Course Outline

Fundamental Postulates of Solid Mechanics
Introduction to FEA using ABAQUS
Math Review, introduction to tensors and index notation
Describing Deformations _
Describing Forces Exam Topics
Equations of Motion
Linear Elastic Stress-Strain Relations
Analytical Solutions for Linear Elastic Solids
Energy Methods for Linear Elastic Solids
. Implementing the Finite Element Method for Elastic Solids
. Solids with special shapes — beams and plates
. Dynamic elasticity — waves and vibrations
. Plasticity
. Modeling failure
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Concept Checklist

2. FEA analysis

* Be able to idealize a solid component as a 3D continuum, rod, shell or plate

* Understand how to choose a material model for a component or structure

+ Be familiar with features of a finite element mesh; be able to design an suitable mesh for a component

* Understand the role of the FE mesh as a way to interpolate displacement fields

* Understand the difference between solid, shell and beam elements

* Understand that selecting inappropriate element types and poor mesh design may lead to inaccurate
results

* Understand how to select boundary conditions and loading applied to a mesh

* Understand that for static analysis boundary conditions must prevent rigid motion to ensure that FEA will
converge

* Understand use of tie constraints to bond meshes or to bond a rigid surface to a part

* Be able to analyze contact between deformable solids

* Be able to choose a static, explicit dynamic, or implicit dynamic analysis;

+ Be able to interpret and draw conclusions from analysis predictions; have the physical insight to recognize
incorrect predictions
* Be able to use dimensional analysis to simplify finite element simulations



FEA Analysis

Features of FE Mesh s - Linear
Nodes: Used to track motion of points in solid . 3 > =
Elements: Main purpose is to interpolate 5 4o > ‘.
displacements between values at nodes. o ) LR 5 Y 1 ;

Quadratic

ABAQUS offers linear (nodes at corners) and 4111 g R et
quadratic (nodes at mid-sides) elements Jiddq L2 Elements s e

o
]

Special element types B
Truss: Special displacement interpolation for 2 force
members Ly
Beam: Special displacement interpolation for slender
member. Have rotation DOFS/moments L, =
Plate/Shell: Special displacement interpolation for thin Deformed
sheets that can deform out-of-plane. Rotations/moments

Materials (Some examples)

Linear Elasticity: OK for most materials subjected to small loads
Plasticity Metals beyond yield

Hyperelasticity: Large strain reversible model used for rubbers
Viscoelasticity: Time dependent material used for polymers/tissue

neo-Hookean material : g
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FEA Analysis

. Properly constrained solids
Boundary Conditions

b"' __xJ_'f ’
We can apply
- - Euiltin Rollex
1. Prescribed displacements (oremcaske) g, peescribed
2. Forces on nodes gy, 8 prescibed
3. Pressure on element faces
4. Body forces I,
5. For some elements, can
apply rotations/moments M,Im' A s 32 s 4
IUnconStrained
. . vertical motion
For static analysis we have to make sure we
stop solid from translating/rotating EEEE; 2K ‘:j
-— 7 ] «—> ‘Unconstrained
Unconstrained horizontal U?anStralned Uncpnstrained horizontal rotation
motion rotation motion
Contact Incorrectly constrained solids
Select
1. Contact algorithm (Surface/Node Based)
2. Constitutive law for contact
« “Soft’ or “Hard” normal contact
. Friction law
Master Surface Slave surface ) Master
L Master/slave pairs Slave surface

Reference point

]

surface
Nodes on slave surface are i
prevented from penetrating inside
master surface




FEA Analysis

Solution Procedures
Small strain —v- large strain (NLGEOM)

*

Static Linear analysis solves Ku=r u=u

%

Nonlinear problem: solves R(u)=F u=u using Newton-Raphson iteration

Explicit Dynamics: solves Mii+R(u)=F  u=u" using 2" order forward Euler scheme
Implicit Dynamics: solves Mii+R(u)=F  u=u using 2" order backward Euler scheme

Special procedures: modal dynamics, buckling (‘Linear Perturbation steps’)

Using Dimensional Analysis

Input datato code o= f(P,E,I,L) TP
Dimensionless form £=f(i L) § E 1
(others are possible) [, EI* I N
N >
If we know o= f(P,EI,L)
) PI’
Then — = f(——
7 S( I )
o 5 _PI
If we know problem is linear, then —=C— for some constant C



Concept Checklist

3. Mathematics

* Understand the concepts of scalar, vector and tensor fields; understand use of Cartesian and polar basis
vectors to represent vector and tensor fields

+ Be able to compute gradient and divergence of scalar, and vector fields in Cartesian and Polar coordinates;

* Understand the concept of a tensor as a linear mapping of vectors;

* Be able to create a tensor using vector dyadic products; be able to add, subtract, multiply tensors; be able
to calculate contracted products of tensors; be able to find the determinant, eigenvalues and eigenvectors
of tensors; understand the spectral decomposition of a symmetric tensor;

+ Be familiar with special tensors (identity, symmetric, skew, and orthogonal)

* Be able to transform tensor components from one basis to another.

+ Be familiar with the conventions of index notation and perform simple algebra with index notation

« Be able to calculate the divergence of a symmetric tensor field in Cartesian or polar coordinates (eg to
check the stress equilibrium equation)



Position r= X;€; = X1€1 + X>€9 + X3€3

Scalar Field ¢(x;) gradient V¢:§—¢el-

Xj
: ov;
Vector Field v(x;) gradient Vv:ale,- ®e;
x.
/ St Sz Si3
Tensor: linear map of vectors onto vectors v=S-u=v;=S;u; |51 S»n 53
S31 832 S33
Dyadic product of vectors S=(a®b) S-u=(a®b)-u=(b-u)a S;=a},

General tensor as a sum of dyads S = Sijei ® e;

e, Y
Basis change formulas ty };“’
/7 1
Vectors: v= V( ) Vl.(e)ml. (m) _Ql] (e) 3/'() €

Tensors: S= Sig-m)m- ®m; = Slg-e)e,- ®e;

my - ¢
Sl(;l) = kaS(e)Qlj Q;=m;-e; [Q]{mz.e1

mj-€

mp-e; mj-€3
m2°e2 m2°e3

ms-€; Imj3-€;3

|



Gradients in Polar Coordinates

Position  r=Rsinfcosgi+ Rsinfsingj+ Rcosdk

Vector a=apep +apey +agey
: of 1of 1 of
\Y ey ——+ i
Gradient of a scalar [=er_pteop—s % Reing 0
o Lo vp L o V|
OR R OO R Rsin@ 0¢p R
: _| e 1%  vr L) "
Gradient of a vector WEIGR Roe TR wemaop R
% L OV 1 aﬁ+cot9—9+v—R
| OR R 06 Rsin@ 0¢ R R |

. o
Divergence of a vector  v.v=rrace(vv)= 2R 2R L0, o, 1 T
OR R R 00 R Rsin® 0¢

Position r=re, +ze_, =rcosfi+rsindj+zk

Vector a=a.e, +agey+a.e,
Gradient of a scalar  v/-¢, LreprLre. L
or 000"

oy 10 vg O]

o ro0 r oz
: ov, 10vp v, Ov
Gradient of a vector  Vv=|—=¢ ——¢4+r =2
or rol r Oz
ov, 10v, ov,
| or r 00 0z |

Divergence of a vector  v.y=mace(vv)=2r L% v &2
or raold r Oz



Tensor Operations

Operations on 3x3 matrices also apply to tensors

Uyp Up Usl| [Sn+h1 Sip+Ty Si3+T3 |
Uyr Uy Uz |=| 80141y Spp+Thy Sr3+1h3
(Uzp Uszp Uszz| |S31+131 Szp+13; S33+7133

Addition U=S+T

v Sit S22 Sz ||y S11uy + Syaup + S13u3
Vector/Tensor product v=S-u vy |=[ 821 Say Sos || uy |=| Sygtty + Sty + Soqus
vi| [S31 832 833wz | | Sz t+Szoup +S33u3

Sit S22 Si3 upSy +upSyy +uzS3)

v=u-S [m v wl=[m u w][S Syn Sy |=|wSpp+usSy+uzss)
S31 S3p 833 | w1813 +upSy3 +u3Sss

Ur Uz Us| [T Ty T3S Sz Si3
Uy Up Up|=|Tn1 Tpp To3||S21 So 523
Uy Usp Usz] [Ty T3 T33)[S31 S32 S33
L1511+ N12S21 + 13831 TS + 112822 + 113832 111813 + 112523 + 113533
=| 11811 + 152521 + 153831 121812 + 120822 + 123830 131512 + 122525 + 15353,
T31811 + 132821 + 133531 T31512 + 132822 + 133532 131513 + 132523 + 133533

Tensor product U=T-S



Tensor Operations

T
Transpose Sii Sz Si3 St S21 83 u-S’ =S-u
S21 S Sz | =[S Sz Sy T o 7
S31 Sz S33 Si3 Sz S (A-B) =B -A

Determinant  det(S) =511 (522533 — 523532 ) — 522 (S12 533 = $32513) + 533(512523 — 5225 13)

Eigenvalues/vectors S-m=/Am Spectral decor?position for symmetric S
det(S - A1) =0 s=> 4m" @m®
Inverse  S™1-S=I =1

o0 Symmetric tensor S=87
Identity I=/0 1 0 .
Skew tensors S’ =-S
00 1
Proper orthogonal tensors R-R! =R’ .R=1 det(R) = +1
R _R7

Inner product S:S= SUSl] = Sl lSll + S12S12 + S13S13 +....

Outer product  S-8=5,5;; =815; + 512521 + 513531 +-..



Index Notation Summary

Vector x=(x,xp,x3)

Tensor |°11 %1z 513
So1 S 83
Index Notation x=x; S=S5j; S31 830 833
Summation convention
3
A=ab; = A=) ab = A=ab +ayby+azby;=a-b
i=l1
3 cp = 811% + 812X +S13%3
G =SyXp = =) SyXp= {cy=Sy1x +Spxy +Sy3x3=5x
k=1

c3 = 831X + 835X + 53313
3 3
A= SUSU = A= ZZSUSU = A= S11S11 +S12S12 + ...+S31S31 +S32S32 + S33S33 =S:S
i=1 j=l

3 3
T
Cyj=AyBy = Cj=) AyBy; = C=AB Cyj=4;;B;; = Cj=) A,B; = C=AB
k=1

k=1
toi=j |00 Ox

Kronecker Delta  o={y | <010l ady=a; 2oy

onecker Delta  d =), " 010 R Al

_ 1 i,j,k=123; 2,31 or 31,2 Sijk=Ckij =€ ki~ ~ €jik=
Permutation symbol ¢, -1 ij k=321 213 o 132

Jjik Ckjii= ~ Skji

ki =0
0 otherwise €k Simn= 5jm5kn — 5jn5m k
l=detA = A= A A, A 1 |
= det = - g Sijk Slmn AliAmj Ank

/N 2det(S) Sipq € jki SPkSqZ



Concept Checklist

4. Deformations

* Understand the concept and definition of a deformation gradient; be able to calculate a deformation
gradient from a displacement field in Cartesian/polar coordinates; be able to calculate understand the
physical significance of the Jacobian of the deformation gradient

* Understand Lagrange strain and its physical significance; be able to calculate Lagrange strain from
deformation gradient tensor or displacement measurements.

+ Know the definition of the infinitesimal strain tensor; understand that it is an approximate measure of
deformation; be able to calculate infinitesimal strains from a displacement in Cartesian/polar coords

* Know and understand the significance of the compatibility equation for infinitesimal strain in 2D, and be
able to integrate 2D infinitesimal strain fields to calculate a displacement field.

+ Be able to calculate principal strains and understand their physical significance

* Be able to transform strain components from one basis to another



Deformations

Deformation Mapping:  Y(X,?)
Displacement Vector:  u(X,?) =u(Xx,f)—X

Deformation Gradient: F=Vy=Vu+l

ax]' 5x]
dy = Fdx dyl = F;jdx]

Jacobian: J =det(F) dV =JdV,

1
Lagrange Strain: E = E(FTF )

1

> -1

218

=yt

Deformed

Original Configuration

1 Configuration

dr dw

Deformed

.. Deformed
e, Original Configuration
1 Configuration gu
¢

3

Can use this to find E given /,/;,m for 3 (in 2D) directions



- - - - . 8:_ vu+ Vu E:r = — ! +
Infinitesimal strain: 2( (Vu) ) /A Laxj ox;

Properties: (1) Approximate strain measure used
only for small deformation
(2) For small strains € = E
(3) Components quantify length and
angle changes of unit cube
(4) m-em=me;m; ~(I-1ly)/

(9) trace(e) =gy, = (dV —dVy)/dV, J

Deformed

Original Configuration

Configuration

2D Compatibility conditions

To be able to integrate strains (to find displacement)
2 2 2

0 8;1_‘_6 852_26 €12 ~0

8X2 6x1 8x18x2 Compatible

Integrating strains / [ [ [

I
&1 = :>u1=j811dx1+f(x2)

\T

8u2 ’
Eyy =—= Uy = | Expdxy + 2(X Incompatible
275, T I 220X +8(x) p \‘
. . 8u1 6u2
Find ,gusing 2&,=—+—=

ox ) 8x1



Principal Strains and stretches

\2)

In principal basis m®D m®» m® strains are diagonal

2 Ime 0rmex

el 0 0 ﬂ’l -1 0 0 Udfmsd Deformed

- _ 2
g™ =10 e 0 E™="| 0 A4-1 0
00 e 0 0 -1

(1)

Jﬁ

N | =

Infinitesimal strain am( ) = e;m

i i (eigenvalues — use usual method to find them)
Lagrange strain Em) = (ﬂ‘z m")



Concept Checklist

5. Forces

« Understand the concepts of external surface traction and internal body force;

» Understand the concept of internal traction inside a solid.

* Understand how Newton’s laws imply the existence of the Cauchy stress tensor

« Be able to calculate tractions acting on an internal plane with given orientation from the Cauchy stress
tensor

« Be able to integrate tractions exerted by stresses over a surface to find the resultant force

» Know the definition of principal stresses, be able to calculate values of principal stress and their directions,
understand the physical significance of principal stresses

* Know the definition of Hydrostatic stress and von Mises stress

« Understand the use of stresses in simple failure criteria (yield and fracture)

« Understand the boundary conditions for stresses at an exterior surface

6. Equations of motion for solids

* Know the equations for linear momentum balance and angular momentum balance for a deformable solid
* Understand the significance of the small deformation approximation of the general equations of motion

* Know the equations of motion and static equilibrium for stress in Cartesian and polar coordinates

+ Be able to check whether a stress field satisfies static equilibrium



Describing external and internal forces

External Loading

. dP
Surface Traction t=t, +f,n= lim —
dA—0 dA
: . dP
Body force (per unitmass) p= lim ——
V0 pdV i et
dv
Internal Traction Vector T(n) t

n T(n)
Quantifies force per unit area at a point on internal plane I

Traction depends on direction of normal to surface & Tem' ™
Satisfies: T(-—n)=-T(n) )—el
T(n) =T(ey)n +T(ey)ny +T(ez)n;
Cauchy (“True”) Stress Tensor

Definition (components): o =T} (e;)

Then: T;(n)=n;0; T=no T(-e)dA,

Warning: Some texts use transpose of this definition T =on

Cauchy stress (force per unit deformed area) is symmetric Gy =0 j; » SO both are the same, but
some other stresses eg nominal stress (force per unit undeformed area) are not, so be careful.



Principal stresses (eigenvalues of stress tensor)

(@) 5 G = O'i”/(ci) (no sum on i)

Dg = 5.n®
n'’c=on or n;°0;

If 0, >0,>0; then O isthe largest stress acting normal to any plane

Hydrostatic stress o, =trace(6)/3 =0y, /3 o, =(o1+0y+03)/3

Deviatoric stress O, l'] =0j; =005

Von Mises stress o, = \/io’:c’ = \/36{-0{-
2 2 Y

1 2 2 2
0e=\/5{(01—02) +(01-03)" +(02—03) }
Failure criterion for brittle materials (approximate) 07 <O ;.

Yield criterion for metals (Von Mises) o, <Y




Stresses near aboundary 7,0;; =1 n-oc=t S

egfor n=e, t=0

Oy =03 =0233=0 %




Linear Momentum

Angular Momentum

Small deformations: replace y by x (approximate, but much easier to solve)

Spherical-polar coordinates

[ aO'RR
OR

dv aO'Re "

V-e+pb=p—=
P pdt OR

60'R¢
OR

orr 1 9%r  p0R, 1
o0

R

R

R

R

Equations of motion

J J

Oy;

001y , 00y, 003 +pb1=pﬁ
a0 dt
80'12 4 80'22 n 80'32 +pb2 :pdﬁ
M O O dt
0013 0033 0033 + phy :pdj
v O 0 dt

O-lj = O'J'l'

R

00

ORR

ORO OR¢

G=|0gr Opo 0oy

O¢r  Op0 ¢y

doyr 1

R Rsin0 o¢ (o0 +oy)

R Rsin@ 0¢
80'¢¢ 1

o
cos 9ﬂ+ 1 —
R Rsinf 0¢ R

Cylindrical-polar coordinates

I 00, O + l 0o, + Jo.p _%90 | b, P vy

or r r 06 0z r dt
dv_|100gg 00,9 0,9 0Oy 00 dvg

Vie+pb=p—=|—TFF+—"F+——"F+—"+—F |+ by | =

PP | o0 rr o |7 a

do,, 00, 0, 100y, dv

+ —re z

L Oz rr 00 ] pbz P dt

oo, o,
2= +iagzg veotp00 L C990  Gor . p00

Ops sinf 00y
e (ogr +040)

Pbr

pby

O-rr

G =| Oy

O-Z r

Or9 Oy

Cpo ©Oo:
0z O

Original
Configuration

Deformed
Configuration




Concept Checklist

7. Stress-strain relations for elastic materials subjected to small strains

* Understand the concept of an isotropic material

* Understand the assumptions associated with idealizing a material as linear elastic

+ Know the stress-strain-temperature equations for an isotropic, linear elastic solid

« Understand how to simplify stress-strain temperature equations for plane stress or plane strain deformation
« Be familiar with definitions of elastic constants (Young’s, shear, bulk and Lame moduli, Poissons ratio)

* Be able to calculate strain energy density of a stress or strain field in an elastic solid

+ Be able to calculate stress/strain in an elastic solid subjected to uniform loading or temperature.



Stress-strain-temperature relations for elastic solids

Assumptions O &2
. . €33 E1r
Displacements/rotations are small — we can use E )y
infinitesimal strain as our deformation measure
Isotropy: Material response is independent of %,
orientation of specimen with respect to underlying e,
material LEI <_€ 3_, ,,
Elasticity: Material behavior is perfectly reversible, ©
and relation between stress, strain and temperature is
linear
1+v
Then 5ij :TO-U EO'kk5 +aAT5
<« mmm—>
E { v } EaAT <l —>
Oy = Eij + O (=0 .
Yo lev | Y 1-2v 1-2v ¥ Stress-strain
response equal
More generally Gij = Cijkl (3kl —aAT&kl) gij = Sijklo-kl + OZATé‘l]
Strain Energy Density Ly
El']e' = —O'l] Gkk5
. : T E E
Separate strain into elastic and thermal parts &j =& + & .
&jj = aAT 5z‘j
. . 1 e I+v
Strain energy density U=y U=—"0,0j~~—010
2F 2F
U - E e e Ev

B e e g
2(1+v) T T (v ) (1— ) T



Useful elasticity formulas for isotropic materials

Matrix form for stress-strain law (3D)

1-v v v 0
[ 811 1 I 1 -V -V 0 0 0 _—O-ll— _l_ _O'll_ 4 1-v v 0 0 0 [ &1 1 _1
& -V 1 -V 0 0 0 (2} 1 [22o5) v v I-v 0 0 0 & 1
£33 _l v v 1 0 0 0 033 AT 1 033 :L 0 0 0 (1—21/) 0 0 £33 _E(ZAT 1
265 E[O 0 0 2(1+v) 0 0 || om 0 or | (+v)(I-2v) 2 L 2ep3| 1-2v |0
2613 0 0 0 0 2(1+v) 0 o3 0 13 0 0 0 0 ( _2 V) 0 2e3 0
2¢15 0 0 0 0 0 2(1+v)| oy 0 Lo12 | [2¢12 ] L0
L412 ] L ALP12 ] e (1-2v)
0o 0 0 0 0
i 2 ]
For plane strain €33 =&33 =£;3=0
¢ I-v v 0o 1 %11 I=vov 0 ey !
8 _(1+V) 1 0 ! 1 AT 1 (92o%) ZL -V 0 & _EOCAT 1
& |= v 1-v 0 oy |+(1+v)a (d+v)(1—2v) 1-2v
2¢1, 0 0 2|op 0 12 0o 0 % 2é1 0
EV({;‘ll + 822) EaAT
033 = + , 013 =092 =0
B -w)(1+v) 1-2p BB
For plane stress 033 =0,3=013=0
€11 | 1 -V 0 O11 1 o1y - 1 v 0 &1 EoAT 1
&y :E -V 1 0 o)) +aAT| 1 o |= 5 vo1 0 29 _(la 1
261, 0 0 20+v)][op 0 on| V0 0 a-vy2| 26, o

&33 = —%(O'll +O'22)+CZAT

. . 1
Strain Energy Density v :5[0118161 +09)83) + 033833 + 201561 +2073813 +2023823}

glel = 811 —aAT 852 = 822 —aAT 8363 = 833 —alAT




Relations between elastic constants

LAME SHEAR YOUNG'S POISS0NS BULK
MODULUS MODULUS MODULUS RATIO MODULUS
A £ E 1 K
A 34 +2u) A 3A+2u
' A+ 24+ u) 3
i E Irrational Irrational Irrational
v All=2v) All+v)1-2v) Al +v)
' 2v v v
I K WK - 1) 0K (K — ) A
2 3K -4 K -4
4 E w2u—E) E-2u HE
i E-3u 2u 33— E)
2uv 2u(l+v)
iV 2u(1+v I e
1-2v #l=v) 3(1-2v)
_ - 3K -2
K 3K-2u 9.1!7-1 i : M
3 IK+u 203K + u)
v vE E E
] (1=v)1-2v) 2(1+v) 3(1-2v)
e IK(BK-E) 3EK IK—E
: 95K-E 9K-E 6K
3K JE(1-2
v. K v 3K(1~2v) 3K(1-2v)
(1+v) 2(1+v)




Concept Checklist

8. Analytical solutions to static problems for linear elastic solids

+ Know the general equations (strain-displacement/compatibility, stress-strain relations, equilibrium) and
boundary conditions that are used to calculate solutions for elastic solids

» Understand general features of solutions to elasticity problems: (1) solutions are linear; (2) solutions can be
superposed; (3) Saint-Venants principle

+  Know how to simplify the equations for spherically symmetric solids (using polar coords)

+ Be able to calculate stress/strain in spherically or cylindrically symmetric solids under spherical/cylindrical
symmetric loading by hand

* Understand how the Airy function satisfies the equations of equilibrium and compatibility for an elastic solid

+ Be able to check whether an Airy function is valid, and be able to calculate stress/strain/displacements from
an Airy function and check that the solution satisfies boundary conditions



Solutions for elastic solids

Static boundary value problems for linear elastic solids

Assumptions:

1. Small displacements
2. lIsotropic, linear elastic material

Given:

Original Deformed

1 Configuration

1. Traction or displacement on all exterior surfaces e,
2. Body force and temperature distribution

Governing Equations:

1. Strain-displacement relation (you can use the compatibility equation instead)
£y = (0u; | 0x; +0u; | 0x;) 1 2 8:[Vu+(Vu)T}/2

2. Stress-strain law
1% EaAT E EaAT

1%
;i =—o| &1i +———&11.0:; | ———— O c= e+ trace(e)l |— I
’f 1+v( JT gk Uj (1—2v) 7 1+v( 1-2v ()) (1-2v)

I 5%’
3. Equilibrium 6—+'00bj=0 V-6+pyb=0
x.

l

4. Boundary conditions on external surfaces

%
1. Where displacements are prescribed u;=u; u=u
2. Where tractions are prescribed no;=t ne=t

*

Configuration




Solutions for elastic solids

Spherically symmetric solids

X:ReR

Position, displacement, body force u=u(R)eg
b = ppb(R)er
_ oprg O 0 erp O 0
Stress/strain o=| 0 o O e=| 0 s O
du u E EaAT
= = == = —  !la- _
ERR—dR 8¢¢—89g—R ORR (1+V)(1—2V){( V)ERR+V89¢9+V8¢¢} 1=2v
Ogp = O, =#{89‘9 +V8RR}— EaAT
P (1+v)(1-2v) 1-2v
Equilibrium 228+ (20— opp o) + o =0
qu u R R\TORR 700 = Opy 0OR
du 2du 2u d [ 1 d| o\ a(l+v)daT (1+v)(1-2v)
du,cdu_su_d] 1 4 - - b(R
R RdR R2 dR{deR( )} (1-v) dR E(1-v) Pob(R)

Boundary conditions ugp(a)=g, up(b)=gp

or ogr(a)=t, oprd)=1t



Solutions for elastic solids

Cylindrically symmetric solids

X=re, +ze,

Position, displacement, body force u=u(rle, +¢..ze.
b=,00b(7")er
Stress/strain op 0 0 &r 0 0] " . - _
o= 0 oy O e=| 0 &gy O e =2 o =2 ne strain, or
0 0 o, 0 0 & T dr 00 r generalized plane strain
o, | I-v v v &, | 1 _
ooy |- —L —v v | e |-E%T11|  Plane strain
(1+v)(1-2v) 1—2v
| Oz | v v 1-v SZZJ
o, | E [1 v]eén,]| Eaar[l
oo | 12|y 1 e ] 1ov |1 Plane stress
Equilibrium d;—r”+%(orr—a,99)+p0br=0

a(l+v)oAT (1+v)(1-2v)

&+la—”—i=i{l£(ru)}= pob+a’r)  Plane strain
ot ror 2 orlror (l—v) or E(1-v)
%u 1ou u o010 OAT (1_‘/2) 2 Plane stress
&/—2—#75—’”—2:5{75(1%)}=a(l+v)——TpO(b+a) 7")
Boundary conditions u.(a)=g, u.(b) = gp

or 0oy, (a)= la Oy (b)= Ip



Airy Function solution to elasticity problems

4 4 4
Airy Function V4¢Eaf+2 62¢2+af:o
ox) oxi{ 0x5  0Ox S
Stress oy =— Oy =—2  Opp=0y=—
2 2 0x10x
a_X2 8x1 1 2 e3 el
o33 =0 (Plane Stress)
o33 =v(o11 +092) (Plane Strain)
03 =013 =0
Airy Function 2 10 12
bt ——— | $=0
"y [ar2+r8r+ zaazj /
Stress o —l%+iaz_¢ o —62_¢ o =_i[l%j
T rar 2agr P a2 T arlroo
Epp (14v) I-v —v 0} o, Epp . 1 v 0 Oy
; +v )
Straln Egp |= z v 1-v 0 Opp Plane Straln Eop ZE -v 1 0 Ogo Plane Stress
2¢,9 0 0 2|0 2¢,9 0 0 2(+v)| o,
. ou,. u,. 10uy 1({10u, oOuy uy
=—L =L+ —C =—| ——L1+—2--C
Displacement &, =—~ ép=—"+—"—" &0 2[r Py R w—



Proof of the Airy Representation
oty o

4
0 f+2 5T =0
axl 6x1 6x2 6xl

Airy Function Vig=

1+v

2 2 2

Stress  5,-%¢ N Strain 1= ¢ Ull—f(”ﬂV)(GlHUzz)

1= 2= 12 =071
aXZ axl axlaxz 1+v

033=0 (Plane Stress) €22 = £ 722 —E(1+,b’v)(o-11 +0)
o33 =v(oy1+0)) (Plane Strain) fra = l+v o1y f=1 (Plane Strain)
03 =013=0 E

f =0 (Plane Stress)

o/
oV

2 2
Equilibrium 011 201y _, i[ﬂ}i{_ o J

oxy  0Oxp oxy ax§ Oxy (- Ox0x)

Go1y 99 _, of & ), o[
& 2 x| 6x16x2 0xy 6x12

ROT 0 0%e %e 1+v( 0o ates o? 62 1+v 82 o2
Com atlblllt 11+ 22—2 12 =0 11+ 22 1+ ﬂ — 0'11+O'22 —-2—
P y oy ond 0x0xy E a3 of E ( \a? oxt c’?x% ( ) E oyoxy

4
o'p o V(1+ﬁv)( L0 ]£62¢+82¢J+2 0,
axl 6x2

6x2 axl 1+v axf ax§ 8x128x§

4 4 4
a¢+2 ¢ +6¢=0 \/

8x14 8x12 ﬁx% 6x14




Concept Checklist

9. Energy methods for linear elastic solids

* Understand the definition of a kinematically admissible displacement field

+ Know the formulas for potential energy of 3D solids, strings, beams, membranes and plates

* Know the principle of minimum potential energy for elastic solids

+ Be able to use energy methods to estimate the stiffness of a solid

+ Be able to use the Rayleigh-Ritz method to find approximate solutions to elastic boundary value problems



Principle of Minimum Potential Energy

Assumptions:

Elastic material
Small displacements
Static equilibrium

S
Boundary conditons u=u" on S, ne=t on A <

BN =

ep ¢
Definitions: ‘
1. Kinematically admissible displacement field: any differentiable €, e,
displacement vector satisfying v=u wherever displacements
are known
2. Actual displacement field (the one that satisfies equilibrium within the
solid and traction boundary conditions on surfaces)
Strain energy density U
Potential energy

> W

M(v)= [UW)dV - [bvaV - [ t-vdd
V V S2

Principle of minimum potential energy I1(v)>TII(u)

Among all guesses for the displacement field, the best guess is the one with the smallest TI




Useful formulas for potential energy

€ >

L

—5 % v EA p

,>|—>—>—>—>—>—> => = >

x;l g(x) (force pre unit L)

€,
2 T—) €

. A q(x)
1-D Tensioned cable I1= TOI (dxj dx — '[ q(x)v(x)dx (_W»
T, T,

——i
X

2 q
d
1-D axially loaded bar ~ IT= j EA(de dx - [ g(x)v(x)dx — Py(L)
X
0

q(x)

€ 2, L ALAA
1-D Euler-Bernoulli beam I ='[1E1(d_;] dx—jq(x)v(x)dx h(x)\t* 14 TI
0 2 dx 0 |x—)| ﬁel

2-D biaxially stretched membrane

L (av) (ovY
H:J.—TO Ly Y dA—Iq(xl,xz)v(xl,xz)dA
A2 8x1 6x2 y

2-D Kirchhoff plate

Ed c1l(o o) vorv (v )
_ [ - dA— [ q(x1,x2)v(x1,x)dA
120-v) 2| a? o ; oxy y




Rayleigh-Ritz Approximation

Example: 1-D axially loaded bar
L

e >
T (v r —5 o B
= | EEA(aj dx = [ q(x)v(x)dx — Py(L) pe=sss5551-
0 0 —x>' q(x) (force pre unit L)
N
Approximation:  v(x)=)_a;f;(x) /;(x) - Basis functions (any complete set of interpolation functions)
i=1

f,(x) = xl_l is an example

N
1. Satisfy Boundary Conditions:  v(0)=) a;/;(0)=0
i=1
2. Eliminate some subset of d;

Ly (N g 2 L N
3. Calculate PE TI1= I—EA Zai—’ dx—IZaifi(x)q(x)dx—PZ a; f;(L)
0 2 =2 dx 0i=2 =2
oll1

4. Minimize —=0

8611'

4. Solve for remaining @;



Concept Checklist

10. Implementing the finite element method for linear elastostatics

* Understand the connection between elastostatic FEA and the Rayleigh-Ritz method

* Understand how the finite element mesh is used to interpolate a displacement field

* Be able to calculate the strain energy of an element

+ Be able to calculate the element stiffness matrix

* Understand how to sum the element stiffness into a global stiffness matrix

* Be able to calculate the potential energy of external forces acting on a mesh

+ Be able to re-write the potential energy of external loads in terms of the global force vector

* Understand how to minimize the potential energy to derive a linear system of equations for unknown
displacements

* Know how to modify the system of linear equations so as to enforce constraints on displacements

* Know how to post-process the solution to calculate stresses and strains

+ Be familiar with the structure of a linear elastic finite element code

+ Understand the effects of improper boundary conditions on the FE equation system
+ Be aware of ‘locking’ of FE equations with certain element formulations for incompressible materials



Simple FEA for plane linear elasticity

* Approach: compute displacement field in an elastic
solid by
* Interpolating displacement field
« Calculating total potential energy of solids in terms of
discrete displacements
* Minimize potential energy

° Interpolation — constant strain triangles

”i(xpxz)=u,-(a)Na(x1,x2)+u§b)Nb(x1>x2)+u,-(C)Nc(x1»x2)
(72 =28 (4 =4f" )~ -
(() K (( (b)) (x
A )= =) (5" )
(+
-

(b))( :(Zc)_xém)
a) _ (b))(xgc) _x§b>)

Na(xlaXZ)

)
% (@)
Nb(xl,xz)—(x(g,) )))((xi )) NON (C))(xga)_xgc))
R e ),
)

(b) _ (a)) (( fa))(xgn _xga))

N¢ s =
(x1,%) 0.
2

° Potential Energy 11 :IUdA— It* -uds
S,



Calculating strain energy density in an element

Strains: _ @
ON, ON,, ON, 0 (@)

ox ox ox “

1 1 1

n oN, oN, on, || u”

&= [ B]gelement =| &y |=| 0 a 0 b 0 c 1
2 8x2 8x2 8x2 ugb )
P2 loN, oN, N, Ny ON. oN | o
| Oxy  Oxp Oxp Oxy Oxp Oxp | l(c)

u
2

(Strains are constant for linear triangles; not true for general elements)

Stresses (plane strain — can use equivalent plane stress relations as well):

11 l-v v 0 &1
0-22 :L v 1_V O 822
(1+v)(1-2v) oo llo
o2 0 0 —ZV E12
L 2 ]
1 1 o1
Strain energy density  U=—o¢;=—[e11 e 2en]lon (Constant in linear triangles)
012
1
Total strain energy Welement _ EzelementT ( Aelement [ B]T [ D][ B])L_lelement

Define element stiffness  [K element] = A joment [ B]T [ D][ B] Symmetric 6x6 matrix

1
Welement _ uelementT [ Kelement ]uelement



Calculating the total strain energy

Sum strain energy over elements:

N | —
—
S
N—

vl

[,.Q 1
Y Ky
1 1
kS kS

1
L5

- T
u) u®
07| |
u | 1ful®
2| W
1
k) u® | |u®
ug? | [

.2 2
Ky K
2 2
Yk

2
L5

Rewrite each term in terms of global displacement vector:

I a 1 2 2 ) (3) (4 4
W=—[ul() ug) “1() ug) ”1( u§) ul) ug)}

2

M.a 1
Ky kY
(1 1)
ky 1) kéz

Combine to create global stiffness:

NS4
)
)

(2)
U

[.a 1
Ky kY
1 1
Ky k)

N | —
—
N/

WKy o
k) 00
W o
W 0o
k) 00
: 000
0000
00 0 0]
WA
K53

1 2 1 2
k§3)+k1(1) k§4)+k1(2)
1 2 1 2
i) i

1 2
k§3) + k3( 1)

[om
ul)

1

up

O] 1)
1 “g

&)
k56

2 2
kéS) ké6) i

2
u®

.
ke ||

2
ké 6) | 4

00 0 0 0 - 0 0
00 0 0 0 0 0
2 2
00 kP kP
@ @
2,0 0 @ “(4)} 00 k' ky
2 1 2 1 2 0 0 k:g%)
00
@)
00 k3
2 2
00 ke kg |




Calculating the potential energy of external forces

Total PE: = IUdA _ _[ t - uds
y s,

Sum over all loaded element faces:
e L A I T
Rewrite in terms of global displacement:

T0T 1 1 02 2 3 3 4 4 11
P =[”1 Up Uy Uy up Uz ”2][”1 "2

+[u11 ué u12 u% u13 ug u14 u?J[O 0 0 O 1"12 r22 1"12

Combine: T0T _| 1 1 2 2 3 3 4 4
P —|:u1 Uy U Uy U Uy U u2i||:

gr .,




Minimizing PE and constraining prescribed displacements

Potential energy : 1= IUdA - It-uds S %ng [K]ﬁ—ggT 7
Y S,
Minimize: —=[Ku® -r =0
out

Linear equations — but without displacement BCs the
stiffness matrix K will be singular so the equations may

not have a solution, and if they do the solution will not
be unique.

Prescribing displacements:

Modify rows corresponding to constrained nodes to insert equations
constraining displacements

Example: enforce u, =A  for node number 1

Original equations Modified equations
_ Y A N B
i ko kay 1| [ f ko
kyy  kyp kpon || uf! | 0 1
kot ka2 kanan Iy | L4 kon1 kan 2

n

"4




Structure of a basic FEA code

* Data defining problem (GUI or input flle)
» Material properties
* Nodal coordinates
* Element connectivity
 List of nodes with prescribed DOF
 List of elements with loaded faces

* Loop over elements
« Compute element stiffness, add to global stiffness

* Loop over elements with loaded faces
« Compute element force vector, add to global force vector

* Modify stiffness and RHS to impose prescribed disps.
* Solve FEA equations for unknown nodal displacements
* Post-processing — compute element strains & stresses




Improper constraints lead to singular stiffness matrix

eigenvecs =
o] o] -0.3152 -0.4728 o] -0.3152 0.4781 0.5908
0 0 0.6043 —-0.455% Q 0.68043 0.0433 0.2449
a a 0.0866 0.6137 a 0.0866 -0.2078 0.7518
a a -0.7071 —-0.0000 4] 0.7071 —-0.0000 0.0000
4] 4] -0.1673 -0.4381 4] -0.1673 -0.8522 0.le0&
0.4778 4] 0.4807 0.5123 4] 0.0000 -0.0080 0.5179
4] 0.4778 0.0000 0.5123 4] 0.4807 -0.0080 0.517%9
a a -0.0038 -0.5103 0.475%9 -0.003%9 0.4928 -0.51%8
eigenvals =
199.8263 a 4] 4] 4] a a 1]
0 125.441Z2 4] 4] 4] a a 1] 1
4] 4] 13.8635 4] 4] a a 1]
4] 4] 4] 38.4€l5 4] a a 1]
4] 4] 4] 4] 55.0898 a a 1]
a a a a a 1.0000 a 1]
a a a a a a 1.0000 1]
o] o] o] o] o] o] o] 1.0000
eigenvecs =
o] 0.3791 -0.3791 -0.3751 o] -0.4610 0.3791 0.4610
Q -0.4523 0.3015 -0.4523 0 0.4523 0.3015 0.4523
Q -0.5000 -0.5000 0.5000 0 -0.0000 0.5000 0.0000
a -0.2132 -0.63%6 -0.2132 a 0.2132 -0.63%6 0.213z2
a -0.3Ze0 0.3260 0.3260 a -0.5361 -0.3260 0.53el
a 0.5000 0.0000 0.5000 a 0.5000 0.0000 0.5000
0.5638 -0.2908 0.578%9 0.29zZ8 4] -0.2984 -0.0048 0.25%61
a 0.2829 -0.0048 -0.290& 0.5838 0.2%9&81 0.5789 -0.2984
eigenvals =
Zl6.4663 a a 1] 1] a 1] a
0 153.846Z a 1] 1] a 1] a
o] o] T6.59231 o] o] a a o]
o] o] o] 48.076% o] a a o] 1
Q Q 0 0 23.9183 Q a Q .
o ° ° . @ -0.0000 ° « «—— Zero eigenvalue
Q Q 0 0 0 Q 1.0000 0 . . .
o o 0 o 0 0 o 1.0000 Stiffness is S|ngU|ar!
conststrain tria
Matrix is=s Results may be inaccurate. =




Volumetric locking in near-incompressible materials

Example problem: plane strain strip with central hole
Contours show oy )

Results for v=0.3

Results for v =0.499

Spurious pressure fluctuations — this happens N
because the elements become very stiff 05!

Constant strain triangles always give 1t
incorrect results for near incompressible 18
materials — there is no fix. E

For other element types, reduced integration is used to correct volumetric locking.
Hybrid elements are specially designed to be used for near incompressible materials



Concept Checklist

11. Approximate theories for solids with special shapes — beams

* Understand how displacements and strains are approximated in straight beams

* Understand the difference between Euler-Bernoulli and Timoshenko beams

+ Be able to calculate area moments of inertia of a beam cross-section

* Understand constraints and loading that can be imposed on beams

* Know the equations of linear and angular momentum for transverse motion of beams
+ Know the differential equations for displacement fields in beams

* Know the simplified equation for strings and beams without axial force

* Be able to calculate deformed shapes of strings and beams in static equilibrium



Beams

Goal: Calculate (1) Displacement of centroid u(x3) =uje; +uye, +use;
(2) Rotation of x-section  0(x3) =0,e; + e, + se;
(3) Curvature vector «(x3)=d0/dx;

Neglect twist 6; here, but ABAQUS will include twist

Section properties:

1 1¢:
A= J‘dA r= Zj(xlel + X2ez)dA
! A r-r
| _ ) _ _\2 _ _ _ a
I= Ill—f(xz—rz) dA4 122—_[(961—”1) dA4 flz—f(x1—ﬁ)(xz—rz)dA e,
—liy Iy
4 A 4
>
a
Deformation:
Euler-Bernoulli theory (no shear): 6 =—du, /dx; 6, =du; /dxs e,
Undeformed | e,

(Timoshenko theory allows x-sect to rotate relative to neutral axis)

Axial strain: £33 =k1(xp =) — k(X1 — 1)

(Timoshenko beam has shear strains)

Stresses: o033 =FEé&x;

Other stresses zero in E-B beams
(Timoshenko beams have shear stresses)



Beams

Internal Forces (forces/moments on section normal to €5 :
Force vector T =Te; + Thre, + Tzey
Moment vector M =Me; +M,e, + Mses

M, :1033()62 —n)dd M, :—1033(?61 —1)dA
A 4

No twist means M; =0

Moment-Curvature relations: {Ml} E{ I —112}{1(1}

M, —l1p Iy |[&
Equations of motion: _ dT;
- F=ma: + p; = pAa;
X3
dM dM
Angular Momentum: —1—T2 -0/15=0 2 +11 -6, =0
dX3 dX3

Boundary Conditions (at ends):

Fixedend: u=0 N Free to move: T=0

Clampedend: =0 }—/ Free to rotate: M =0



Limiting Cases of Beam Equations

€1
Zero bending resistance (string): EI/ (L2T3) <<1 T—’e3 ,
1
) dT d2 u,(x;) —>
Axial Force 2+ p3~pd®22 7, 7,
doxs dt =
. d(..d d? d (. d d*
Transverse motion —(Tg, ij-l—pl = pA=—] (T3 ”2J+p2 = pa=22
dX3 X3 dt dX3 d.X3 dt
Internal forces: Ty =Todﬂ T =Toﬂ
dX3 dX3
Boundary conditions:  Either: u=u" x=0 x=L Or: T=-P(0) x3=0 T=P(L) x3=1L
Zero axial force (simple beam): EI/ (L2T3) >>1 (X))
. d*u d*u d’u tTTj¢+T* 44 T|
Transverse motion  E| I, ——L+ I, —F |+ pd—-=py U (X;) pe |
dX3 d.X3 dt —> | 1
4 4 2 X3 €;
d U d U d U
E|T +1 +pA4 =p
[ 2 a’xgt ! alxgt dr* ?
M Iy —In || —d?uy | dx3
Internal forces: M= Fix { 1}:1{ I 12} 1213 %—Tz ~0 dM, 1T =0
M, ~ho I || d?uy ) di? dx; dxs
Boundary conditions:
. *
Either: u=u x=0 x=L Or: T=-P(0) x3=0 T=P(L) x3=L

Either: du/da=0, —duy/dy=6  OrF M=-Q (x3=0) M=Q (x;=L)



Solving problems involving strings and beams

€1
Static deflection of string with uniform transverse load: Loe 1
)
dT.
Axial Force —-~0 T5=Th @x=0L =Th=T 7 ) 7,
3 e
. d dul
Transverse motion — | B—|+p =0 u=0 @ x3=0,L
dX3 dX3
i =Ll (L — d
Solution: u = o x3(L—x3) T :TO%:%(L—MQ

3

Static deflection of an end loaded cantilever beam with L shaped sect:

Calculate area moments of inertia  11; ~5a’t/24 Iy ~—a’t/24

Calculate moments with method of sections M| =—(L—x3)P M, =0

M, Ly Iy |d* [-uy| [-(L-x3)P -
Moment-Curvature relation = — = a r-r

My| [=ha I |dd3| m 0 .
2 2 o) 1
d Uy 24 d 1231 3d Uy
Solve 5 = 3 9P(L—x3) R g e
dxy 16Ea’t dey S dx3 2
d du © M P
Boundary conditions  uj =up = e W R x3 =0 g Ar
dxy  dx; ;6@' ----------
&
. 3P, 5P A
Solution  u = x3(3L—x Uy = x3 (3L —x3) 3 M.
Y4B sEEmw) 4Eat > > L




Solving beam problems with MATLAB

syms a ©t EE P L x3 C1 C2 C3 €4 real

syms ul({x3) u2(x3)

IT1 = a"3*t/24*[5,3;3,5]; % This is [I11,-I12;-I12;I22] - regular area moment of inertia matrix
I12 = a"~3*t/24*[5,-3;-3,5]; % This is [I22,T12;T11,122] that appears in some of the equations
uvec = [ul{x3);u2(x3)]; %vector of unknown displacements

diffeq = EE*II2*diff{uvec,x3,4) ==[8;8]; % The differential equation

BCl = subs{uvec,x3,8)==0; BC2 = subs({diff{uvec,x3),x3,8)==0; ¥ BCs at x3=8 are easy

% Matlab 'dsolve' can't handle the moment/force boundary conditions so instead uvecsol =

% we prescribe the displacement and slope at x3=L using C1,C2,C3,C4 (unknown constants) N (BG-GL x5 2G-GL)
% and then solve for these unknown constants using the correct boundary conditions later L’ L’

BC3 = subs{uvec,x3,L)==[C1;C2]; BC4 = subs(diff{uvec,x3),x3,L)==[C3;C4]; ¥ 3G-CL xf (20,-CL)
sol = dsolve(diffeq,[BC1,BC2,BC3,BC4]); 12 B FE
uvecsol = [sol.ul;sol.u2] % This solution still contains the unknowns C1,C2,C3,C4 svecsol =

mvec = -EE*II2*diff(uvecsol,x3,2); % NB: mvec contains [-M2;M1] 5 )
Tvec = -EE*II2*diff(uvecsol,x3,3); % Tvec contains [T1;T2] iffiifj%:ff
eql = subs{mvec,x3,L)==[0;8]:; % Moments are zero at x3=L 4EEaTt
eq2 = subs(Tvec,x3,L)==[@;P]; ¥ Internal force is [@;P] at x3=L 5Px? 3L-xy
[C1sol,C2s0l,C3s01,C4s501] = solve([eql,eq2],[C1,C2,C3,C4]); % Solve for C1,C2,C3,C4 4EEa’s

uvecsol = simplify(subs(uvecsol,[C1,C2,C3,C4],[Clsol,C2s50]1,C350]1,C4501])) % subst back



Concept Checklist

12. Dynamics and vibrations of elastic solids

* Understand traveling wave motion in a string; be able to derive wave equation and solve it.

* Understand reflections of traveling waves at fixed and free ends of a string

+ Be familiar with dispersive wave motion in beams

+ Be familiar with P and S plane wave motion in 3D elastic solids and be able to calculate the wave speeds
* Understand reflection of P and S waves incident normal to a boundary

* Be aware of other waves in elastic solids (Rayleigh waves)

» Understand vibrational motion of strings and beams (mode shapes; natural frequencies)
* Be able to calculate natural frequencies of beams and strings



Traveling waves on strings

Wave equation PR Vo ?0_/%_;0
With initial conditions 27 (0,x3) =wy(x3) Ouy/0t=0
General solution to wave equation  u;(x3,1) = f(x3 —ct) + g(x3 +ct)
Calculate f,g from initial conditions and/or boundary conditions
u) (x3,0) = f(x3) + g(x3) = wy
Initial conditions aul(ax:’o)=C(—f'(X3)+g'(X3))=0 f'(ﬂ.)— f g'(i)=j—i

Boundary conditions

Prescribed displacement 1 (0,¢) = f(ct) + g(ct) = u*(l‘)

u(ﬁ%
Free end M (f(L Ct)+g(L+ct) =

6)(?3



Traveling waves on strings

€1
Travelling waves on an infinite string T_,es
o*u 1 0°
Wave equation _”21 = —2—u21 c= To. e_/m—»
ox5 c¢” ot pA T, > Ty
3
With initial conditions  21(0,x3) =wy(x3) Ouy/0t=0 /\

Solution is 1y (¢,x3) = [WO (x3 —ct) +wy(x3 + ct)] /2

String forced at one end

€1
" L
With initial conditions %1 (0,x3) = Ouy / 0t =0 (JE_?T\/*
—x K

*
Forcing uy(¢,0) =u (¢)
%k
* u (t)
Solutionis  uy(¢,x3) = ult-x3ie) t>x;/c 1:
0 t<xy/c
Reflections at boundaries € L L
T,
With initial conditions 17 (0,x3) =wy(x3) Ouy/0t=0 4 — u(x;) 3
1 e3 —
Boundary conditions  u(¢#,L)=0  ouy(¢,—L)/ 0t =0 s
L L
Solve by extending string N P o
_____________________ -:——/MZQ\)T\—i—



Reflections at free and fixed ends

L L

--- e
v

-
.......
- -
- “ow
---------

ocoone
--. -
L P P
Came”

:

Free end /\

Displacement

-

Transverse force

Fixed end

At a fixed end:
» Positive displacement reflects as negative displacement
» Positive transverse force reflects as positive transverse force

At a free end:
» Positive displacement reflects as positive displacement
» Positive transverse force reflects as negative transverse force



Comparison of waves in beams and strings

String

82u1 _Lﬁzul
ax_% ¢ or

Governing equation

Has traveling wave solutions  uy(¢,x3) = f(x3 £ ct)

Beam

/\

d4u1 1 dzul El
Governing equation +— =0 B=|—
94 dxi B di? oA

No general traveling wave solution, but harmonic motion, eg u;(¢,x3) =cos[k(x3 £ct)] c=k[p satisfies EOM

Wave speed depends on wavelength (or wave number k =27/ 4 ).
General disturbances contain waves with a spectrum of wave numbers — short wavelengths travel faster than long ones

This type of wave motion is called ‘dispersive’



Plane waves in 3D elastic solids

Plane waves in large elastic solids:
1. Deformation wu(x3,7)=u;(x3,t)e; +uz(x3,t)es
2. Governing equations

82u1 _Lézul 82143 _L82u3

8x32 cs2 or? 8x32 c% or*

E 8u1 _ 2 81/{1
2(1+v) ox3 y

013 =031 = o 033
3

3. Wave speeds

[ E
Cy = 2+v)p Shear (S) wave

E(1-v)

Ouz 2%

T A+ v)(1-2v)

L

8x3 a

L

8x3

Example: A large elastic solid is at rest for t<0. For time t>0 its
surface is subjected to a constant uniform pressure p. Calculate

the stress and velocity distribution in the solid.

Solutionis a P wave =p%<t—x3 /er) (x) ={g
L

12 —%—LH(t—x /cr) o3 =—pH({t—-x3/c;) H(x)= :

3 % pe 3/er 33 =P 3/ ¢ =1,

(S wave would be generated by shear stress on surface)

x>0
x<0

x>0
x<0

o = E(1-v)
NA+v)A-2v)p

Pressure (P) wave

p
! N
€3
Velocity
‘ CL—>
Incidentjwave R X
Stress
> X3
—> C;




Rayleigh wave

Special wave that propagates at the surface of an elastic solid

2\2 1o 2 1/2 P 1/2
Wave speed satisfies {2—"—1;] —4(1—( —2) CR} (_C_gj =0

Cy 2(1-v) cs2 Cy

Displacement Stress
UOEexp(ik(xl —CRt))

Uik . 2, 52 2 2, p2 2, 52
= k(x) —cpt)){ (k= + - -2 - oy = k=1 v(Br + Br)—(A=v)(k™ + fr) |exp(-fx
U &, exp(ik(x) —cp )){( Br)exp(—pBrxa) =21 Brexp( ﬂsz)} 1 (kZ_ﬂ%)(Hv)(l—ZV)ﬁL{ [ e ! } .

” =(kzl]#exp(ik(xl —th)){sz exp(—frxs ) — (K + BF)exp(-Brxs )}
—FT

+ 2621y (1~ 2)exp (- )|
UgE exp(ik(x —cgt))
On="">
(k" = pr)d+v)1-2v)p;,

ﬂsz\”—Clze/C% ﬂTzkyll—c%g/csz
_iUGkE(K” + 1)

Wave number k=27/2 (* = B A1+v)

{2+ g a=1)8 ~vi? Jexo(~py2)

22 pr (-2 )exp(~frxs )|

exp (ik(x) —cpt)) {exp (=Prxy)—exp(-frx; )}

o o
e 0 e 0
o b © &

Wave speed CR/CS

o

~

o
:

o
w
:

-1 0.5 0 0.5
Poisson's ratio




Vibrations in elastic solids

Natural frequencies and mode shapes e,
Elastic solids will exhibit simple harmonic motion when released T_,e3
from rest from a special initial displacement field (_W_)
The special initial displacements are called ‘mode shapes’ T, W x, T,
The special frequencies are called ‘natural frequencies’ L 5
Calculating natural frequencies ) )
. . . . . 0 Us 1 0 Us
Start with governing equation (eg wave equation or beam equation) = P
ox3 c¢” ot

Guess harmonic solution u3 = cos(wt + @) f(x3)

Governing equation gives ODE for f [82—f+a)—22fjcos(a)t+¢)—0

8x32 c

General solutioneg u3y = Asinkx; + Bcoskx; k=w/c

A7 [o
Write boundary conditions in form [H]{B}{ }

Set det([H]) =0 andsolvefork. Then ck=w (Always multiple solutions)
Substitute k back into [H] to find A,B and hence find mode shape for each k

//\/\//\/\

First mode Second mode Third mode



2

© N

Calculating natural frequencies with ABAQUS

— Create Step

Set up geometry, properties, section, etc in usual way. Be
sure to define density for the material

Create part instance in assembly in usual way

(Optional) — conduct a static step to pre-load structure
(needed, eg, for a membrane)

Create a new step after optional static step, then in Step
menu select ‘Linear Perturbation’ procedure, and select
‘Frequency’. Can select # vibration modes

Apply boundary conditions in usual way

Mesh solid — be careful with element choice (usually best to
avoid reduced integration/incompatible modes as they have
artificial deformation modes; also if elements will lock that
will cause serious problems). Large # vibration modes will || reme s

Type: Frequency

Mame: | Step-1

Insert new step after

Procedure type: | Linear perturbation H

Buckle

Static, Linear perturbation

Steady-state dynamics, Direct

Substructure generation

Continue... | | Cancel

require fine mesh. easic ot
Run job in usual way
H . . . . . Mlgeom: Off
Frequencies, mode shapes are displayed in Visualization Eigensoher: ® Lanczos O Subspace O AMS
Number of eigenvalues requested: () All in frequency range
MOdUIe i q ® Value: }:1 =




Concept Checklist

13. Plasticity
+ Be familiar with the qualitative behavior of metallic materials loaded beyond yield, including:
* Yielding; permanent deformation; creep; cyclic plasticity in uniaxial tension/compression
* Insensitivity of yield to hydrostatic pressure; plastic strains are volume preserving;
* Levy-Mises flow law.
* Understand the difference between rate dependent and rate independent models of plasticity
* Understand the equations used in rate independent isotropic hardening plasticity models, including:
* The yield criterion
* Partitioning of strain into elastic and plastic parts
« Strain hardening relations
* The plastic flow law
+ Be able to calculate plastic strains resulting from simple cycles of stress (uniaxial, biaxial)
» Understand the concept of plastic collapse in an elastic-plastic solid
+ Be able to calculate plastic collapse loads in axially and spherically symmetric solids



Plasticity

Hold at

Behavior of metals/polymers loaded beyond yield Stress p o

Hold at
constant strain
Unloading

Different plasticity models exist for:
 Room T quasi-static loading (rate independent/isotropic) Lines

» High temperatures (creep) (rate dependent viscoplasticity) Qj

>

Strain

* Dynamic loading (rate dependent viscoplasticity) qmanent
» Cyclic loading (kinematic hardening)
« Special models exist for soils/single xtals/polymers

Strain

Rate Independent Plasticity Model

Yield Criterion (Von Mises) o, <Y for elastic behavior

3 1
o, :\/E Y :\/E{(ﬂ ~03)" +(01-03)" + (0, _03)2}

Von-Mises yield surface

. e T p
Strain Partitioning dey _dey dey  dgy h=dy | de,
dt dt dt dt AY Y Y -
Y h
Hardening Rule  Y(¢,) h=0 0
>c’ &’
de, o) dglf a’gé7 3 doy £ &
__¢€ _ |= — S . . . e ge
i 3 dt dt | 2ho, K=, (Von Mises plastic strain rate)
Flow Rule dsf] _de,35; (x) = x x>0
dt dt 2o, 0 x<0



Summary of elastic-plastic stress-strain relations

1+v( doy d AT - h
tv(4%; v dog 5 L o JAT 5 o, ~Y(g,)<0 (Elastic) Y/
E | dt 1l+v dt dt
dgl.j
= dO'kl
“ iy (doy d dAT 13\ )5S,
W Y Ok s o S0 s 2 R LT 5 y(g,)=0 (Plastic)
E \ d 1+v dt dt h?2 o, 20, > Ep
e
dej | dt dell | dt
3 1 P geP
a N3 a dr 2h0,\ " &)=10 <0
Matrix Form
(1 v v 0 0 0 ] [oy] (1]
-V 1 -V 0 0 0 022 1
11l-v v 1 0 0 0 d| o33 dAT | 1 .
(e ] E[0 0 0 2(1+v) 0 0 |diloy| “dr |0 Te =12 <0 (Elastic)
£ 0 0 0 0 2(+v) 0 o1 0
d| & |0 0 0 0 0 2(1+v) | |oyy | 0]
dt| 2ep3 1 v v 0 0 0 | [oy] 1] [ Si1/0, ]
2813 -V 1 -V 0 0 0 (23] 1 S22 /O'e
2e5] |1|l=v = 1 0 0 0 |d|os|, dAaT|1] 3 doy \3| S33/0 '
Lozt 4 S 4 ~Y(e,)=0
El0 0 0 20+v) 0 0 |dt|op | “ar |0 +2h0'e< L >z 28,3/ 0, oo~ 1(ee) (Plastic)
0 0 0 0 20+v) 0 013 0 283/ o,
00 0 0 0 2(1+v)| |op 0] 281,/ o, |




Concept Checklist

14. Failure

* Understand that solids may fail by (1) geometric instability (elastic buckling; necking or localization) or (2)
by material failure (fracture, ductile rupture, or fatigue)

+ Be able to calculate buckling loads for elastic slender members under axial loading

+ Be familiar with the features of brittle and ductile failure in solids subjected to monotonic loading

* Understand stress-based isotropic and anisotropic failure criteria for brittle materials

« Be familiar with failure by necking in plastically deforming specimens subjected to uniaxial loading

+ Be able to calculate the critical strain at the onset of necking in a specimen subjected to uniaxial tension
+ Be familiar with necking failures in sheets and understand the concept of a forming limit diagram

+ Be familiar with strain based criteria for material failure by void nucleation and growth

* Understand the difference between high cycle and low cycle fatigue
+ Be familiar with stress and strain based criteria for fatigue failure under cyclic loading



Failure by geometric instability in elastic solids (buckling)

Simple explanation for buckling e — —
1. Below buckling load potential energy is Z: —ro H e~
minimized by straight beam | wA ,
2. Above buckling load, potential energy is 3. . E T
minimized by bent beam g R\(N
al i

o
-
N
w
S
(5]

Curvature « L

Calculating buckling loads in columns

P ommm—— P
Beam equation (2D, static, with 7,5, =0 ) W(x ) 1€ —
12 L ‘|‘ ‘. ﬁi
— L 5

dtu,  d?
h_auy T

dT
El 4 D) + P =3 + pP3= 0
dX3 dX3 dX3
d4u1 dzul
With no transverse loads and constant axial force p; =0, I3=-P=FEI ) + P > = 0
dX3 dX3
General solution 1y = Asinkxy + Bcoskx; + Cxy + D with &2 =%
A 0
B 0
Write boundary conditions at ends in the form [H] cl™lo
D 0

Set det([H]) =0 andsolvefork. Then EIk*= P (always many solutions — use the lowest one)



Calculating buckling loads with ABAQUS

4 Create Step x

1. Set up geometry, properties, section, etc in usual way. o [

2. Create part instance in assembly in usual way Insertnew stp after

3. Create a new step after optional static step, then in Step
menu select ‘Linear Perturbation’ procedure, and select
‘Buckle’. Can select # buckling modes

4. Apply boundary conditions in usual way. Be sure to include Procedure type: |Linca perturbation 1

a load that will cause buckling. The load can have an . N
arbitrary magnitude — ABAQUS will compute how much the Statc Linear pertubation
load needs to be multiplied by to cause buckling.

5. Mesh solid — be careful with element choice (usually bestto =" —— —
avoid reduced integration/incompatible modes as they have . i

artificial deformation modes; also if elements will lock that
will cause serious problems). Large # buckling modes will

Create... Edit... Replace... Rename... Delete... Nigeom... Dismiss

5 Edit Step b

require fine mesh. Experiment with different element types. e s

6. Run job in usual way
. . . . . . Description: [

7. Bucklin mode shapes are displayed in Visualization Module. Mgear of

Eigensolver: () Lanczos @) Subspace

The ‘Eigenvalue’ is the scale factor applied to the loads S =

ODB: Job-1.0db  APmqus/Standard 3DEXPERIENCE R2018x  Wed Aug 01 12:09:00 Eastern Daylight

Step: Step-1
Mode 1: Eigervalue = 823.75
L L LY, BTSN P



Material Failure

Failure under monotonic loading
1. Brittle failure — little permanent deformation
prior to failure; faceted failure surface A

2. Ductile failure — extensive permanent Q ﬂ
Duct

deformation prior to failure; dimpled fracture

surface .
erttle ile
- - - - .
Brittle failure criteria
{01,0,,05}  Principal stresses 0, > 0, > 0, — ¥
r=(0,—0,)/2 o, =(0,+0,)/2 &

Isotropic failure criteria

o, >0  Failure by fracture when o, =0,

o, < 0 Failure by crushing (eg Mohr Coulomb criterion)
T+o,sing—ccosp<0  Safe

. . Cleavage fracture led rupture
r+0,sing—ccosp=0  Fails (brittle) F()ductiI:)

Anisotropic failure criteria (eg Tsai-Hill for composite laminates)
Basis parallel/perpendicular to fibers {el,e2,e3} €, e
1

Plane stress state  {0,,,0,,,0,,}

Failure criterion

2 2 2
O (o} O,,0 O
( 11}_,_( 22}_ 11 22+£ 12} ~1
Orgy Ors, Orsi O s




Failure by geometric instability in plastic materials

Failure by necking in tension
Specimen starts to neck when load-displacement

curve decreases (loss of x-sect area weakens 4,

specimen)
P=A4Y(¢)

dP dA dY de
—=—Y+A——
dL dL de dL
Incompressibility AL = const
True strain e=log(L/L,)

d
Combine d_ =Y  (Considere criterion)
&

Necking in sheet materials — forming limit diagrams

—

l

Sheet necks when strain
in sheet reaches

a critical value

(depends on ratio of major
to minor strain, as well as
flow stress and hardening 2L

rate of material, and .lim—.
thickness variations in sheet) | 1 | 1 I o

.

AR

21

Vi

\LAAAAREAEEANEN

A4 444455440444
.
B

-

Use FLD as a failure criterion . .
Major Strain &5,

Minor Strain &1

Stress A 4
F/A 2=
IY (e)

True Strain  log(L/L,)

&
[

Major strain
S
[ ]

&
Ll

FIPYLt .l
# U

80
10T (Exp)

80 (Exp)

03

&7

Minor strain

T 0.4




Plastic Strain based ductile failure criteria

Failure mechanism
*  Ductile materials usually fail because voids nucleate at 2"  IEEERESWFRE U
phase particles, grow, and coalesce. _ L3 DR
Y}’ittle Ductile
Simple plastic strain based criterion

* Voids nucleate at a critical strain
P p
Von Mises Plastic Strain Rate de, = \/W
dt 3 dt dt P

« They grow faster when subjected to tensile
hydrostatic stress

t
Total Von-Mises Strain g, = j de, dt
o dt
Failure criterion &, <&, (safe)

This criterion works OK when hydrostatic stress is low
€. =€y (Falil)

Johnson-Cook Criterion
3

Hydrostatic stress o, =o,, /3 Von Mises stress o = .|—S.S.
e 5 Cit
de,
t
Damage criterion D :I dt dt d,,d,,d,,d,,e, Material props
0

(d, +d, expld,c, / o.)(1+d, log[(de, | dt)/ &,])

D <1 (safe) This criterion is often used for higher hydrostatic stress,
D=1 . as well as elevated strain rates such as machining, crash
- (Fail) or ballistic penetration



Porous plasticity ‘Gurson’ model in ABAQUS

Failure mechanism in ductile metals
1. Specimen necks
Hydrostatic (tensile) stress increases in neck
Voids nucleate at 2"d phase particles
Voids grow

2
3.
4.
5. Voids coalesce to form crack

Simulations of void growth

600
400

v
=3
S

plo,=2

Mises stress [MPa]
Mises stress [MPa]

plo,=3

—&—Calibrated Gurson model
—+—Vaided cell —e—(Calibrated Gurson model
0 ——Voided cell
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0
Mises strain 0 0.05 0.1 0.15 0.2 0.25
Mises strain

Gurson (porous plasticity model)

Void volume

fraction \l/

Mises stress

Y(e,)

2
. . (0} *
Plastic strain rate magnitude &, = (0., 2,00,/ ) =& H < J +2q1f cosh

Void growth and nucleation

Void nucleation rate

Sn 1l el —ey|].
exp| ——| 22— | |¢ >0
No={sovzr 22| sy |) P

0 p<0
Void coalescence fr= ! /<
Je+r U= IS =f) Jr=T0) f2/e

Element deleted when f=1r

f — (1 _ f)glgc + Nv‘c}e Yield stress

Hydrostatic stress

/ m/2
5P J—(qu*)z —1}

2Y(&,)

Material Properties
Yield and hardening  Y(&,)

Void growth rate ¢41,4>,q3
Void coalescence  f., fr
Void nucleation rate fN, SN>EN



Running ABAQUS/Explicit with Gurson Model

1. Set up geometry, section, etc in usual way.
2. In the Material module select Porous Metal Plasticity
3. Enter values for q1,q2,93 (can use 1 for each) | [ Rr=rto i
4. Use the Suboptions button to define fy.sy.ex  for fr S
5. Define the initial value of r=1-f in the ‘Relative Density’ o el outpul veratles
6. Create part instance in assembly in usual way DENTAVG. et aproged el ety Elran
7. Create an explicit dynamic step. To enable element s e e o Pty models VUNMAD
deletion, use Results->Field Output and in the dialog make N
sure the ‘Status’ option is checked
8. Apply boundary conditions in usual way Hourglass control: ® Use default O Enhanced O Relaxstiffness (
9. Mesh solid — in the Element Type menu check the box for
‘Element Deletion’ Element deletion: 0 Use default ® Yes O Mo

Max Degradation: ®) Use default O Specify

10. Run job in usual way
11. WARNING: Simulations with models like this are always
mesh sensitive once material starts to soften — softening
rate gets faster as mesh is refined.

Cralima fartnre 1 | TR | PR S S




Failure under cyclic loading

General regimes of failure in cyclic uniaxial tension/compression

1. Low Cycle Fatigue — stresses exceed yield; failure in less than 10000 cycles; controlled
by plastic strain amplitude

2. High Cycle Fatigue — stresses are below yield; failure in more than 10000 cycles;
controlled by stress amplitude and mean stress

High-cycle fatigue failure

>
Oy, = (Gmax _Gmin) /2 Opm = (O-max + O-min)/2 {

>

Stress amplitude
Zero mean stress: Basquin’s Law aaNb =C P

b,C are constants — depend on material,
surface finish, environment

-
[} ] Se

2 8
Nonzero mean stress: Goodman’s b 10° 10* 104 10°¢ .10 N
rule o,N =C(l-0,,/oyrs) Cycles to failure

Oyrs is tensile strength
(a) soo
]

400

Low-cycle fatigue failure 200

2 -0.015 0015 0.p2

True stress [MPa]
o

Coffin-Mansonlaw  Ag?N? = B P o /
e i)
a,B are constants — depend on material, pow — i
surface finish, environment ==~ - Test2(1.5%)

-800

True strain



Some topics we did not have time to cover ®

=Y

. Elasticity theory
Complex variable methods, Potential formulations for 3D problems, Fourier transform techniques
More energy methods; reciprocal theorem; complementary energy
Anisotropic elasticity (especially important for composites and single crystals)
More general stress waves

2. Material models

* Viscoelasticity

* Hyperelasticity (elastomers)

* Models of plasticity — crystal plasticity, soils, granular materials; models intended for cyclic loading
* Models for interfaces and contacts

3. Fracture mechanics

Crack tip fields in elastic solids, stress intensity factors

Energy methods for fracture — energy release rate, J integral

Crack growth in ductile materials

Crack growth under cyclic loading — fracture mechanics based design against fatigue failures

4. Contact mechanics (Stresses near contacts; compliance of a contact, fatigue/wear/fretting failures)

5. Defect mechanics
Solutions and behavior of dislocations, inclusions, cracks
Use of atomistic simulations

6. Advanced FEA coding

Advanced elements

* Nonlinear materials, large geometry changes

+ Explicit/implicit dynamics; modal time integration

+ Contact

» Coupled solid/fluid problems, arbitrary Lagrangean/Eulerean formulations, etc
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