 3( )u u x=  , with all other components zero. 
 
3.1 Show that the equation of motion for u reduces to  
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and give a formula for Lc   
 
 

Follow the derivation of the plane wave solutions in class 
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The linear momentum balance equation then gives 
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With ( )(1 ) / (1 ) 1 2Lc E ν ρ ν ν= − + −  
 

[3 POINTS] 
 

3.2 Assume that the top and bottom surfaces of the plate are stress free.   Write down the boundary condition 
for u at 3 / 2x h= ±  . 
 
The zero stress boundary condition means that the axial strain must be zero at the surfaces: 

3

0u
x
∂

=
∂

           3 / 2x h= ±  

 
[1 POINT] 

 
3.3 Consider solutions to the equation of motion of the form 3cos( ) ( )u t f xω φ= +  .  Use 4.1 to find an ODE 
for 3( )f x . Find the general solution for f along with the formula relating wave number k to frequency ω  
(the dispersion relation…) 
 

Substitute into the governing equation 
2 2 2

2
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This has general solution 3 3sin cosf A kx B kx= +  with  / Lk cω=   
[2 POINTS] 

 
 
 

https://www.murata.com/en-us/products/timingdevice/ceralock/basic/vibration
http://spadantechnic.com/images/nikandishan/article/catalog/MORGAN.PDF


3.4 Show that the boundary conditions can be expressed in matrix form as 
cos / 2 sin / 2 0
cos / 2 sin / 2 0

kh kh A
kh kh B

     
=     −     

 

Hence, find a formula for the resonant wave numbers k and the corresponding resonant frequencies ω   
 

The boundary condition reduces to 3 3
3

cos sindf Ak kx Bk kx
dx

= −  3 / 2x h= ±  

Substituting and writing the equations in matrix form gives the solution stated. 
 

For nontrivial solutions the determinant of the matrix must vanish, which gives sin( ) 0kh =  .   This 

has solutions Ln ckh n
h
ππ ω= ⇒ =   

 
[2 POINTS] 

 
 
3.5 Calculate the thickness of a resonator made from PZT with Young’s modulus 81GPa and Poissons ratio 
0.39 and mass density 7320 kg/m3 with a resonant frequency of 10 MHz. 
 

The numbers give a longitudinal wave speed of 4730m/s.   The necessary thickness is /Lcπ ω  
=0.24mm.  (don’t forget the factor of 2π  to calculate the angular frequency…) 

 
[1 POINT] 

 
 
4. Functionalized cantilevers are sometimes used as 
chemical or biochemical mass sensors (see e.g. this review 
article.   The basic principle is to detect the change in 
resonant frequency of the cantilever when a small mass is 
adsorbed on its tip.   The goal of this problem is to provide 
the necessary relationship between mass and natural 
frequency.   Assume that the beam has modulus E and mass 
moment of inertia I, mass density ρ  and cross sectional area A and has a small mass (with negligible mass 
moment of inertia) attached to its tip. 
 
4.1 Draw a free body diagram showing the forces acting on the mass (neglect gravity) and hence show that 
the transverse force acting on the right end of the cantilever is related to the displacement at its tip by 

2

2 2

d wT m
dt

= −  

 
This is a simple F=ma problem… 

[1 POINT] 
 
4.2 Write down the differential equation governing flexural vibration of the cantilever, and by considering 
solutions of the form 3cos( ) ( )w t f xω φ= +  show that the equation is satisfied by a solution of the form   

3 3 3 3 3( ) sin cos sinh coshf x A kx B kx C kx D kx= + + +  

e1
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http://bioforcenano.com/wp-content/uploads/NeN-Papers/Microcantilever-based_platforms_as_biosensing_tools.pdf
http://bioforcenano.com/wp-content/uploads/NeN-Papers/Microcantilever-based_platforms_as_biosensing_tools.pdf


(you can use exponential solutions of the form 
4

3 3
1

( ) exp( )i
i

f x xλ
=

=∑   if you prefer, where iλ  are the roots 

of the characteristic equation, but messing with the complex numbers is a bit painful).   Write down the 
relationship between , ,k ω  and /EI Aβ ρ=   
 
The differential equation is 

4 2

4 2 2
3
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+ =  

Substituting the solution gives 
4 2

4 2
3
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− =  

The given solution for f satisfies the equation with  
2

4
2k ω

β
=  

[2 POINTS] 
 

4.3 Write down the boundary conditions for the transverse displacement w, and show that they can be 
arranged into the following form 

0 1 0 1 0
1 0 1 0 0

sin( ) cos( ) sinh( ) cosh( ) 0
cos( ) sin( ) sin( ) cos( ) cosh( ) sinh( ) sinh( ) cosh( ) 0

A
B

kL kL kL kL C
kL kL kL kL kL kL kL kL kL kL kL kL Dµ µ µ µ

     
     
     =
     − −
     − + + + +     
 
 

where  
m

A L
µ

ρ
=   

 
 
The boundary conditions are  

1. Zero deflection at 3 0x =  , which requires 0B D+ =   
2. Zero slope at 3 0x =  , which requires 0A C+ =   

3. Zero bending moment at 3x L=  , i.e. 2 2
3/ 0d w dx =   

This gives ( sin cos sinh cosh )A kL B kL C kL D kL− − + +  
 

4. The transverse force must satisfy the expression from 3.1, which requires 
 

( )
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Using the dispersion relation gives 



( )3 4cos sin cosh sinh ( sin cos sinh cosh )EIEIk A kL B kL C kL D kL mk A kL B kL C kL D kL
Aρ

− − + + + = + + +  

 
This can be re-written as 

( cos sin ) (sin cos ) (cosh sinh ) (sinh cosh ) 0A kL kL kL B kL kL kL C kL kL kL D kL kL kLµ µ µ µ− + + + + + + + =
  
Collecting all four boundary conditions into matrix form gives 

0 1 0 1 0
1 0 1 0 0

sin( ) cos( ) sinh( ) cosh( ) 0
cos( ) sin( ) sin( ) cos( ) cosh( ) sinh( ) sinh( ) cosh( ) 0

A
B

kL kL kL kL C
kL kL kL kL kL kL kL kL kL kL kL kL Dµ µ µ µ

     
     
     =
     − −
     − + + + +     
 
Alternatively we can have MATLAB do the heavy lifting 

  
 

[5 POINTS] 
 
4.4 Hence, show that the wave numbers for the vibration modes satisfy 

( ) ( ) ( ) ( ) ( ) ( )cos cosh cosh sin cos sinh 1 0Lk Lk kL Lk Lk kL Lk Lkµ µ− + + =  
 
Use Matlab… 

 
 
This gives the answer stated 

[2 POINTS] 
 
4.5 Calculate the lowest natural frequency of the beam (in terms of β  and L)  without the mass on its end 
(i.e. 0µ =  ).  You will need to solve the equation ( ) ( )cos cosh 1 0Lk Lk + =  numerically, eg using fsolve 
in MATLAB.  You can google the answer to check it; this is a well known result. 
 
Solving the equation gives 1.875kL = , the dispersion relation gives 

2
2

2

(1.875)k
L

ω β β= =   

[2 POINTS] 



 
 
4.6 What would you expect the lowest natural frequency to be in the limit of very large µ  ? (this is an 
engn40/engn310 calculation – give a formula in terms of , , Lµ β  ).   

In this limit we can idealize the system as a simple spring mass system; the stiffness of the spring is 3
3EI
L

 so 

the natural frequency is 3 2
3 3EI
L m L

βω
µ

= =  .    This also tells us that 
1/43kL

µ
 

=  
 

 , which gives us a way 

to check our formula for the natural frequency (it works!).   But the question did not ask for this. 
 

[3 POINTS] 
 
 
4.7. Plot a graph of ( ) / (0)ω µ ω  , where (0)ω  is the frequency of the cantilever without a tip mass (i.e. the 
solution to 3.5) as a function of 0 0.2µ< <  .   You’ll need to write a short MATLAB script to do this.    
Suppose that it is possible to detect a 2% change in frequency, and a typical cantilever has a mass of about 
30 ng (nanograms) – your graph should show that the measurement would be able to measure a mass of 200 
pg (pictograms) or so.   This estimate is comparable to the 400 pg resolution reported in this paper.     
 
The graph is plotted below. 
 

 
 

[3 POINTS] 
 
 
 
5. In this problem you will use explicit dynamic simulations in ABAQUS to study wave propagation near the 
surface of an elastic solid.    
 
5.1 Create a 2D planar part like the one shown in the figure.   The 
dimension unit is millimeters. 
 
 
5.2 Create a material with Youngs modulus 100 GPa, Poissons ratio 
0.3 and mass density 10000 kg/m3.  We will use N for forces and mm 
for length (so stresses are in N/mm2 = MN/m2) – this means 100GPa  
should be entered as 100000MPa.   We need to use a mass density that 
is consistent with these units.   Convince yourself that if we choose to 
use N for force, mm for length, and milliseconds for time, we must 

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4716639


enter density in  N milliseconds2/mm4, which makes 310 10ρ −= ×  in our chosen unit system (note that wave 
speeds in m/s and mm/millisecond are identical).   Assign the part a homogeneous section with these 
properties. 
 
5.3 Create an instance of the part in the usual way. 
 
5.4 Calculate the expected speeds of P, S, and Rayleigh waves in the material.   Hence, estimate the time (in 
milliseconds) required for each wave to propagate from one side of the solid to the other.    Then create an 
Explicit Dynamic step with duration roughly twice the time required for the pressure wave to propagate 
across the solid (enter the time in milliseconds, since that’s our chosen time unit.).   You can turn off 
NLGEOM for this problem.   Use Output->Field Output requests to edit the field output.   Change the 
frequency of output to make sure that at least 200 frames are saved during the analysis (you can change this 
– you’ll get nicer animations with more frequent output, but it will produce huge odb files and slow down the 
analysis). 
 
5.5 Enter a BC to prevent vertical motion of the base of the block, and apply an instantaneous pressure of 
100MPa on the left face. 
 
5.6 Assign an element type of Plane Strain reduced integration elements (CPE4R) from the Explicit element 
library.  Note that the default is plane stress elements so it’s important to select the right options in the 
Element Type menu.   Seed the part with a 1.5mm mesh size (if you don’t mind waiting a bit longer for the 
analysis to complete you could try 1mm) and mesh it with quad elements (use a structured meshing 
algorithm). 
 
5.7 Submit and run the job.   Use Job-> Monitor to track the progress of the analysis – note that since this is 
an explicit dynamic simulation ABAQUS takes a very large number of very small time-steps. 
 
5.8 You can use the visualization module to watch some fun movies of wave propagation and reflection in 
the block; you can hopefully figure out what you can see!  As a submission for this problem, please plot 
contours of (i) pressure; (ii) shear stress S12; (iii) velocity V1; and (iv) velocity V2 at a time of around 0.15 
milliseconds.     Mark on your plots (a) a plane P-wave; (b) a plane S-wave and (c) a Rayleigh wave (these 
will show up as changes in stress – for example we expect the pressure to jump across a P-wave but not an S 
wave; and we will see changes in velocity across any plane wave front).   You can double check the wave 
types by calculating the velocity of each type of wave.       
   
 

          

S-wave 
P-wave 

Rayleigh 
Wave 



          
 

[10 POINTS] 
 
6. In this problem you will calculate the resonant frequencies of an (approximate) wine glass.    
 
6.1 Create a 3D deformable part with shell/revolution base feature.   Use 
something like the sketch shown in the figure (dimensions are in mm), and 
revolve it through 360 degrees about the centerline to create the glass (fixed 
BCs will be applied to the small hole at the bottom to represent the stem). 
 
6.2 Create a material with Youngs modulus 10GPa, Poissons ratio 0.2 and mass 
density 2700 kg/m3   Note that you will have to choose a unit system with 
lengths in mm – you could use the procedure suggested in the previous problem 
to do this, but your frequencies will then be reported in cycles/millisecond 
instead of Hz.   You could use forces in N, lengths in mm and time in sec if you 
prefer but you will need to figure out how to change the density to make this 
work!    Create a homogeneous shell section with 0.8mm thickness and assign it 
to the part. 
 
6.3 Create an instance of the part 
 
6.4 Create a Linear Perturbation/Frequency step and request 50 or so eigenmodes (you can do fewer if you 
are in a hurry) 
 
6.5 For BCs, fix all DOF on the bottom edge of the bowl (see the figure) 
 
6.6 Assign a quadratic quad element type with 6DOF per node to the part, seed it 
with a mesh size 2mm, and mesh it with Sweep algorithm. 
 
6.7 Create/Run the job, and check the mode shapes/frequencies in the visualization 
module.   For comparison, this video measures a frequency for the 3rd mode (the 
lowest two are hard to excite with sound) of 317Hz…   Hand in a plot showing the 
mode shapes and frequencies for the first, 3rd, and 15th modes.  
 

[10 POINTS] 

https://www.youtube.com/watch?v=BE827gwnnk4
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