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1. An isotropic, elastic-perfectly plastic thin film with Young’s 
Modulus E , Poisson’s ratio ν  , yield stress in uniaxial tension Y and 
thermal expansion coefficient α  is bonded to a stiff substrate.  It is 
stress free at some initial temperature and then heated. The substrate 
prevents the film from stretching in its own plane, so that 

11 22 12 0ε ε ε= = = , while the surface is traction free, so that the film 
deforms in a state of plane stress. Calculate the critical temperature 
change yT∆  that will cause the film to yield, using (a) the Von Mises yield criterion and (b) the Tresca yield 
criterion. 
 
 
The film is in a state of plane stress.   We can use the plane stress relations to calculate the stress in the film 
(assuming elastic behavior) 
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The strains are zero, so the total stress is 11 22 / (1 )E Tσ σ α ν= = − ∆ −   with all other stress components 
zero. 
 

The von-Mises stress is { }2 2 2
1 2 1 3 2 3

1 ( ) ( ) ( ) / (1 )
2e E Tσ σ σ σ σ σ σ α ν= − + − + − = ∆ −   

The yield criterion is (1 ) /e yY T Y Eσ ν α= ⇒ ∆ = ± −   

The Tresca yield criterion is 1 2 1 3 2 3max{ , , } Yσ σ σ σ σ σ− − − =   which gives the same answer 
 
2. Assume that the thin film described in the preceding problem shows so little strain hardening behavior that 
it can be idealized as an elastic-perfectly plastic solid, with uniaxial tensile yield stress Y.  Suppose the film is 
stress free at some initial temperature, and then heated to a temperature yTβ∆ , where  is the yield 
temperature calculated in the preceding problem, and 1β > . 
 
2.1 Find the stress in the film at this temperature 
 
The film must remain in a state of plane stress, and will deform plastically as it is heated further.    
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We know that the two in-plane stresses must be equal by symmetry, so we can set 11 22σ σ σ= =  .   The Von-
Mises (or Tresca) yield criterion shows that 
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2e Yσ σ σ σ σ σ σ σ= − + − + − = =  

Therefore Yσ = ±  . 
The stresses can’t jump from tension to compression as the film is heated through its yield point, so the 

stresses must be compressive.  So 11 22 Yσ σ= = − . 
 
 
2.2 The film is then cooled back to its original temperature.  Find the stress in the film after cooling. 
 
During cooling, the stresses will be reduced, so the film (at least at first) will unload elastically.   We can 
calculate the change in stress during unloading using the answer to problem 1.    

11 22 / (1 ) (1 )Y E T Yσ σ α ν β= = − + ∆ − = − −  
This answer is valid as long as the new stresses don’t exceed yield.   We can repeat the calculation in 
problem 1 to see that the stresses will exceed yield after cooling if 2β >  .   So 
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3. Suppose that the thin film described in the preceding problem is made from 
an elastic, isotropically hardening plastic material with a Mises yield surface, 
and yield stress-v-plastic strain as shown in the figure.   The film is initially 
stress free, and then heated to a temperature , where  is the yield 

temperature calculated in problem 1, and . 
 
3.1 Find a formula for the stress in the film at this temperature. To do this you 

will need to assume the film remains in a state of plane biaxial stress 11 22σ σ σ= =   with all other stresses 
zero, and then 
(i) Find formulas for the hydrostatic stress, deviatoric stress and Von Mises stress in terms of the 

unknown stress  
(ii) Write down an expression for the total strain rate (elastic, plastic and thermal) in terms of the stress 

rate, using the expressions from class 
(iii) Use the condition that the total strain rate is zero to relate the stress rate to the rate of change of 

temperature 
(iv) Integrate the result of (iii) with time (with initial condition Yσ = −  when yT T∆ = ∆  ) to find the 

stress. 
 

Following the stated steps, we assume that the only nonzero stresses are 11 22σ σ=   and have some unknown 
magnitude σ   

The hydrostatic stress is therefore ( )11 22 33
1 2
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The deviatoric stress is 11 22 33
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The Von-Mises stress is (from the previous problem) eσ σ=   
 
The formula for the total strain rate is 
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We know 11 22ε ε=  so we only need to calculate two components of strain rate 
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Since 11 0ε =  we see that 
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We can integrate this (with the condition that 0Yσ = −  when 0 (1 ) / yT Y E Tν α∆ = − = ∆ ) to see that 
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3.2 The film is then cooled back to its original temperature.  Find the stress in the film after cooling. 
 
The unloading is elastic.   We can find the change in stress from the solution to problem 2.2, so that 
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3.3 The film is cooled further by a temperature change 0T∆ < .  Calculate the critical value of T∆  that will 

cause the film to reach yield again. 
 
 
The yield stress during heating increased to the value given in 3.1, i.e.  
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The stress after further cooling will increase to  
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The film will yield when Yσ =  , which gives 



0
0

0

0

( 1)2 (1 )
2(1 ) 2 (1 ) (1 )
(2 ) 2 (1 )

2(1 ) (1 )

(1 ) (2 ) 2 (1 )
2(1 )

E YE h E TY
E h E h

E h E TY
E h

Y E hT
E E h

βν β α
ν ν ν
β ν β α

ν ν

ν β ν β
α ν

−+ − ∆
− =

+ − + − −
− + − ∆

⇒ =
+ − −

 − − + −
⇒ ∆ =  + − 

 

 
 
 
 
4. A thin-walled sphere with radius R and wall thickness 
t is made from an elastic-plastic material with Youngs 
modulus E  , Poissons ratio ν   and a linear hardening 
relation 0 eY Y hε= +  .    The sphere is subjected to 
monotonically increasing internal pressure p (with 

/ 0dp dt > ) , which generates a stress state (in spherical-
polar coordinates) 0, / (2 )rr pR tφφ θθσ σ σ≈ = =  (note 
that these are principal stresses) 
 
4.1 Find a formula for the Von-Mises stress in the sphere 
wall, in terms of p,R and t.    Hence, calculate the pressure 
that will first cause yield in the sphere wall. 
 

( ) ( ) ( )2 2 2
1 2 1 3 2 3

1 / 2
2e pR tσ σ σ σ σ σ σ = − + − + − =   

At yield 2 /e yY p tY Rσ = ⇒ =   
 
4.2 Find the hydrostatic and deviatoric stresses in the sphere wall. 

/ 3 / 3h kk pR tσ σ= =  
 

/ 3 / 6rrS pR t S S pR tθθ φφ= − = =  
 
4.3 Hence, find a formula for the Von Mises plastic strain rate /ed dtε   in the sphere wall, in terms 
of  / , , ,dp dt h R t   
 
From notes, the plastic strain rate is zero below yield while above yield, the formula is 
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4.4 Hence, find a formula for the total strain rates / , /rrd dt d dtθθε ε   (include both elastic and 
plastic strain rates, and give solutions for pressure both below and above yield) in the shell. 
 
 
From notes 
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4.5 Find the total hoop strains ,θθ φφε ε   when the pressure reaches a value 04 /p tY R=  
 
Integrating 
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4.6  Find a formula for the change in radius of the sphere when the pressure reaches a value 

04 /p tY R=  
 
The strains are related to the radial displacements by /u Rθθε =  .     Therefore 
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5. The figure shows a beam that is clamped at one end 
and pinned at the other.  The beam has area moments of 

inertia 22 11 12, 0I I I I= = =  .  Calculate the buckling 
load (use the buckling mode that gives the lowest load). 
 
We can follow the procedure from class.  For the inertia matrix given, and since there is no transverse force or 
axial force per unit length, the governing equations for the transverse deflection and the axial force are 
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We know that 3T P= −  at 3x L=  , so we see that 3T P= −  everywhere along the length of the beam. 
 
The equation for transverse motion becomes 
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We try a general solution of the form 
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Where A,B,C,D and k are constants (as always the wave number 2 /k π λ=   where λ  is the wavelength of 
the buckling mode).   Substituting into the governing equation gives 
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So 2P EIk=  .   The boundary conditions at the ends of the beam: 

(i) At 3 0x =  the slope and displacement are zero 1 1 3/ 0u du dx= =   

(ii) At 3x L=  the displacement and moment are both zero, so 2 2
1 1 3/ 0u EId u dx= =  . 

 
We can write the four boundary conditions in matrix form 
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(MATLAB can do all the tedious derivatives and substitutions) 
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It follows that 

( )sin( ) cos( ) 0Lk Lk Lk− =  

This has to be solved numerically.   We have to be a bit careful because 0Lk =  
is a solution and the MATLAB ‘fsolve’ will return something close to zero if 
given a bad initial guess.   But if we plot the the function we see it has a root near 
Lk=5 .   
fsolve(@(lk) sin(lk)/lk-cos(lk),5) 
gives Lk=4.4934. 
 

The buckling load follows as 2
24.4934crit

EIP
L

=   

 
6. The figure shows a fiber reinforced composite laminate.   

(i) When loaded in uniaxial tension parallel to the fibers, it fails at a stress 
of 500MPa. 
(ii) When loaded in uniaxial tension transverse to the fibers, it fails at a 
stress of 250 MPa.   
(iii) When loaded at 45 degrees to the fibers, it fails at a stress of 223.6 
MPa 

 
Failure in the laminate is to be predicted using the Tsai-Hill criterion 
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6.1 Use the measurements to calculate values for the parameters 1 2, ,TS TS SSσ σ σ  . 
1. If the laminate is loaded in uniaxial tension parallel to the fibers, the material fails when 11 1TSσ σ=

.  It follows that 1 500TS MPaσ =   
2. If the laminate is loaded in uniaxial tension perpendicular to the fibers.  The material fails when  

22 2TSσ σ= .   It follows that 2 250TS MPaσ =  
3. If the laminate in uniaxial tension with stress 0σ  at 45 degrees to the fibers (horizontally in the figure), 

we can use the basis change formulas  to show that the stresses in the basis aligned parallel and 
perpendicular to the fibers 11 22 12 0 / 2σ σ σ σ= = = . (See problem 2 from HW4 2018 for details of 
this calculation).   Substituting these into the failure criterion then shows that at failure 
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We can solve this for SSσ   
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× −
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6.2 The laminate is then loaded in uniaxial tension at 30 degrees to the 
fibers.  Calculate the expected failure stress under this loading, assuming 
that the material can be characterized using the Tsai-Hill failure criterion. 
 

We have to use the basis change formulas to find the stress 

components in the 1 2{ , }e e  basis, then substitute the stress 
components into the failure criterion. 
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7. A specimen of steel has a yield stress of 500MPa.  Under fully reversed cyclic loading at a stress amplitude 
of 200 MPa it is found to fail after 410  cycles, while at a stress amplitude of 100MPa it fails after 510  cycles.  
This material is to be used to fabricate a plate, with thickness h, containing circular holes with radius a<<h.   
The plate will be subjected to constant amplitude fully reversed cyclic uniaxial stress far from the holes, and 
must have a life of at least  cycles.   What is the maximum stress amplitude (far from the hole) that the 
plate can withstand? 
 
 
The stress is below the yield stress, so the material will fail by high cycle fatigue.   We can estimate the number 
of cycles to failure using Basquin’s law 

b
fN Cσ∆ =  

We also know that the plate with a hole has a stress concentration factor of 3 (i.e the stress near the hole is 
three times the stress far from the hole - see homework 5, problem 4) 
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To survive  cycles the stress amplitude near the hole cannot exceed 100MPa, which means that the stress 
far from the hole cannot exceed 100/3 MPa 
 
 
8. A spherical pressure vessel with internal radius a and external radius b=1.5a is repeatedly pressurized from 

zero internal pressure to a maximum value p .  The sphere has yield stress Y, ultimate tensile strength UTSσ  and 

its fatigue behavior (under fully reversed uniaxial tension) can be characterized by Basquin’s law b
a N Cσ =

.  You can assume that the elastic stresses in the vessel are given by 
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8.1 Find an expression for the fatigue life of the vessel in terms of  p , and relevant geometric and material 

properties.  Assume that the effects of mean stress can be approximated using Goodman’s rule.  Assume 

that 3 3/ 2(1 / ) / 3p Y a b< −  
 
The maximum tensile stress occurs at the inner wall r a=  , which gives 

3 3

3 3

( 2 ) 1.1316
2( )
b ap p

b aθθσ +
= =

−
 

The fatigue life satisfies the equation 
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The life is therefore 
1/

1 1
1.1316

b

UTS
N C

p σ
   = −  
   

 

 
 

510


	EN1750: Advanced Mechanics of Solids
	Example problems on plasticity and failure.
	Ungraded

	School of Engineering

