Chapter 6

 

Equations of Motion, Momentum and Energy for Deformable Solids

 

 

6.1 Linear and angular momentum balance equations for a deformable solid

 

Deformable solids are governed by the same physical laws (Newton’s laws) as a system of particles.   You will hopefully recall that, for a particle system in which particles can only interact by exerting forces on one another (and cannot exert moments on one another):

1.      The net external force acting on the system is equal to the time derivative of the total linear momentum of the system

2.      The total external moment acting on the system is equal to the rate of change of its total angular momentum

3.      The rate of work done by external forces is equal to the sum of the rate of change of kinetic energy of the system and the rate of work done by internal forces.

 

A deformable solid can be thought of as an infinite number of infinitesimal particles.   For a system of this kind, the balance laws can be re-written as a set of partial differential equations, as outlined in the sections to follow.

 

 

6.1.1 Linear momentum balance in terms of Cauchy stress

 

Let σ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3433@  denote the Cauchy stress distribution within a deformed solid.  Assume that the solid is subjected to a body force b i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadkgadaWgaaWcbaGaamyAaaqabaaaaa@3278@ , and let u i , v i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaamyAaaqabaGcca GGSaGaaGPaVlaaykW7caWG2bWaaSbaaSqaaiaadMgaaeqaaaaa@3870@  and a i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadggadaWgaaWcbaGaamyAaaqabaaaaa@3277@  denote the displacement, velocity and acceleration of a material particle at position y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadMhadaWgaaWcbaGaamyAaaqabaaaaa@328F@   in the deformed solid.

 

Newton’s third law of motion (F=ma) can be expressed as

y σ+ρb=ρa     or          σ ij y i +ρ b j =ρ a j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgEGirpaaBaaaleaacaWH5baabeaaki abgwSixlaaho8acqGHRaWkcqaHbpGCcaWHIbGaeyypa0JaeqyWdiNa aCyyaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae4Baiaabkhaca qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa bccadaWcaaqaaiabgkGi2kabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaaakeaacqGHciITcaaMc8UaamyEamaaBaaaleaacaWGPbaabeaa aaGccqGHRaWkcqaHbpGCcaaMc8UaamOyamaaBaaaleaacaWGQbaabe aakiabg2da9iabeg8aYjaaykW7caWGHbWaaSbaaSqaaiaadQgaaeqa aaaa@5FB6@

Written out in full

σ 11 y 1 + σ 21 y 2 + σ 31 y 3 +ρ b 1 =ρ a 1 σ 12 y 1 + σ 22 y 2 + σ 32 y 3 +ρ b 2 =ρ a 2 σ 13 y 1 + σ 23 y 2 + σ 33 y 3 +ρ b 3 =ρ a 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaamaalaaabaGaeyOaIyRaeq4Wdm 3aaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabgkGi2kaadMhadaWg aaWcbaGaaGymaaqabaaaaOGaey4kaSYaaSaaaeaacqGHciITcqaHdp WCdaWgaaWcbaGaaGOmaiaaigdaaeqaaaGcbaGaeyOaIyRaamyEamaa BaaaleaacaaIYaaabeaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kabeo 8aZnaaBaaaleaacaaIZaGaaGymaaqabaaakeaacqGHciITcaWG5bWa aSbaaSqaaiaaiodaaeqaaaaakiabgUcaRiabeg8aYjaadkgadaWgaa WcbaGaaGymaaqabaGccqGH9aqpcqaHbpGCcaWGHbWaaSbaaSqaaiaa igdaaeqaaaGcbaWaaSaaaeaacqGHciITcqaHdpWCdaWgaaWcbaGaaG ymaiaaikdaaeqaaaGcbaGaeyOaIyRaamyEamaaBaaaleaacaaIXaaa beaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kabeo8aZnaaBaaaleaaca aIYaGaaGOmaaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaaikda aeqaaaaakiabgUcaRmaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaSqaai aaiodacaaIYaaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGaaG4m aaqabaaaaOGaey4kaSIaeqyWdiNaamOyamaaBaaaleaacaaIYaaabe aakiabg2da9iabeg8aYjaadggadaWgaaWcbaGaaGOmaaqabaaakeaa daWcaaqaaiabgkGi2kabeo8aZnaaBaaaleaacaaIXaGaaG4maaqaba aakeaacqGHciITcaWG5bWaaSbaaSqaaiaaigdaaeqaaaaakiabgUca RmaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaaikdacaaIZaaabe aaaOqaaiabgkGi2kaadMhadaWgaaWcbaGaaGOmaaqabaaaaOGaey4k aSYaaSaaaeaacqGHciITcqaHdpWCdaWgaaWcbaGaaG4maiaaiodaae qaaaGcbaGaeyOaIyRaamyEamaaBaaaleaacaaIZaaabeaaaaGccqGH RaWkcqaHbpGCcaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0Jaeq yWdiNaamyyamaaBaaaleaacaaIZaaabeaaaaaa@9D80@

Note that the derivative is taken with respect to position in the actual, deformed solid. For the special (but rather common) case of a solid in static equilibrium in the absence of body forces

σ ij y i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGa amyAaaqabaaaaOGaeyypa0JaaGimaaaa@3AFB@

 

Derivation: Recall that the resultant force acting on an arbitrary volume of material V within a solid is

P i = A T i (n)dA+ V ρ b i dV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadcfadaWgaaWcbaGaamyAaaqabaGccq GH9aqpdaWdrbqaaiaadsfadaWgaaWcbaGaamyAaaqabaGccaGGOaGa aCOBaiaacMcacaWGKbGaamyqaiabgUcaRaWcbaGaamyqaaqab0Gaey 4kIipakmaapefabaGaeqyWdiNaaGPaVlaadkgadaWgaaWcbaGaamyA aaqabaGccaaMc8UaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYd aaaa@4928@

where T(n) is the internal traction acting on the surface A with normal n that bounds V.

 

The linear momentum of the volume V is

Λ i = V ρ v i dV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfU5amnaaBaaaleaacaWGPbaabeaaki abg2da9maapefabaGaeqyWdiNaaGPaVlaadAhadaWgaaWcbaGaamyA aaqabaaabaGaamOvaaqab0Gaey4kIipakiaadsgacaWGwbaaaa@3E4E@

where v is the velocity vector of a material particle in the deformed solid. Express T in terms of σ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3433@  and set P i =d Λ i /dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadcfadaWgaaWcbaGaamyAaaqabaGccq GH9aqpcaWGKbGaeu4MdW0aaSbaaSqaaiaadMgaaeqaaOGaai4laiaa dsgacaWG0baaaa@397D@

A σ ji n j dA+ V ρ b i dV = d dt { V ρ v i dV } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaeq4Wdm3aaSbaaSqaaiaadQ gacaWGPbaabeaakiaad6gadaWgaaWcbaGaamOAaaqabaGccaWGKbGa amyqaiabgUcaRaWcbaGaamyqaaqab0Gaey4kIipakmaapefabaGaeq yWdiNaaGPaVlaadkgadaWgaaWcbaGaamyAaaqabaGccaaMc8Uaamiz aiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGH9aqpdaWcaaqaai aadsgaaeaacaWGKbGaamiDaaaadaGadaqaamaapefabaGaeqyWdiNa aGPaVlaadAhadaWgaaWcbaGaamyAaaqabaaabaGaamOvaaqab0Gaey 4kIipakiaadsgacaWGwbaacaGL7bGaayzFaaaaaa@582E@

Apply the divergence theorem to convert the first integral into a volume integral, and note that one can show (see Appendix D) that

d dt { V ρ v i dV }= V ρ a i dV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamizaaqaaiaadsgacaWG0b aaamaacmaabaWaa8quaeaacqaHbpGCcaaMc8UaamODamaaBaaaleaa caWGPbaabeaaaeaacaWGwbaabeqdcqGHRiI8aOGaamizaiaadAfaai aawUhacaGL9baacqGH9aqpdaWdrbqaaiabeg8aYjaadggadaWgaaWc baGaamyAaaqabaaabaGaamOvaaqab0Gaey4kIipakiaadsgacaWGwb aaaa@4969@

so

V σ ji y j dV+ V ρ b i dV = V ρ a i dV V ( σ ji y j +ρ b i ρ a i ) dV=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaWaaSaaaeaacqGHciITcqaHdp WCdaWgaaWcbaGaamOAaiaadMgaaeqaaaGcbaGaeyOaIyRaamyEamaa BaaaleaacaWGQbaabeaaaaGccaWGKbGaamOvaiabgUcaRaWcbaGaam Ovaaqab0Gaey4kIipakmaapefabaGaeqyWdiNaaGPaVlaadkgadaWg aaWcbaGaamyAaaqabaGccaaMc8UaamizaiaadAfaaSqaaiaadAfaae qaniabgUIiYdGccqGH9aqpdaWdrbqaaiabeg8aYjaadggadaWgaaWc baGaamyAaaqabaaabaGaamOvaaqab0Gaey4kIipakiaadsgacaWGwb GaeyO0H49aa8quaeaadaqadaqaamaalaaabaGaeyOaIyRaeq4Wdm3a aSbaaSqaaiaadQgacaWGPbaabeaaaOqaaiabgkGi2kaadMhadaWgaa WcbaGaamOAaaqabaaaaOGaey4kaSIaeqyWdiNaaGPaVlaadkgadaWg aaWcbaGaamyAaaqabaGccqGHsislcqaHbpGCcaaMc8UaamyyamaaBa aaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaWcbaGaamOvaaqab0Ga ey4kIipakiaaykW7caaMc8UaamizaiaadAfacqGH9aqpcaaIWaaaaa@7791@

Since this must hold for every volume of material within a solid, it follows that

σ ji y j +ρ b i =ρ a i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaS qaaiaadQgacaWGPbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGa amOAaaqabaaaaOGaey4kaSIaeqyWdiNaamOyamaaBaaaleaacaWGPb aabeaakiabg2da9iabeg8aYjaadggadaWgaaWcbaGaamyAaaqabaaa aa@42AF@

as stated.

 

 

6.1.2 Angular momentum balance in terms of Cauchy stress

 

Conservation of angular momentum for a continuum requires that the Cauchy stress satisfy

σ ji = σ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGQbGaamyAaa qabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaaaa @390F@

i.e. the stress tensor must be symmetric.

 

Derivation: write down the equation for balance of angular momentum for the region V within the  deformed solid

A y×TdA + V y×ρbdV = d dt { V y×ρvdV } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaaCyEaiabgEna0kaahsfaca aMc8UaamizaiaadgeaaSqaaiaadgeaaeqaniabgUIiYdGccqGHRaWk daWdrbqaaiaahMhacqGHxdaTcqaHbpGCcaaMc8UaaCOyaiaadsgaca WGwbaaleaacaWGwbaabeqdcqGHRiI8aOGaeyypa0ZaaSaaaeaacaWG KbaabaGaamizaiaadshaaaWaaiWaaeaadaWdrbqaaiaahMhacqGHxd aTcqaHbpGCcaaMc8UaaCODaiaadsgacaWGwbaaleaacaWGwbaabeqd cqGHRiI8aaGccaGL7bGaayzFaaaaaa@5A3D@

Here, the left hand side is the resultant moment (about the origin) exerted by tractions and body forces acting on a general region within a solid.  The right hand side is the total angular momentum of the solid about the origin.

 

We can write the same expression using index notation

A ijk y j T k dA + V ijk y j b k ρdV = d dt { V ijk y j v k ρdV } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaeyicI48aaSbaaSqaaiaadM gacaWGQbGaam4AaaqabaGccaWG5bWaaSbaaSqaaiaadQgaaeqaaOGa amivamaaBaaaleaacaWGRbaabeaakiaadsgacaWGbbaaleaacaWGbb aabeqdcqGHRiI8aOGaey4kaSYaa8quaeaacqGHiiIZdaWgaaWcbaGa amyAaiaadQgacaWGRbaabeaakiaadMhadaWgaaWcbaGaamOAaaqaba GccaWGIbWaaSbaaSqaaiaadUgaaeqaaOGaeqyWdiNaaGPaVlaadsga caWGwbaaleaacaWGwbaabeqdcqGHRiI8aOGaeyypa0ZaaSaaaeaaca WGKbaabaGaamizaiaadshaaaWaaiWaaeaadaWdrbqaaiabgIGiopaa BaaaleaacaWGPbGaamOAaiaadUgaaeqaaOGaamyEamaaBaaaleaaca WGQbaabeaakiaadAhadaWgaaWcbaGaam4AaaqabaGccqaHbpGCcaaM c8UaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdaakiaawUhaca GL9baaaaa@66CB@

Express T in terms of σ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3443@  and re-write the first integral as a volume integral using the divergence theorem

A ijk y j T k dA = A ijk y j σ mk n m dA = V x m ( ijk y j σ mk )dV = V ijk ( δ jm σ mk + y j σ mk x m )dV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaa8quaeaacqGHiiIZdaWgaaWcba GaamyAaiaadQgacaWGRbaabeaakiaadMhadaWgaaWcbaGaamOAaaqa baGccaWGubWaaSbaaSqaaiaadUgaaeqaaOGaamizaiaadgeaaSqaai aadgeaaeqaniabgUIiYdGccqGH9aqpdaWdrbqaaiabgIGiopaaBaaa leaacaWGPbGaamOAaiaadUgaaeqaaOGaamyEamaaBaaaleaacaWGQb aabeaakiabeo8aZnaaBaaaleaacaWGTbGaam4AaaqabaGccaWGUbWa aSbaaSqaaiaad2gaaeqaaOGaamizaiaadgeaaSqaaiaadgeaaeqani abgUIiYdGccqGH9aqpdaWdrbqaamaalaaabaGaeyOaIylabaGaeyOa IyRaamiEamaaBaaaleaacaWGTbaabeaaaaGcdaqadaqaaiabgIGiop aaBaaaleaacaWGPbGaamOAaiaadUgaaeqaaOGaamyEamaaBaaaleaa caWGQbaabeaakiabeo8aZnaaBaaaleaacaWGTbGaam4Aaaqabaaaki aawIcacaGLPaaacaWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipa aOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua eyypa0Zaa8quaeaacqGHiiIZdaWgaaWcbaGaamyAaiaadQgacaWGRb aabeaakmaabmaabaGaeqiTdq2aaSbaaSqaaiaadQgacaWGTbaabeaa kiabeo8aZnaaBaaaleaacaWGTbGaam4AaaqabaGccqGHRaWkcaWG5b WaaSbaaSqaaiaadQgaaeqaaOWaaSaaaeaacqGHciITcqaHdpWCdaWg aaWcbaGaamyBaiaadUgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaale aacaWGTbaabeaaaaaakiaawIcacaGLPaaacaWGKbGaamOvaaWcbaGa amOvaaqab0Gaey4kIipaaaaa@023E@

We may also show (see Appendix D) that

d dt { V ijk y j v k ρdV }= V ijk y j a k ρdV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamizaaqaaiaadsgacaWG0b aaamaacmaabaWaa8quaeaacqGHiiIZdaWgaaWcbaGaamyAaiaadQga caWGRbaabeaakiaadMhadaWgaaWcbaGaamOAaaqabaGccaWG2bWaaS baaSqaaiaadUgaaeqaaOGaeqyWdiNaaGPaVlaadsgacaWGwbaaleaa caWGwbaabeqdcqGHRiI8aaGccaGL7bGaayzFaaGaeyypa0Zaa8quae aacqGHiiIZdaWgaaWcbaGaamyAaiaadQgacaWGRbaabeaakiaadMha daWgaaWcbaGaamOAaaqabaGccaWGHbWaaSbaaSqaaiaadUgaaeqaaO GaeqyWdiNaaGPaVlaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8 aaaa@586C@

Substitute the last two results into the angular momentum balance equation to see that

V ijk ( δ jm σ mk + y j σ mk x m )dV + V ijk y j b k ρdV = V ijk y j a k ρdV V ijk δ jm σ mk = V ijk y j ( σ mk y m +ρ b k ρ a k )dV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaa8quaeaacqGHiiIZdaWgaaWcba GaamyAaiaadQgacaWGRbaabeaakmaabmaabaGaeqiTdq2aaSbaaSqa aiaadQgacaWGTbaabeaakiabeo8aZnaaBaaaleaacaWGTbGaam4Aaa qabaGccqGHRaWkcaWG5bWaaSbaaSqaaiaadQgaaeqaaOWaaSaaaeaa cqGHciITcqaHdpWCdaWgaaWcbaGaamyBaiaadUgaaeqaaaGcbaGaey OaIyRaamiEamaaBaaaleaacaWGTbaabeaaaaaakiaawIcacaGLPaaa caWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipakiabgUcaRmaape fabaGaeyicI48aaSbaaSqaaiaadMgacaWGQbGaam4AaaqabaGccaWG 5bWaaSbaaSqaaiaadQgaaeqaaOGaamOyamaaBaaaleaacaWGRbaabe aakiabeg8aYjaaykW7caWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4k Iipakiabg2da9maapefabaGaeyicI48aaSbaaSqaaiaadMgacaWGQb Gaam4AaaqabaGccaWG5bWaaSbaaSqaaiaadQgaaeqaaOGaamyyamaa BaaaleaacaWGRbaabeaakiabeg8aYjaaykW7caWGKbGaamOvaaWcba GaamOvaaqab0Gaey4kIipaaOqaaiabgkDiEpaapefabaGaeyicI48a aSbaaSqaaiaadMgacaWGQbGaam4AaaqabaGccqaH0oazdaWgaaWcba GaamOAaiaad2gaaeqaaOGaeq4Wdm3aaSbaaSqaaiaad2gacaWGRbaa beaakiabg2da9iabgkHiTaWcbaGaamOvaaqab0Gaey4kIipakmaape fabaGaeyicI48aaSbaaSqaaiaadMgacaWGQbGaam4AaaqabaGccaWG 5bWaaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaadaWcaaqaaiabgkGi2k abeo8aZnaaBaaaleaacaWGTbGaam4AaaqabaaakeaacqGHciITcaWG 5bWaaSbaaSqaaiaad2gaaeqaaaaakiabgUcaRiabeg8aYjaadkgada WgaaWcbaGaam4AaaqabaGccqGHsislcqaHbpGCcaWGHbWaaSbaaSqa aiaadUgaaeqaaaGccaGLOaGaayzkaaGaamizaiaadAfaaSqaaiaadA faaeqaniabgUIiYdaaaaa@A5B8@

The integral on the right hand side of this expression is zero, because the stresses must satisfy the linear momentum balance equation.  Since this holds for any volume V, we conclude that

ijk δ jm σ mk = ijk σ jk =0 imn ijk σ jk =0 ( δ jm δ kn δ mk δ nj ) σ jk =0 σ mn σ nm =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaeyicI48aaSbaaSqaaiaadMgaca WGQbGaam4AaaqabaGccqaH0oazdaWgaaWcbaGaamOAaiaad2gaaeqa aOGaeq4Wdm3aaSbaaSqaaiaad2gacaWGRbaabeaakiabg2da9iabgI GiopaaBaaaleaacaWGPbGaamOAaiaadUgaaeqaaOGaeq4Wdm3aaSba aSqaaiaadQgacaWGRbaabeaakiabg2da9iaaicdaaeaacqGHshI3cq GHiiIZdaWgaaWcbaGaamyAaiaad2gacaWGUbaabeaakiabgIGiopaa BaaaleaacaWGPbGaamOAaiaadUgaaeqaaOGaeq4Wdm3aaSbaaSqaai aadQgacaWGRbaabeaakiabg2da9iaaicdaaeaacqGHshI3daqadaqa aiabes7aKnaaBaaaleaacaWGQbGaamyBaaqabaGccqaH0oazdaWgaa WcbaGaam4Aaiaad6gaaeqaaOGaeyOeI0IaeqiTdq2aaSbaaSqaaiaa d2gacaWGRbaabeaakiabes7aKnaaBaaaleaacaWGUbGaamOAaaqaba aakiaawIcacaGLPaaacqaHdpWCdaWgaaWcbaGaamOAaiaadUgaaeqa aOGaeyypa0JaaGimaaqaaiabgkDiElabeo8aZnaaBaaaleaacaWGTb GaamOBaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaamOBaiaad2ga aeqaaOGaeyypa0JaaGimaaaaaa@7EE1@

which is the result we wanted.

 

 

 

 

 

 

 

 

6.1.3 Equations of motion in terms of other stress measures

 

In terms of nominal and material stress the balance of linear momentum is

S+ ρ 0 b= ρ 0 a S ij x i + ρ 0 b j = ρ 0 a j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgEGirlabgw SixJqabiaa=nfacqGHRaWkcqaHbpGCdaWgaaWcbaGaaGimaaqabaGc caWFIbGaeyypa0JaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaaCyyai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVpaalaaabaGaam4uamaaBaaaleaacaWGPbGaamOAaaqabaaake aacqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaakiabgUcaRiab eg8aYnaaBaaaleaacaaIWaaabeaakiaadkgadaWgaaWcbaGaamOAaa qabaGccqGH9aqpcqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWGHbWa aSbaaSqaaiaadQgaaeqaaaaa@6284@

[ Σ F T ]+ ρ 0 b= ρ 0 a ( Σ ik F jk ) x i + ρ 0 b j = ρ 0 a j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgEGirlabgw SixpaadmaabaacceGae83OdmLaeyyXICncbeGaa4NramaaCaaaleqa baGaa4hvaaaaaOGaay5waiaaw2faaiabgUcaRiabeg8aYnaaBaaale aacaaIWaaabeaakiaa+jgacqGH9aqpcqaHbpGCdaWgaaWcbaGaaGim aaqabaGccaWHHbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaeyOaIy7aaeWaaeaa cqqHJoWudaWgaaWcbaGaamyAaiaadUgaaeqaaOGaamOramaaBaaale aacaWGQbGaam4AaaqabaaakiaawIcacaGLPaaaaeaacqGHciITcaWG 4bWaaSbaaSqaaiaadMgaaeqaaaaakiabgUcaRiabeg8aYnaaBaaale aacaaIWaaabeaakiaadkgadaWgaaWcbaGaamOAaaqabaGccqGH9aqp cqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWGHbWaaSbaaSqaaiaadQ gaaeqaaaaa@714C@

Note that the derivatives are taken with respect to position in the undeformed solid.

 

The angular momentum balance equation is

FS= [ FS ] T Σ= Σ Τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaykW6caaMcS UaaGPaRlaaykW6caaMcSUaaGPaRlaaykW6caaMcSocbeGaa8Nraiab gwSixlaa=nfacqGH9aqpdaWadaqaaiaa=zeacqGHflY1caWFtbaaca GLBbGaayzxaaWaaWbaaSqabeaacaWGubaaaOGaaGPaRlaaykW6caaM cSUaaGPaRlaaykW6caaMcSUaaGPaRJGabiab+n6atjabg2da9iab+n 6atnaaCaaaleqabaGae4hPdqfaaaaa@5D81@

 

 

To derive these results, you can start with the integral form of the linear momentum balance in terms of Cauchy stress

A σ ji n j dA+ V ρ b i dV = d dt { V ρ v i dV } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaeq4Wdm3aaSbaaSqaaiaadQ gacaWGPbaabeaakiaad6gadaWgaaWcbaGaamOAaaqabaGccaWGKbGa amyqaiabgUcaRaWcbaGaamyqaaqab0Gaey4kIipakmaapefabaGaeq yWdiNaaGPaVlaadkgadaWgaaWcbaGaamyAaaqabaGccaaMc8Uaamiz aiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGH9aqpdaWcaaqaai aadsgaaeaacaWGKbGaamiDaaaadaGadaqaamaapefabaGaeqyWdiNa aGPaVlaadAhadaWgaaWcbaGaamyAaaqabaaabaGaamOvaaqab0Gaey 4kIipakiaadsgacaWGwbaacaGL7bGaayzFaaaaaa@582E@

Recall (or see Appendix D for a reminder) that area elements in the deformed and undeformed solids are related through

dA n i =J F ki 1 n k 0 d A 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWGbbGaamOBamaaDaaaleaaca WGPbaabaaaaOGaeyypa0JaamOsaiaadAeadaqhaaWcbaGaam4Aaiaa dMgaaeaacqGHsislcaaIXaaaaOGaamOBamaaDaaaleaacaWGRbaaba GaaGimaaaakiaadsgacaWGbbWaaSbaaSqaaiaaicdaaeqaaaaa@3FF4@

In addition, volume elements are related by dV=Jd V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaamOvaiabg2da9iaadQeaca WGKbGaamOvamaaBaaaleaacaaIWaaabeaaaaa@3909@ .  We can use these results to re-write the integrals as integrals over a volume in the undeformed solid as

A0 σ ji J F kj 1 n k 0 d A 0 + V0 ρ b i Jd V 0 = d dt { V0 ρ v i Jd V 0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaeq4Wdm3aaSbaaSqaaiaadQ gacaWGPbaabeaakiaadQeacaWGgbWaa0baaSqaaiaadUgacaWGQbaa baGaeyOeI0IaaGymaaaakiaad6gadaqhaaWcbaGaam4Aaaqaaiaaic daaaGccaWGKbGaamyqamaaBaaaleaacaaIWaaabeaakiabgUcaRaWc baGaamyqaiaaicdaaeqaniabgUIiYdGcdaWdrbqaaiabeg8aYjaayk W7caWGIbWaaSbaaSqaaiaadMgaaeqaaOGaaGPaVlaadQeacaWGKbGa amOvamaaBaaaleaacaaIWaaabeaaaeaacaWGwbGaaGimaaqab0Gaey 4kIipakiabg2da9maalaaabaGaamizaaqaaiaadsgacaWG0baaamaa cmaabaWaa8quaeaacqaHbpGCcaaMc8UaamODamaaBaaaleaacaWGPb aabeaaaeaacaWGwbGaaGimaaqab0Gaey4kIipakiaadQeacaWGKbGa amOvamaaBaaaleaacaaIWaaabeaaaOGaay5Eaiaaw2haaaaa@64C9@

Finally, recall that S ij =J F ik 1 σ kj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaam4uaOWaaSbaaSqaaiaadMgaca WGQbaabeaakiabg2da9iaadQeacaWGgbWaa0baaSqaaiaadMgacaWG RbaabaGaeyOeI0IaaGymaaaakiabeo8aZnaaBaaaleaacaWGRbGaam OAaaqabaaaaa@3EB7@  and that Jρ= ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGkbGaeqyWdiNaeyypa0JaeqyWdi 3aaSbaaSqaaiaaicdaaeqaaaaa@3901@  to see that

A0 S ki n k 0 d A 0 + V0 ρ 0 b i d V 0 = d dt { V0 ρ 0 v i d V 0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaam4uaiaaxcW7daWgaaWcba Gaam4AaiaadMgaaeqaaOGaamOBamaaDaaaleaacaWGRbaabaGaaGim aaaakiaadsgacaWGbbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaScale aacaWGbbGaaGimaaqab0Gaey4kIipakmaapefabaGaeqyWdiNaaGPa VpaaBaaaleaacaaIWaaabeaakiaadkgadaWgaaWcbaGaamyAaaqaba GccaaMc8UaamizaiaadAfadaWgaaWcbaGaaGimaaqabaaabaGaamOv aiaaicdaaeqaniabgUIiYdGccqGH9aqpdaWcaaqaaiaadsgaaeaaca WGKbGaamiDaaaadaGadaqaamaapefabaGaeqyWdiNaaGPaVpaaBaaa leaacaaIWaaabeaakiaadAhadaWgaaWcbaGaamyAaaqabaaabaGaam OvaiaaicdaaeqaniabgUIiYdGccaWGKbGaamOvamaaBaaaleaacaaI WaaabeaaaOGaay5Eaiaaw2haaaaa@6051@

Apply the divergence theorem to the first term and rearrange

V ( S ji x j + ρ 0 b i ρ 0 d v i dt ) d V 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaWaaeWaaeaadaWcaaqaaiabgk Gi2kaadofadaWgaaWcbaGaamOAaiaadMgaaeqaaaGcbaGaeyOaIyRa amiEamaaBaaaleaacaWGQbaabeaaaaGccqGHRaWkcqaHbpGCdaWgaa WcbaGaaGimaaqabaGccaaMc8UaamOyamaaBaaaleaacaWGPbaabeaa kiabgkHiTiabeg8aYnaaBaaaleaacaaIWaaabeaakiaaykW7daWcaa qaaiaadsgacaWG2bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaamizaiaa dshaaaaacaGLOaGaayzkaaaaleaacaWGwbaabeqdcqGHRiI8aOGaaG PaVlaaykW7caWGKbGaamOvamaaBaaaleaacaaIWaaabeaakiabg2da 9iaaicdaaaa@55DC@

Once again, since this must hold for any material volume, we conclude that

S ij x i + ρ 0 b j = ρ 0 a j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam 4uamaaBaaaleaacaWGPbGaamOAaaqabaaakeaacqGHciITcaWG4bWa aSbaaSqaaiaadMgaaeqaaaaakiabgUcaRiabeg8aYnaaBaaaleaaca aIWaaabeaakiaadkgadaWgaaWcbaGaamOAaaqabaGccqGH9aqpcqaH bpGCdaWgaaWcbaGaaGimaaqabaGccaWGHbWaaSbaaSqaaiaadQgaae qaaaaa@46DE@

The linear momentum balance equation in terms of material stress follows directly, by substituting into this equation for S ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaadMgacaWGQb aabeaaaaa@35A7@  in terms of Σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHJoWudaWgaaWcbaGaamyAaiaadQ gaaeqaaaaa@3653@

 

The angular momentum balance equation can be derived simply by substituting into the momentum balance equation in terms of Cauchy stress σ ij = σ ji MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadQgacaWGPbaabeaa aaa@3B6E@

 

 

6.1.4 Equations of motion and equilibrium equations for small deformations

 

The general equations of motion for a deformable solid are hard to solve, because the shape of the solid must be calculated as part of the solution.   In many engineering applications, the deformation is small enough to be neglected.   If this is the case, we can simplify the calculations as follows

 

  1. We neglect the differences between the various stress measures described in Section 6.1.3.  
  2. We neglect the difference between the density of the deformed and undeformed solid
  3. We satisfy the equations of motion (or equilibrium) on the undeformed solid, instead of the deformed solid. 

 

Accordingly, let x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhacaWLa8+aaSbaaSqaaiaadMgaae qaaaaa@3407@  denote the position of a material particle in the undeformed solid, and let ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg8aYnaaBaaaleaacaaIWaaabeaaaa a@330E@  denote the mass density of the undeformed material.   Assume that the solid is subjected to a body force b per unit mass.   Newton’s third law of motion (F=ma) can be expressed as

σ+ ρ 0 b= ρ 0 a     or          σ ij x i + ρ 0 b j = ρ 0 a j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgEGirlabgwSixlaaho8acqGHRaWkcq aHbpGCdaWgaaWcbaGaaGimaaqabaGccaWHIbGaeyypa0JaeqyWdi3a aSbaaSqaaiaaicdaaeqaaOGaaCyyaiaabccacaqGGaGaaeiiaiaabc cacaqGGaGaae4BaiaabkhacaqGGaGaaeiiaiaabccacaqGGaGaaeii aiaabccacaqGGaGaaeiiaiaabccadaWcaaqaaiabgkGi2kabeo8aZn aaBaaaleaacaWGPbGaamOAaaqabaaakeaacqGHciITcaaMc8UaamiE amaaBaaaleaacaWGPbaabeaaaaGccqGHRaWkcqaHbpGCdaWgaaWcba GaaGimaaqabaGccaaMc8UaamOyamaaBaaaleaacaWGQbaabeaakiab g2da9iabeg8aYnaaBaaaleaacaaIWaaabeaakiaaykW7caWGHbWaaS baaSqaaiaadQgaaeqaaaaa@623D@

Written out in full

σ 11 x 1 + σ 21 x 2 + σ 31 x 3 + ρ 0 b 1 = ρ 0 a 1 σ 12 x 1 + σ 22 x 2 + σ 32 x 3 + ρ 0 b 2 = ρ 0 a 2 σ 13 x 1 + σ 23 x 2 + σ 33 x 3 + ρ 0 b 3 = ρ 0 a 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaamaalaaabaGaeyOaIyRaeq4Wdm 3aaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabgkGi2kaadIhadaWg aaWcbaGaaGymaaqabaaaaOGaey4kaSYaaSaaaeaacqGHciITcqaHdp WCdaWgaaWcbaGaaGOmaiaaigdaaeqaaaGcbaGaeyOaIyRaamiEamaa BaaaleaacaaIYaaabeaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kabeo 8aZnaaBaaaleaacaaIZaGaaGymaaqabaaakeaacqGHciITcaWG4bWa aSbaaSqaaiaaiodaaeqaaaaakiabgUcaRiabeg8aYnaaBaaaleaaca aIWaaabeaakiaadkgadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcqaH bpGCdaWgaaWcbaGaaGimaaqabaGccaWGHbWaaSbaaSqaaiaaigdaae qaaaGcbaWaaSaaaeaacqGHciITcqaHdpWCdaWgaaWcbaGaaGymaiaa ikdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaaaa GccqGHRaWkdaWcaaqaaiabgkGi2kabeo8aZnaaBaaaleaacaaIYaGa aGOmaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaa aakiabgUcaRmaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaaioda caaIYaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaG4maaqaba aaaOGaey4kaSIaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaamOyamaa BaaaleaacaaIYaaabeaakiabg2da9iabeg8aYnaaBaaaleaacaaIWa aabeaakiaadggadaWgaaWcbaGaaGOmaaqabaaakeaadaWcaaqaaiab gkGi2kabeo8aZnaaBaaaleaacaaIXaGaaG4maaqabaaakeaacqGHci ITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaakiabgUcaRmaalaaabaGa eyOaIyRaeq4Wdm3aaSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiabgk Gi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaOGaey4kaSYaaSaaaeaa cqGHciITcqaHdpWCdaWgaaWcbaGaaG4maiaaiodaaeqaaaGcbaGaey OaIyRaamiEamaaBaaaleaacaaIZaaabeaaaaGccqGHRaWkcqaHbpGC daWgaaWcbaGaaGimaaqabaGccaWGIbWaaSbaaSqaaiaaiodaaeqaaO Gaeyypa0JaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaamyyamaaBaaa leaacaaIZaaabeaaaaaa@A317@

For the special (but rather common) case of a solid in static equilibrium in the absence of body forces

σ ij x i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGa amyAaaqabaaaaOGaeyypa0JaaGimaaaa@3AFA@

 

 

Example: The stress field

σ ij = 3 P k y k y i y j 4π R 5 R= y k y k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpdaWcaaqaaiabgkHiTiaaiodacaWGqbWaaSbaaSqa aiaadUgaaeqaaOGaamyEamaaBaaaleaacaWGRbaabeaakiaadMhada WgaaWcbaGaamyAaaqabaGccaWG5bWaaSbaaSqaaiaadQgaaeqaaaGc baGaaGinaiabec8aWjaadkfadaahaaWcbeqaaiaaiwdaaaaaaOGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaamOuaiabg2da9maakaaabaGaamyEamaaBaaaleaacaWGRbaabe aakiaadMhadaWgaaWcbaGaam4Aaaqabaaabeaaaaa@57B7@

represents the stress in an infinite, incompressible linear elastic solid that is subjected to a point force with components P k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=wi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadcfadaWgaaWcbaGaam4Aaaqabaaaaa@3269@  acting at the origin (you can visualize a point force as a very large body force which is concentrated in a very small region around the origin).

 

(a)    Verify that the stress field is in static equilibrium

 

This is a tedious exercise in index notation

 

σ ij y i = 3 P k 4π ( δ i k y i y j R 5 + y k δ ii y j R 5 + y k y i δ ij R 5 5 y k y i y j R 6 y i R )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGa amyAaaqabaaaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaIZaGaamiuam aaBaaaleaacaWGRbaabeaaaOqaaiaaisdacqaHapaCaaWaaeWaaeaa daWcaaqaaiabes7aKnaaBaaaleaacaWGPbaabeaakmaaBaaaleaaca WGRbaabeaakiaadMhadaWgaaWcbaGaamyAaaqabaGccaWG5bWaaSba aSqaaiaadQgaaeqaaaGcbaGaamOuamaaCaaaleqabaGaaGynaaaaaa GccqGHRaWkdaWcaaqaaiaadMhadaWgaaWcbaGaam4AaaqabaGccqaH 0oazdaWgaaWcbaGaamyAaiaadMgaaeqaaOGaamyEamaaBaaaleaaca WGQbaabeaaaOqaaiaadkfadaahaaWcbeqaaiaaiwdaaaaaaOGaey4k aSYaaSaaaeaacaWG5bWaaSbaaSqaaiaadUgaaeqaaOGaamyEamaaBa aaleaacaWGPbaabeaakiabes7aKnaaBaaaleaacaWGPbGaamOAaaqa baaakeaacaWGsbWaaWbaaSqabeaacaaI1aaaaaaakiabgkHiTiaaiw dadaWcaaqaaiaadMhadaWgaaWcbaGaam4AaaqabaGccaWG5bWaaSba aSqaaiaadMgaaeqaaOGaamyEamaaBaaaleaacaWGQbaabeaaaOqaai aadkfadaahaaWcbeqaaiaaiAdaaaaaaOWaaSaaaeaacaWG5bWaaSba aSqaaiaadMgaaeqaaaGcbaGaamOuaaaaaiaawIcacaGLPaaacqGH9a qpcaaIWaaaaa@7041@

 

 

 

(b)   Consider a spherical region of material centered at the origin.  This region is subjected to (1) the body force acting at the origin; and (2) a force exerted by the stress field on the outer surface of the sphere.   Calculate the resultant force exerted on the outer surface of the sphere by the stress, and show that it is equal in magnitude and opposite in direction to the body force.

 

The traction acting on the exterior surface is t i = σ ij n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0bWaaSbaaS qaaiaadMgaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadMgacaWG Qbaabeaakiaad6gadaWgaaWcbaGaamyAaaqabaGccaaMc8oaaa@4011@  and a unit vector normal vector to a sphere radius R centered at the origin is n i = y i /R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caWGUbWaaSbaaSqaaiaadMgaaeqa aOGaeyypa0JaamyEamaaBaaaleaacaWGPbaabeaakiaac+cacaWGsb aaaa@4581@ .   The resultant force is thus

F j = 3 4π P k S y k y j R 3 dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAeadaWgaaWcbaGaamOAaaqabaGccq GH9aqpdaWcaaqaaiabgkHiTiaaiodaaeaacaaI0aGaeqiWdahaaiaa dcfadaWgaaWcbaGaam4AaaqabaGcdaWdrbqaamaalaaabaGaamyEam aaBaaaleaacaWGRbaabeaakiaadMhadaWgaaWcbaGaamOAaaqabaaa keaacaWGsbWaaWbaaSqabeaacaaIZaaaaaaaaeaacaWGtbaabeqdcq GHRiI8aOGaamizaiaadgeacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7aaa@5258@

The integral clearly vanishes for kj MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRbGaeyiyIK RaamOAaaaa@391C@  by symmetry.   Choosing k=j=3 without loss of generality we can evaluate the remaining integral in spherical-polar coordinates as

F 3 = 3 4π P 3 0 2π 0 π ( Rcosθ ) 2 R 3 R 2 sinθdθdϕ = P 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAeadaWgaaWcbaGaaG4maaqabaGccq GH9aqpdaWcaaqaaiabgkHiTiaaiodaaeaacaaI0aGaeqiWdahaaiaa dcfadaWgaaWcbaGaaG4maaqabaGcdaWdXbqaamaapehabaWaaSaaae aadaqadaqaaiaadkfaciGGJbGaai4BaiaacohacqaH4oqCaiaawIca caGLPaaadaahaaWcbeqaaiaaikdaaaaakeaacaWGsbWaaWbaaSqabe aacaaIZaaaaaaakiaadkfadaahaaWcbeqaaiaaikdaaaGcciGGZbGa aiyAaiaac6gacqaH4oqCcaWGKbGaeqiUdeNaamizaiabew9aMbWcba GaaGimaaqaaiabec8aWbqdcqGHRiI8aaWcbaGaaGimaaqaaiaaikda cqaHapaCa0Gaey4kIipakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9iabgkHiTiaadcfadaWg aaWcbaGaaG4maaqabaaaaa@6AA1@

 

 

Example Let ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzaaa@373D@  be a twice differentiable, scalar function of position.  Derive a plane stress field from ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzaaa@373D@  by setting

σ 11 = 2 ϕ y 2 2 σ 22 = 2 ϕ y 1 2 σ 12 = σ 21 = 2 ϕ y 1 y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCdaWgaa WcbaGaaGymaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacqGHciITdaah aaWcbeqaaiaaikdaaaGccqaHvpGzaeaacqGHciITcaWG5bWaa0baaS qaaiaaikdaaeaacaaIYaaaaaaakiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeo8aZnaaBaaa leaacaaIYaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiabgkGi2oaaCa aaleqabaGaaGOmaaaakiabew9aMbqaaiabgkGi2kaadMhadaqhaaWc baGaaGymaaqaaiaaikdaaaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8Uaeq4Wdm3aaSbaaSqaaiaaigdacaaIYaaabe aakiabg2da9iabeo8aZnaaBaaaleaacaaIYaGaaGymaaqabaGccqGH 9aqpcqGHsisldaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaki abew9aMbqaaiabgkGi2kaadMhadaWgaaWcbaGaaGymaaqabaGccqGH ciITcaWG5bWaaSbaaSqaaiaaikdaaeqaaaaakiaaykW7caaMc8UaaG PaVdaa@9B29@

Show that this stress field satisfies the equations of stress equilibrium with zero body force.

 

The equilibrium formulas (with zero body force) are

σ 11 y 1 + σ 21 y 2 + σ 31 y 3 =0 σ 12 y 1 + σ 22 y 2 + σ 32 y 3 =0 σ 13 y 1 + σ 23 y 2 + σ 33 y 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaamaalaaabaGaeyOaIyRaeq4Wdm 3aaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabgkGi2kaadMhadaWg aaWcbaGaaGymaaqabaaaaOGaey4kaSYaaSaaaeaacqGHciITcqaHdp WCdaWgaaWcbaGaaGOmaiaaigdaaeqaaaGcbaGaeyOaIyRaamyEamaa BaaaleaacaaIYaaabeaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kabeo 8aZnaaBaaaleaacaaIZaGaaGymaaqabaaakeaacqGHciITcaWG5bWa aSbaaSqaaiaaiodaaeqaaaaakiabg2da9iaaicdaaeaadaWcaaqaai abgkGi2kabeo8aZnaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacqGH ciITcaWG5bWaaSbaaSqaaiaaigdaaeqaaaaakiabgUcaRmaalaaaba GaeyOaIyRaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiab gkGi2kaadMhadaWgaaWcbaGaaGOmaaqabaaaaOGaey4kaSYaaSaaae aacqGHciITcqaHdpWCdaWgaaWcbaGaaG4maiaaikdaaeqaaaGcbaGa eyOaIyRaamyEamaaBaaaleaacaaIZaaabeaaaaGccqGH9aqpcaaIWa aabaWaaSaaaeaacqGHciITcqaHdpWCdaWgaaWcbaGaaGymaiaaioda aeqaaaGcbaGaeyOaIyRaamyEamaaBaaaleaacaaIXaaabeaaaaGccq GHRaWkdaWcaaqaaiabgkGi2kabeo8aZnaaBaaaleaacaaIYaGaaG4m aaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaaikdaaeqaaaaaki abgUcaRmaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaaiodacaaI ZaaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGaaG4maaqabaaaaO Gaeyypa0JaaGimaaaaaa@877F@

The third equation is satisfied trivially.   The others can be verified by substitution

σ 11 y 1 + σ 21 y 2 + σ 31 y 3 = y 1 ( 2 ϕ y 2 2 )+ y 2 ( 2 ϕ y 1 y 2 )=0 σ 12 y 1 + σ 22 y 2 + σ 32 y 3 = y 1 ( 2 ϕ y 1 y 2 )+ y 2 ( 2 ϕ y 1 2 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaamaalaaabaGaeyOaIyRaeq4Wdm 3aaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabgkGi2kaadMhadaWg aaWcbaGaaGymaaqabaaaaOGaey4kaSYaaSaaaeaacqGHciITcqaHdp WCdaWgaaWcbaGaaGOmaiaaigdaaeqaaaGcbaGaeyOaIyRaamyEamaa BaaaleaacaaIYaaabeaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kabeo 8aZnaaBaaaleaacaaIZaGaaGymaaqabaaakeaacqGHciITcaWG5bWa aSbaaSqaaiaaiodaaeqaaaaakiabg2da9maalaaabaGaeyOaIylaba GaeyOaIyRaamyEamaaBaaaleaacaaIXaaabeaaaaGcdaqadaqaamaa laaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeqy1dygabaGaey OaIyRaamyEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaaaakiaawIca caGLPaaacqGHRaWkdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadMhada WgaaWcbaGaaGOmaaqabaaaaOWaaeWaaeaacqGHsisldaWcaaqaaiab gkGi2oaaCaaaleqabaGaaGOmaaaakiabew9aMbqaaiabgkGi2kaadM hadaWgaaWcbaGaaGymaaqabaGccqGHciITcaWG5bWaaSbaaSqaaiaa ikdaaeqaaaaaaOGaayjkaiaawMcaaiabg2da9iaaicdaaeaadaWcaa qaaiabgkGi2kabeo8aZnaaBaaaleaacaaIXaGaaGOmaaqabaaakeaa cqGHciITcaWG5bWaaSbaaSqaaiaaigdaaeqaaaaakiabgUcaRmaala aabaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaaaOqa aiabgkGi2kaadMhadaWgaaWcbaGaaGOmaaqabaaaaOGaey4kaSYaaS aaaeaacqGHciITcqaHdpWCdaWgaaWcbaGaaG4maiaaikdaaeqaaaGc baGaeyOaIyRaamyEamaaBaaaleaacaaIZaaabeaaaaGccqGH9aqpda WcaaqaaiabgkGi2cqaaiabgkGi2kaadMhadaWgaaWcbaGaaGymaaqa baaaaOWaaeWaaeaacqGHsisldaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiabew9aMbqaaiabgkGi2kaadMhadaWgaaWcbaGaaGym aaqabaGccqGHciITcaWG5bWaaSbaaSqaaiaaikdaaeqaaaaaaOGaay jkaiaawMcaaiabgUcaRmaalaaabaGaeyOaIylabaGaeyOaIyRaamyE amaaBaaaleaacaaIYaaabeaaaaGcdaqadaqaamaalaaabaGaeyOaIy 7aaWbaaSqabeaacaaIYaaaaOGaeqy1dygabaGaeyOaIyRaamyEamaa DaaaleaacaaIXaaabaGaaGOmaaaaaaaakiaawIcacaGLPaaacqGH9a qpcaaIWaaaaaa@B07B@

 

 

Example: A prismatic concrete column of mass density ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHbpGCaaa@3485@  supports its own weight, as shown below.  (Assume that the solid is subjected to a uniform gravitational body force of magnitude g per unit mass). Show that the stress distribution

σ 22 =ρg(H x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGOmaiaaik daaeqaaOGaeyypa0JaeyOeI0IaeqyWdiNaam4zaiaacIcacaWGibGa eyOeI0IaamiEamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@3FD7@

satisfies the equations of static equilibrium

σ ij x i +ρ b j =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiabgkGi2kabeo8aZnaaBa aaleaacaWGPbGaamOAaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqa aiaadMgaaeqaaaaakiabgUcaRiabeg8aYjaadkgadaWgaaWcbaGaam OAaaqabaGccqGH9aqpcaaIWaaaaa@4206@

and also satisfies the boundary conditions σ ij n i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaamOBamaaBaaaleaacaWGPbaabeaakiabg2da9iaaicda aaa@3A72@

on all free boundaries.

 

The body force (per unit mass) is b=g e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahkgacqGH9aqpcqGHsislcaWGNbGaaC yzamaaBaaaleaacaaIYaaabeaaaaa@3608@  .   For this case, the equilibrium equations (written out in full) are

σ 11 y 1 + σ 21 y 2 + σ 31 y 3 =0 σ 12 y 1 + σ 22 y 2 + σ 32 y 3 ρg=0 σ 13 y 1 + σ 23 y 2 + σ 33 y 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaamaalaaabaGaeyOaIyRaeq4Wdm 3aaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabgkGi2kaadMhadaWg aaWcbaGaaGymaaqabaaaaOGaey4kaSYaaSaaaeaacqGHciITcqaHdp WCdaWgaaWcbaGaaGOmaiaaigdaaeqaaaGcbaGaeyOaIyRaamyEamaa BaaaleaacaaIYaaabeaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kabeo 8aZnaaBaaaleaacaaIZaGaaGymaaqabaaakeaacqGHciITcaWG5bWa aSbaaSqaaiaaiodaaeqaaaaakiabg2da9iaaicdaaeaadaWcaaqaai abgkGi2kabeo8aZnaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacqGH ciITcaWG5bWaaSbaaSqaaiaaigdaaeqaaaaakiabgUcaRmaalaaaba GaeyOaIyRaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiab gkGi2kaadMhadaWgaaWcbaGaaGOmaaqabaaaaOGaey4kaSYaaSaaae aacqGHciITcqaHdpWCdaWgaaWcbaGaaG4maiaaikdaaeqaaaGcbaGa eyOaIyRaamyEamaaBaaaleaacaaIZaaabeaaaaGccqGHsislcqaHbp GCcaWGNbGaeyypa0JaaGimaaqaamaalaaabaGaeyOaIyRaeq4Wdm3a aSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiabgkGi2kaadMhadaWgaa WcbaGaaGymaaqabaaaaOGaey4kaSYaaSaaaeaacqGHciITcqaHdpWC daWgaaWcbaGaaGOmaiaaiodaaeqaaaGcbaGaeyOaIyRaamyEamaaBa aaleaacaaIYaaabeaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kabeo8a ZnaaBaaaleaacaaIZaGaaG4maaqabaaakeaacqGHciITcaWG5bWaaS baaSqaaiaaiodaaeqaaaaakiabg2da9iaaicdaaaaa@8B18@

The first and last equatinos are satisfied automatically, and substituting for the stress into the second and evaluating the derivative shows that that, too, is satisfied.

 

On the sides of the column, the normal vectors point in the ± e 1 ,± e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgglaXkaahwgadaWgaaWcbaGaaGymaa qabaGccaGGSaGaeyySaeRaaCyzamaaBaaaleaacaaIYaaabeaaaaa@38A9@   directions.   Since σ 1i =0, σ 3i =0, σ 12 = σ 32 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIXaGaamyAaa qabaGccqGH9aqpcaaIWaGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7 cqaHdpWCdaWgaaWcbaGaaG4maiaadMgaaeqaaOGaeyypa0JaaGimai aacYcacaaMc8UaaGPaVlaaykW7cqaHdpWCdaWgaaWcbaGaaGymaiaa ikdaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaiodacaaIYaaabe aakiabg2da9iaaicdaaaa@5103@   it follows that n j σ ji =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad6gadaWgaaWcbaGaamOAaaqabaGccq aHdpWCdaWgaaWcbaGaamOAaiaadMgaaeqaaOGaeyypa0JaaGimaaaa @3816@  on the sides.     The stress is zero at x 2 =H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaWgaaWcbaGaaGOmaaqabaGccq GH9aqpcaWGibaaaa@342A@  , so the tractions on the top face are also zero.

 

 

 

6.2 Work done by stresses

 

In this section, we derive formulas that enable you to calculate the work done by stresses acting on a solid. 

 

6.2.1 Work done by Cauchy stresses

 

Consider a solid with mass density ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHbpGCdaWgaaWcbaGaaGimaaqaba aaaa@356C@  in its initial configuration, and density ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHbpGCaaa@3486@  in the deformed solid. Let σ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3443@  denote the Cauchy stress distribution within the solid.  Assume that the solid is subjected to a body force b i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadkgadaWgaaWcbaGaamyAaaqabaaaaa@3278@  (per unit mass), and let u i , v i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaamyAaaqabaGcca GGSaGaaGPaVlaaykW7caWG2bWaaSbaaSqaaiaadMgaaeqaaaaa@3870@  and a i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadggadaWgaaWcbaGaamyAaaqabaaaaa@3277@  denote the displacement, velocity and acceleration of a material particle at position y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadMhadaWgaaWcbaGaamyAaaqabaaaaa@328F@   in the deformed solid. In addition, let

D ij = 1 2 ( v i y j + v j y i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGebWaaSbaaSqaaiaadMgacaWGQb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaa daWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaamyAaaqabaaakeaacq GHciITcaWG5bWaaSbaaSqaaiaadQgaaeqaaaaakiabgUcaRmaalaaa baGaeyOaIyRaamODamaaBaaaleaacaWGQbaabeaaaOqaaiabgkGi2k aadMhadaWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaaaaa@48D6@

denote the stretch rate in the solid.

 

The rate of work done by Cauchy stresses per unit deformed volume is then σ ij D ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaamiramaaBaaaleaacaWGPbGaamOAaaqabaaaaa@396E@ .  This energy is either dissipated as heat or stored as internal energy in the solid, depending on the material behavior.

 

We shall show that the rate of work done by internal forces acting on any sub-volume V bounded by a surface A in the deformed solid can be calculated from

r ˙ = A T i (n) v i dA + V ρ b i v i dV = V σ ij D ij dV + d dt { V 1 2 ρ v i v i dV } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWGYbGbaiaacqGH9aqpdaWdrbqaai aadsfadaqhaaWcbaGaamyAaaqaaiaacIcacaWHUbGaaiykaaaakiaa dAhadaWgaaWcbaGaamyAaaqabaGccaWGKbGaamyqaaWcbaGaamyqaa qab0Gaey4kIipakiabgUcaRmaapefabaGaeqyWdiNaamOyamaaBaaa leaacaWGPbaabeaakiaadAhadaWgaaWcbaGaamyAaaqabaGccaWGKb GaamOvaaWcbaGaamOvaaqab0Gaey4kIipakiabg2da9maapefabaGa eq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiaadseadaWgaaWcba GaamyAaiaadQgaaeqaaOGaamizaiaadAfaaSqaaiaadAfaaeqaniab gUIiYdGccqGHRaWkdaWcaaqaaiaadsgaaeaacaWGKbGaamiDaaaada GadaqaamaapefabaWaaSaaaeaacaaIXaaabaGaaGOmaaaacqaHbpGC caWG2bWaaSbaaSqaaiaadMgaaeqaaOGaamODamaaBaaaleaacaWGPb aabeaakiaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aaGccaGL 7bGaayzFaaaaaa@6AD2@

Here, the two terms on the left hand side represent the rate of work done by tractions and body forces acting on the solid (work done = force x velocity).  The first term on the right-hand side can be interpreted as the work done by Cauchy stresses; the second term is the rate of change of kinetic energy. 

 

Derivation: Substitute for T i (n) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGubWaa0baaSqaaiaadMgaaeaaca GGOaGaaCOBaiaacMcaaaaaaa@370A@  in terms of Cauchy stress to see that

r ˙ = A T i (n) v i dA + V ρ b i v i dV = A n j σ ji v i dA + V ρ b i v i dV MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWGYbGbaiaacqGH9aqpdaWdrbqaai aadsfadaqhaaWcbaGaamyAaaqaaiaacIcacaWHUbGaaiykaaaakiaa dAhadaWgaaWcbaGaamyAaaqabaGccaWGKbGaamyqaaWcbaGaamyqaa qab0Gaey4kIipakiabgUcaRmaapefabaGaeqyWdiNaamOyamaaBaaa leaacaWGPbaabeaakiaadAhadaWgaaWcbaGaamyAaaqabaGccaWGKb GaamOvaaWcbaGaamOvaaqab0Gaey4kIipakiabg2da9maapefabaGa amOBamaaBaaaleaacaWGQbaabeaakiabeo8aZnaaBaaaleaacaWGQb GaamyAaaqabaGccaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaamizaiaa dgeaaSqaaiaadgeaaeqaniabgUIiYdGccqGHRaWkdaWdrbqaaiabeg 8aYjaadkgadaWgaaWcbaGaamyAaaqabaGccaWG2bWaaSbaaSqaaiaa dMgaaeqaaOGaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdaaaa@6552@

Now, apply the divergence theorem to the first term on the right hand side

r ˙ = V y j ( σ ji v i )dV + V ρ b i v i dV MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWGYbGbaiaacqGH9aqpdaWdrbqaam aalaaabaGaeyOaIylabaGaeyOaIyRaamyEamaaBaaaleaacaWGQbaa beaaaaGcdaqadaqaaiabeo8aZnaaBaaaleaacaWGQbGaamyAaaqaba GccaWG2bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaamiz aiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGHRaWkdaWdrbqaai abeg8aYjaadkgadaWgaaWcbaGaamyAaaqabaGccaWG2bWaaSbaaSqa aiaadMgaaeqaaOGaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYd aaaa@51F1@

Evaluate the derivative and collect together the terms involving body force and stress divergence

r ˙ = V { σ ji v i y j +( σ ji y j +ρ b i ) v i }dV MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWGYbGbaiaacqGH9aqpdaWdrbqaam aacmaabaGaeq4Wdm3aaSbaaSqaaiaadQgacaWGPbaabeaakmaalaaa baGaeyOaIyRaamODamaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2k aadMhadaWgaaWcbaGaamOAaaqabaaaaOGaey4kaSYaaeWaaeaadaWc aaqaaiabgkGi2kabeo8aZnaaBaaaleaacaWGQbGaamyAaaqabaaake aacqGHciITcaWG5bWaaSbaaSqaaiaadQgaaeqaaaaakiabgUcaRiab eg8aYjaadkgadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaca WG2bWaaSbaaSqaaiaadMgaaeqaaaGccaGL7bGaayzFaaGaamizaiaa dAfaaSqaaiaadAfaaeqaniabgUIiYdaaaa@58E6@

Recall the equation of motion

σ ji y j +ρ b i =ρ a i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaS qaaiaadQgacaWGPbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGa amOAaaqabaaaaOGaey4kaSIaeqyWdiNaamOyamaaBaaaleaacaWGPb aabeaakiabg2da9iabeg8aYjaadggadaWgaaWcbaGaamyAaaqabaaa aa@42BF@

and note that since the stress is symmetric σ ij = σ ji MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadQgacaWGPbaabeaa aaa@3B6E@

σ ji v i y j = 1 2 ( σ ij + σ ji ) v i y j = 1 2 σ ij ( v i y j + v j y i )= σ ij D ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOAaiaadM gaaeqaaOWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaadMgaaeqa aaGcbaGaeyOaIyRaamyEamaaBaaaleaacaWGQbaabeaaaaGccqGH9a qpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaeq4Wdm3aaSba aSqaaiaadMgacaWGQbaabeaakiabgUcaRiabeo8aZnaaBaaaleaaca WGQbGaamyAaaqabaaakiaawIcacaGLPaaadaWcaaqaaiabgkGi2kaa dAhadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaWG5bWaaSbaaS qaaiaadQgaaeqaaaaakiabg2da9maalaaabaGaaGymaaqaaiaaikda aaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakmaabmaabaWaaS aaaeaacqGHciITcaWG2bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOa IyRaamyEamaaBaaaleaacaWGQbaabeaaaaGccqGHRaWkdaWcaaqaai abgkGi2kaadAhadaWgaaWcbaGaamOAaaqabaaakeaacqGHciITcaWG 5bWaaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaiabg2da9i abeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccaWGebWaaSbaaSqa aiaadMgacaWGQbaabeaaaaa@7034@

to see that

r ˙ = V { σ ij D ij +ρ a i v i }dV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWGYbGbaiaacqGH9aqpdaWdrbqaam aacmaabaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiaadsea daWgaaWcbaGaamyAaiaadQgaaeqaaOGaey4kaSIaeqyWdiNaamyyam aaBaaaleaacaWGPbaabeaakiaadAhadaWgaaWcbaGaamyAaaqabaaa kiaawUhacaGL9baacaWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIi paaaa@4962@

Finally, note that

V ρ a i v i dV = V 0 ρ o d v i dt v i d V 0 = V 0 ρ o 1 2 d dt ( v i v i )d V 0 = d dt ( V 0 1 2 ρ 0 ( v i v i )d V 0 )= d dt ( V 0 1 2 ρ 0 ( v i v i )d V 0 )= d dt V 1 2 ρ( v i v i )dV MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaamaapefabaGaeqyWdiNaamyyam aaBaaaleaacaWGPbaabeaakiaadAhadaWgaaWcbaGaamyAaaqabaGc caWGKbGaamOvaaWcbaGaamOvaaqab0Gaey4kIipakiabg2da9maape fabaGaeqyWdi3aaSbaaSqaaiaad+gaaeqaaOWaaSaaaeaacaWGKbGa amODamaaBaaaleaacaWGPbaabeaaaOqaaiaadsgacaWG0baaaiaadA hadaWgaaWcbaGaamyAaaqabaGccaWGKbGaamOvamaaBaaaleaacaaI Waaabeaakiabg2da9aWcbaGaamOvamaaBaaameaacaaIWaaabeaaaS qab0Gaey4kIipakmaapefabaGaeqyWdi3aaSbaaSqaaiaad+gaaeqa aOWaaSaaaeaacaaIXaaabaGaaGOmaaaadaWcaaqaaiaadsgaaeaaca WGKbGaamiDaaaadaqadaqaaiaadAhadaWgaaWcbaGaamyAaaqabaGc caWG2bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaamizai aadAfadaWgaaWcbaGaaGimaaqabaaabaGaamOvamaaBaaameaacaaI WaaabeaaaSqab0Gaey4kIipaaOqaaiabg2da9maalaaabaGaamizaa qaaiaadsgacaWG0baaamaabmaabaWaa8quaeaadaWcaaqaaiaaigda aeaacaaIYaaaaiabeg8aYnaaBaaaleaacaaIWaaabeaakmaabmaaba GaamODamaaBaaaleaacaWGPbaabeaakiaadAhadaWgaaWcbaGaamyA aaqabaaakiaawIcacaGLPaaacaWGKbGaamOvamaaBaaaleaacaaIWa aabeaaaeaacaWGwbWaaSbaaWqaaiaaicdaaeqaaaWcbeqdcqGHRiI8 aaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaWGKbaabaGaamizai aadshaaaWaaeWaaeaadaWdrbqaamaalaaabaGaaGymaaqaaiaaikda aaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaWG2bWaaS baaSqaaiaadMgaaeqaaOGaamODamaaBaaaleaacaWGPbaabeaaaOGa ayjkaiaawMcaaiaadsgacaWGwbWaaSbaaSqaaiaaicdaaeqaaaqaai aadAfadaWgaaadbaGaaGimaaqabaaaleqaniabgUIiYdaakiaawIca caGLPaaacqGH9aqpdaWcaaqaaiaadsgaaeaacaWGKbGaamiDaaaada WdrbqaamaalaaabaGaaGymaaqaaiaaikdaaaGaeqyWdi3aaeWaaeaa caWG2bWaaSbaaSqaaiaadMgaaeqaaOGaamODamaaBaaaleaacaWGPb aabeaaaOGaayjkaiaawMcaaiaadsgacaWGwbaaleaacaWGwbWaaSba aWqaaaqabaaaleqaniabgUIiYdaaaaa@A2C0@

Finally, substitution leads to

r ˙ = A T i (n) v i dA + V ρ b i v i dV = V σ ij D ij dV + d dt { V 1 2 ρ v i v i dV } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWGYbGbaiaacqGH9aqpdaWdrbqaai aadsfadaqhaaWcbaGaamyAaaqaaiaacIcacaWHUbGaaiykaaaakiaa dAhadaWgaaWcbaGaamyAaaqabaGccaWGKbGaamyqaaWcbaGaamyqaa qab0Gaey4kIipakiabgUcaRmaapefabaGaeqyWdiNaamOyamaaBaaa leaacaWGPbaabeaakiaadAhadaWgaaWcbaGaamyAaaqabaGccaWGKb GaamOvaaWcbaGaamOvaaqab0Gaey4kIipakiabg2da9maapefabaGa eq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiaadseadaWgaaWcba GaamyAaiaadQgaaeqaaOGaamizaiaadAfaaSqaaiaadAfaaeqaniab gUIiYdGccqGHRaWkdaWcaaqaaiaadsgaaeaacaWGKbGaamiDaaaada GadaqaamaapefabaWaaSaaaeaacaaIXaaabaGaaGOmaaaacqaHbpGC caWG2bWaaSbaaSqaaiaadMgaaeqaaOGaamODamaaBaaaleaacaWGPb aabeaakiaadsgacaWGwbaaleaacaWGwbaabeqdcqGHRiI8aaGccaGL 7bGaayzFaaaaaa@6AD2@

as required.

 

 

 

6.2.2 Rate of mechanical work in terms of other stress measures

 

 The rate of work done per unit undeformed volume by Kirchhoff stress is τ ij D ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHepaDdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaamiramaaBaaaleaacaWGPbGaamOAaaqabaaaaa@3970@

 The rate of work done per unit undeformed volume by Nominal stress is S ij F ˙ ji MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaadMgacaWGQb aabeaakiqadAeagaGaamaaBaaaleaacaWGQbGaamyAaaqabaaaaa@388E@

 The rate of work done per unit undeformed volume by Material stress is Σ ij E ˙ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHJoWudaWgaaWcbaGaamyAaiaadQ gaaeqaaOGabmyrayaacaWaaSbaaSqaaiaadMgacaWGQbaabeaaaaa@3939@

 

This shows that nominal stress and deformation gradient are work conjugate, as are material stress and Lagrange strain.

 

In addition, the rate of work done on a volume V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGwbWaaSbaaSqaaiaaicdaaeqaaa aa@3487@  of the undeformed solid can be expressed as

r ˙ = A T i (n) v i dA + V ρ b i v i dV = V 0 τ ij D ij d V 0 + d dt { V 0 1 2 ρ 0 v i v i d V 0 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWGYbGbaiaacqGH9aqpdaWdrbqaai aadsfadaqhaaWcbaGaamyAaaqaaiaacIcacaWHUbGaaiykaaaakiaa dAhadaWgaaWcbaGaamyAaaqabaGccaWGKbGaamyqaaWcbaGaamyqaa qab0Gaey4kIipakiabgUcaRmaapefabaGaeqyWdiNaamOyamaaBaaa leaacaWGPbaabeaakiaadAhadaWgaaWcbaGaamyAaaqabaGccaWGKb GaamOvaaWcbaGaamOvaaqab0Gaey4kIipakiabg2da9maapefabaGa eqiXdq3aaSbaaSqaaiaadMgacaWGQbaabeaakiaadseadaWgaaWcba GaamyAaiaadQgaaeqaaOGaamizaiaadAfadaWgaaWcbaGaaGimaaqa baaabaGaamOvamaaBaaameaacaaIWaaabeaaaSqab0Gaey4kIipaki abgUcaRmaalaaabaGaamizaaqaaiaadsgacaWG0baaamaacmaabaWa a8quaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiabeg8aYnaaBaaale aacaaIWaaabeaakiaadAhadaWgaaWcbaGaamyAaaqabaGccaWG2bWa aSbaaSqaaiaadMgaaeqaaOGaamizaiaadAfadaWgaaWcbaGaaGimaa qabaaabaGaamOvamaaBaaameaacaaIWaaabeaaaSqab0Gaey4kIipa aOGaay5Eaiaaw2haaaaa@6F5E@

r ˙ = A T i (n) v i dA + V ρ b i v i dV = V 0 S ij F ˙ ji d V 0 + d dt { V 0 1 2 ρ 0 v i v i d V 0 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWGYbGbaiaacqGH9aqpdaWdrbqaai aadsfadaqhaaWcbaGaamyAaaqaaiaacIcacaWHUbGaaiykaaaakiaa dAhadaWgaaWcbaGaamyAaaqabaGccaWGKbGaamyqaaWcbaGaamyqaa qab0Gaey4kIipakiabgUcaRmaapefabaGaeqyWdiNaamOyamaaBaaa leaacaWGPbaabeaakiaadAhadaWgaaWcbaGaamyAaaqabaGccaWGKb GaamOvaaWcbaGaamOvaaqab0Gaey4kIipakiabg2da9maapefabaGa am4uamaaBaaaleaacaWGPbGaamOAaaqabaGcceWGgbGbaiaadaWgaa WcbaGaamOAaiaadMgaaeqaaOGaamizaiaadAfadaWgaaWcbaGaaGim aaqabaaabaGaamOvamaaBaaameaacaaIWaaabeaaaSqab0Gaey4kIi pakiabgUcaRmaalaaabaGaamizaaqaaiaadsgacaWG0baaamaacmaa baWaa8quaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiabeg8aYnaaBa aaleaacaaIWaaabeaakiaadAhadaWgaaWcbaGaamyAaaqabaGccaWG 2bWaaSbaaSqaaiaadMgaaeqaaOGaamizaiaadAfadaWgaaWcbaGaaG imaaqabaaabaGaamOvamaaBaaameaacaaIWaaabeaaaSqab0Gaey4k IipaaOGaay5Eaiaaw2haaaaa@6E7C@

r ˙ = A T i (n) v i dA + V ρ b i v i dV = V 0 Σ ij E ˙ ij d V 0 + d dt { V 0 1 2 ρ 0 v i v i d V 0 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWGYbGbaiaacqGH9aqpdaWdrbqaai aadsfadaqhaaWcbaGaamyAaaqaaiaacIcacaWHUbGaaiykaaaakiaa dAhadaWgaaWcbaGaamyAaaqabaGccaWGKbGaamyqaaWcbaGaamyqaa qab0Gaey4kIipakiabgUcaRmaapefabaGaeqyWdiNaamOyamaaBaaa leaacaWGPbaabeaakiaadAhadaWgaaWcbaGaamyAaaqabaGccaWGKb GaamOvaaWcbaGaamOvaaqab0Gaey4kIipakiabg2da9maapefabaGa eu4Odm1aaSbaaSqaaiaadMgacaWGQbaabeaakiqadweagaGaamaaBa aaleaacaWGPbGaamOAaaqabaGccaWGKbGaamOvamaaBaaaleaacaaI WaaabeaaaeaacaWGwbWaaSbaaWqaaiaaicdaaeqaaaWcbeqdcqGHRi I8aOGaey4kaSYaaSaaaeaacaWGKbaabaGaamizaiaadshaaaWaaiWa aeaadaWdrbqaamaalaaabaGaaGymaaqaaiaaikdaaaGaeqyWdi3aaS baaSqaaiaaicdaaeqaaOGaamODamaaBaaaleaacaWGPbaabeaakiaa dAhadaWgaaWcbaGaamyAaaqabaGccaWGKbGaamOvamaaBaaaleaaca aIWaaabeaaaeaacaWGwbWaaSbaaWqaaiaaicdaaeqaaaWcbeqdcqGH RiI8aaGccaGL7bGaayzFaaaaaa@6F27@

 

Derivations: The proof of the first result (and the stress power of Kirchhoff stress) is straightforward and is left as an exercise.  To show the second result, note that T i (n) dA= n j 0 S ji d A 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGubWaa0baaSqaaiaadMgaaeaaca GGOaGaaCOBaiaacMcaaaGccaWGKbGaamyqaiabg2da9iaad6gadaqh aaWcbaGaamOAaaqaaiaaicdaaaGccaWGtbWaaSbaaSqaaiaadQgaca WGPbaabeaakiaadsgacaWGbbWaaSbaaSqaaiaaicdaaeqaaaaa@421C@  and dV=Jd V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaamOvaiabg2da9iaadQeaca WGKbGaamOvamaaBaaaleaacaaIWaaabeaaaaa@3909@  to re-write the integrals over the undeformed solid; then and apply the divergence theorem to see that

r ˙ = V 0 x j ( S ji v i )d V 0 + V0 ρ b i v i Jd V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWGYbGbaiaacqGH9aqpdaWdrbqaam aalaaabaGaeyOaIylabaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaa beaaaaGcdaqadaqaaiaadofadaWgaaWcbaGaamOAaiaadMgaaeqaaO GaamODamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiaadsga caWGwbWaaSbaaSqaaiaaicdaaeqaaaqaaiaadAfadaWgaaadbaGaaG imaaqabaaaleqaniabgUIiYdGccqGHRaWkdaWdrbqaaiabeg8aYjaa dkgadaWgaaWcbaGaamyAaaqabaGccaWG2bWaaSbaaSqaaiaadMgaae qaaOGaamOsaiaadsgacaWGwbWaaSbaaSqaaiaaicdaaeqaaaqaaiaa dAfacaaIWaaabeqdcqGHRiI8aaaa@5536@

Evaluate the derivative, recall that Jρ= ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGkbGaeqyWdiNaeyypa0JaeqyWdi 3aaSbaaSqaaiaaicdaaeqaaaaa@3901@  and use the equation of motion

S ij x i + ρ 0 b j = ρ 0 d v j dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaykW7daWcaa qaaiaadofadaWgaaWcbaGaamyAaiaadQgaaeqaaaGcbaGaeyOaIyRa amiEamaaBaaaleaacaWGPbaabeaaaaGccqGHRaWkcqaHbpGCdaWgaa WcbaGaaGimaaqabaGccaWGIbWaaSbaaSqaaiaadQgaaeqaaOGaeyyp a0JaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOWaaSaaaeaacaWGKbGaam ODamaaBaaaleaacaWGQbaabeaaaOqaaiaadsgacaWG0baaaaaa@4B73@

to see that

r ˙ = V 0 S ji v i x j d V 0 + V0 ρ 0 d v i dt v i d V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWGYbGbaiaacqGH9aqpdaWdrbqaai aadofadaWgaaWcbaGaamOAaiaadMgaaeqaaOWaaSaaaeaacqGHciIT caWG2bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiEamaaBa aaleaacaWGQbaabeaaaaGccaWGKbGaamOvamaaBaaaleaacaaIWaaa beaaaeaacaWGwbWaaSbaaWqaaiaaicdaaeqaaaWcbeqdcqGHRiI8aO Gaey4kaSYaa8quaeaacqaHbpGCdaWgaaWcbaGaaGimaaqabaGcdaWc aaqaaiaadsgacaWG2bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaamizai aadshaaaGaamODamaaBaaaleaacaWGPbaabeaakiaadsgacaWGwbWa aSbaaSqaaiaaicdaaeqaaaqaaiaadAfacaaIWaaabeqdcqGHRiI8aa aa@56BD@

Finally, note that v i / x j =( u ˙ i / x j )= F ˙ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqGHciITcaWG2bWaaSbaaSqaaiaadM gaaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaGc cqGH9aqpdaqadaqaaiabgkGi2kqadwhagaGaamaaBaaaleaacaWGPb aabeaakiaac+cacqGHciITcaWG4bWaaSbaaSqaaiaadQgaaeqaaaGc caGLOaGaayzkaaGaeyypa0JabmOrayaacaWaaSbaaSqaaiaadMgaca WGQbaabeaaaaa@48C0@  and re-write the second integral as a kinetic energy term as before to obtain the required result.

 

The third result follows by straightforward algebraic manipulations MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  note that by definition

S ij F ˙ ji = Σ ik F jk F ˙ ji MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaadMgacaWGQb aabeaakiqadAeagaGaamaaBaaaleaacaWGQbGaamyAaaqabaGccqGH 9aqpcqqHJoWudaWgaaWcbaGaamyAaiaadUgaaeqaaOGaamOramaaDa aaleaacaWGQbGaam4AaaqaaaaakiqadAeagaGaamaaBaaaleaacaWG QbGaamyAaaqabaaaaa@42F4@

Since Σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHJoWudaWgaaWcbaGaamyAaiaadQ gaaeqaaaaa@3653@  is symmetric it follows that

Σ ik F jk F ˙ ji = 1 2 ( Σ ik + Σ ki ) F jk F ˙ ji = Σ ik 1 2 ( F jk F ˙ ji + F ji F ˙ jk )= Σ ik E ˙ ik MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHJoWudaWgaaWcbaGaamyAaiaadU gaaeqaaOGaamOramaaDaaaleaacaWGQbGaam4AaaqaaaaakiqadAea gaGaamaaBaaaleaacaWGQbGaamyAaaqabaGccqGH9aqpdaWcaaqaai aaigdaaeaacaaIYaaaamaabmaabaGaeu4Odm1aaSbaaSqaaiaadMga caWGRbaabeaakiabgUcaRiabfo6atnaaBaaaleaacaWGRbGaamyAaa qabaaakiaawIcacaGLPaaacaWGgbWaa0baaSqaaiaadQgacaWGRbaa baaaaOGabmOrayaacaWaaSbaaSqaaiaadQgacaWGPbaabeaakiabg2 da9iabfo6atnaaBaaaleaacaWGPbGaam4AaaqabaGcdaWcaaqaaiaa igdaaeaacaaIYaaaamaabmaabaGaamOramaaDaaaleaacaWGQbGaam 4AaaqaaaaakiqadAeagaGaamaaBaaaleaacaWGQbGaamyAaaqabaGc cqGHRaWkcaWGgbWaa0baaSqaaiaadQgacaWGPbaabaaaaOGabmOray aacaWaaSbaaSqaaiaadQgacaWGRbaabeaaaOGaayjkaiaawMcaaiab g2da9iabfo6atnaaBaaaleaacaWGPbGaam4AaaqabaGcceWGfbGbai aadaWgaaWcbaGaamyAaiaadUgaaeqaaaaa@69B1@

 

 

6.2.3 Rate of mechanical work for infinitesimal deformations

 

For infintesimal motions all stress measures are equal; and all strain rate measures can be approximated by the infinitesimal strain tensor ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1oaaaa@3407@ .  The rate of work done by stresses per unit volume of either deformed or undeformed solid (the difference is neglected) can be expressed as σ ij ε ˙ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGafqyTduMbaiaadaWgaaWcbaGaamyAaiaadQgaaeqaaaaa @3A55@ , and the work done on a volume V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGwbWaaSbaaSqaaiaaicdaaeqaaa aa@3487@  of the solid is

r ˙ = A T i (n) v i dA + V ρ b i v i dV = V 0 σ ij ε ˙ ij d V 0 + d dt { V 0 1 2 ρ 0 v i v i d V 0 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWGYbGbaiaacqGH9aqpdaWdrbqaai aadsfadaqhaaWcbaGaamyAaaqaaiaacIcacaWHUbGaaiykaaaakiaa dAhadaWgaaWcbaGaamyAaaqabaGccaWGKbGaamyqaaWcbaGaamyqaa qab0Gaey4kIipakiabgUcaRmaapefabaGaeqyWdiNaamOyamaaBaaa leaacaWGPbaabeaakiaadAhadaWgaaWcbaGaamyAaaqabaGccaWGKb GaamOvaaWcbaGaamOvaaqab0Gaey4kIipakiabg2da9maapefabaGa eq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiqbew7aLzaacaWaaS baaSqaaiaadMgacaWGQbaabeaakiaadsgacaWGwbWaaSbaaSqaaiaa icdaaeqaaaqaaiaadAfadaWgaaadbaGaaGimaaqabaaaleqaniabgU IiYdGccqGHRaWkdaWcaaqaaiaadsgaaeaacaWGKbGaamiDaaaadaGa daqaamaapefabaWaaSaaaeaacaaIXaaabaGaaGOmaaaacqaHbpGCda WgaaWcbaGaaGimaaqabaGccaWG2bWaaSbaaSqaaiaadMgaaeqaaOGa amODamaaBaaaleaacaWGPbaabeaakiaadsgacaWGwbWaaSbaaSqaai aaicdaaeqaaaqaaiaadAfadaWgaaadbaGaaGimaaqabaaaleqaniab gUIiYdaakiaawUhacaGL9baaaaa@7043@

 

 

 

6.3 The principle of Virtual Work

 

The principle of virtual work is an alternative way of expressing the equations of motion and equilibrium derived in Section 6.1.  At first sight it appears to be fairly useless, but it turns out to be an extremely useful way of deriving equilibrium equations or equations of motion for a solid in which the deformation is approximated in some way MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  for example, in a beam, plate or shell.  In addition, the principle of virtual work is also used as the starting point for finite element analysis for nonlinear solids, and so is a particularly important result.

Some definitions are needed before the principle can be stated.  Suppose that a deformable solid is subjected to loading that induces a displacement field u(x) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaaiikaiaahIhacaGGPaaaaa@361E@ , and a velocity field v(x) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH2bGaaiikaiaahIhacaGGPaaaaa@361F@ .  The loading consists of a prescribed displacement on part of the boundary (denoted by S 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaaigdaaeqaaa aa@3485@  ), together with a traction t (which may be zero in places) applied to the rest of the boundary (denoted by S 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaaikdaaeqaaa aa@3486@  ).  The loading induces a Cauchy stress σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQ gaaeqaaaaa@3692@ .  The stress field satisfies the angular momentum balance equation σ ij = σ ji MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadQgacaWGPbaabeaa aaa@3B6E@ .

 

The principle of virtual work is a different way of re-writing partial differential equation for linear moment balance

σ ji y j +ρ b i =ρ d v i dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaS qaaiaadQgacaWGPbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGa amOAaaqabaaaaOGaey4kaSIaeqyWdiNaamOyamaaBaaaleaacaWGPb aabeaakiabg2da9iabeg8aYnaalaaabaGaamizaiaadAhadaWgaaWc baGaamyAaaqabaaakeaacaWGKbGaamiDaaaaaaa@45B9@

in an equivalent integral form, which is much better suited for computer solution.

 

To express the principle, we define a kinematically admissible virtual velocity field δv(y) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiaacIcacaWH5bGaai ykaaaa@35DC@ , satisfying  δv=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiabg2da9iaaicdaaa a@3541@  on S 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaaabeaaaa a@329C@ .  You can visualize this field as a small change in the velocity of the solid, if you like, but it is really just an arbitrary differentiable vector field.  The term `kinematically admissible’ is just a complicated way of saying that the field is continuous, differentiable, and satisfies δv=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiabg2da9iaaicdaaa a@3541@  on S 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaaabeaaaa a@329C@  - that is to say, if you perturb the velocity by δv(y) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiaacIcacaWH5bGaai ykaaaa@35DC@ , the boundary conditions on displacement are still satisfied.

 

In addition, we define an associated virtual velocity gradient, and virtual stretch rate as

δ L ij = δ v i y j δ D ij = 1 2 ( δ v i y j + δ v j y i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH0oazcaWGmbWaaSbaaSqaaiaadM gacaWGQbaabeaakiabg2da9maalaaabaGaeyOaIyRaeqiTdqMaamOD amaaBaaaleaacaWGPbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcba GaamOAaaqabaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7cqaH0oazcaWGebWaaSbaaSqaaiaadMga caWGQbaabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaae WaaeaadaWcaaqaaiabgkGi2kabes7aKjaadAhadaWgaaWcbaGaamyA aaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadQgaaeqaaaaaki abgUcaRmaalaaabaGaeyOaIyRaeqiTdqMaamODamaaBaaaleaacaWG QbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGaamyAaaqabaaaaa GccaGLOaGaayzkaaaaaa@7652@

 

The principal of virtual work may be stated in two ways.

 

6.3.1 First version of the principle of virtual work

 

The first is not very interesting, but we will state it anyway.  Suppose that the Cauchy stress satisfies:

1.      The boundary condition n i σ ij = t j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaO Gaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9iaadsha daWgaaWcbaGaamOAaaqabaaaaa@3BCD@  on S 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaaikdaaeqaaa aa@3486@

2.      The linear momentum balance equation

σ ji y j +ρ b i =ρ d v i dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaS qaaiaadQgacaWGPbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGa amOAaaqabaaaaOGaey4kaSIaeqyWdiNaamOyamaaBaaaleaacaWGPb aabeaakiabg2da9iabeg8aYnaalaaabaGaamizaiaadAhadaWgaaWc baGaamyAaaqabaaakeaacaWGKbGaamiDaaaaaaa@45B9@

Then the virtual work equation

V σ:δDdV+ V ρ dv dt δvdV V ρbδvdV S tδv dA=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaaC4WdiaacQdacqaH0oazca WHebGaamizaiaadAfacqGHRaWkdaWdrbqaaiabeg8aYnaalaaabaGa amizaiaahAhaaeaacaWGKbGaamiDaaaacqGHflY1cqaH0oazcaWH2b GaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGHsisldaWd rbqaaiabeg8aYjaahkgacqGHflY1cqaH0oazcaWH2bGaamizaiaadA faaSqaaiaadAfaaeqaniabgUIiYdaaleaacaWGwbaabeqdcqGHRiI8 aOGaeyOeI0Yaa8quaeaacaWH0bGaeyyXICTaeqiTdqMaaCODaaWcba Gaam4uaaqab0Gaey4kIipakiaadsgacaWGbbGaeyypa0JaaGimaaaa @6519@

Or equivalently, with index notation

V σ ij δ D ij dV+ V ρ d v i dt δ v i dV V ρ b i δ v i dV S 2 t i δ v i dA=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaKaaahaacqaHdpWCkmaaBaaale aacaWGPbGaamOAaaqabaGccqaH0oazcaWGebWaaSbaaSqaaiaadMga caWGQbaabeaajaaWcaaMc8UaamizaiaadAfacqGHRaWkkmaapefaja aWbaGaeqyWdiNcdaWcaaqaaiaadsgacaWG2bWaaSbaaSqaaiaadMga aeqaaaGcbaGaamizaiaadshaaaqcaaSaeqiTdqMaamODaOWaaSbaaS qaaiaadMgaaeqaaaqcbaCaaiaadAfaaeqajmaWcqGHRiI8aOGaamiz aiaadAfajaaWcqGHsislkmaapefajaaWbaGaeqyWdiNaamOyaOWaaS baaSqaaiaadMgaaeqaaKaaalabes7aKjaadAhakmaaBaaaleaacaWG PbaabeaajaaWcaWGKbGaamOvaiabgkHiTOWaa8quaKaaahaacaWG0b GcdaWgaaWcbaGaamyAaaqabaqcaaSaeqiTdqMaamODaOWaaSbaaSqa aiaadMgaaeqaaaqcbaCaaiaadofalmaaBaaajiaWbaGaaGOmaaqaba aajeaWbeqcdaSaey4kIipaaKqaahaacaWGwbaabeqcdaSaey4kIipa aSqaaiaadAfaaeqaniabgUIiYdGccaWGKbGaamyqaiabg2da9iaaic daaaa@79B4@

is satisfied for all virtual velocity fields.

 

Proof:  Observe that since the Cauchy stress is symmetric

σ ij δ D ij = 1 2 σ ij ( δ v i y j + δ v j y i )= 1 2 ( σ ji δ v i y j + σ ij δ v j y i )= σ ji δ v i y j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabes7aKjaadseadaWgaaWcbaGaamyAaiaadQgaaeqaaOGa eyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaOWaaeWaaeaadaWcaaqaaiabgkGi2kabes7a KjaadAhadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaWG5bWaaS baaSqaaiaadQgaaeqaaaaakiabgUcaRmaalaaabaGaeyOaIyRaeqiT dqMaamODamaaBaaaleaacaWGQbaabeaaaOqaaiabgkGi2kaadMhada WgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacaaIXaaabaGaaGOmaaaadaqadaqaaiabeo8aZnaaBaaaleaaca WGQbGaamyAaaqabaGcdaWcaaqaaiabgkGi2kabes7aKjaadAhadaWg aaWcbaGaamyAaaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadQ gaaeqaaaaakiabgUcaRiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqa baGcdaWcaaqaaiabgkGi2kabes7aKjaadAhadaWgaaWcbaGaamOAaa qabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadMgaaeqaaaaaaOGa ayjkaiaawMcaaiabg2da9iabeo8aZnaaBaaaleaacaWGQbGaamyAaa qabaGcdaWcaaqaaiabgkGi2kabes7aKjaadAhadaWgaaWcbaGaamyA aaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadQgaaeqaaaaaaa a@7F39@

Next, note that

σ ji v i y j = y j ( σ ji δ v i ) σ ji y j δ v i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadQgacaWGPb aabeaakmaalaaabaGaeyOaIyRaamODamaaBaaaleaacaWGPbaabeaa aOqaaiabgkGi2kaadMhadaWgaaWcbaGaamOAaaqabaaaaOGaeyypa0 ZaaSaaaeaacqGHciITaeaacqGHciITcaWG5bWaaSbaaSqaaiaadQga aeqaaaaakmaabmaabaGaeq4Wdm3aaSbaaSqaaiaadQgacaWGPbaabe aakiabes7aKjaadAhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGL PaaacqGHsisldaWcaaqaaiabgkGi2kabeo8aZnaaBaaaleaacaWGQb GaamyAaaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadQgaaeqa aaaakiabes7aKjaadAhadaWgaaWcbaGaamyAaaqabaaaaa@5877@

Finally, substituting the latter identity into the virtual work equation, applying the divergence theorem, using the linear momentum balance equation and boundary conditions on σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaaC4Wdaaa@32F5@  and δv(y) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiaacIcacaWH5bGaai ykaaaa@35DC@  we obtain the required result.

 

6.3.2 Second version of the principle of virtual work

 

The converse of this statement is much more interesting and useful.  Suppose that σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3444@  satisfies the virtual work equation

V σ:δDdV+ V ρ dv dt δvdV V ρbδvdV S tδv dA=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapefabaGaaC4WdiaacQdacqaH0oazca WHebGaamizaiaadAfacqGHRaWkdaWdrbqaaiabeg8aYnaalaaabaGa amizaiaahAhaaeaacaWGKbGaamiDaaaacqGHflY1cqaH0oazcaWH2b GaamizaiaadAfaaSqaaiaadAfaaeqaniabgUIiYdGccqGHsisldaWd rbqaaiabeg8aYjaahkgacqGHflY1cqaH0oazcaWH2bGaamizaiaadA faaSqaaiaadAfaaeqaniabgUIiYdaaleaacaWGwbaabeqdcqGHRiI8 aOGaeyOeI0Yaa8quaeaacaWH0bGaeyyXICTaeqiTdqMaaCODaaWcba Gaam4uaaqab0Gaey4kIipakiaadsgacaWGbbGaeyypa0JaaGimaaaa @6519@

Or, using index notation

V σ ij δ D ij dV+ V ρ d v i dt δ v i dV V ρ b i δ v i dV S 2 t i δ v i dA=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaKaaahaacqaHdpWCkmaaBaaale aacaWGPbGaamOAaaqabaGccqaH0oazcaWGebWaaSbaaSqaaiaadMga caWGQbaabeaajaaWcaaMc8UaamizaiaadAfacqGHRaWkkmaapefaja aWbaGaeqyWdiNcdaWcaaqaaiaadsgacaWG2bWaaSbaaSqaaiaadMga aeqaaaGcbaGaamizaiaadshaaaqcaaSaeqiTdqMaamODaOWaaSbaaS qaaiaadMgaaeqaaaqcbaCaaiaadAfaaeqajmaWcqGHRiI8aOGaamiz aiaadAfajaaWcqGHsislkmaapefajaaWbaGaeqyWdiNaamOyaOWaaS baaSqaaiaadMgaaeqaaKaaalabes7aKjaadAhakmaaBaaaleaacaWG PbaabeaajaaWcaWGKbGaamOvaiabgkHiTOWaa8quaKaaahaacaWG0b GcdaWgaaWcbaGaamyAaaqabaqcaaSaeqiTdqMaamODaOWaaSbaaSqa aiaadMgaaeqaaaqcbaCaaiaadofalmaaBaaajiaWbaGaaGOmaaqaba aajeaWbeqcdaSaey4kIipaaKqaahaacaWGwbaabeqcdaSaey4kIipa aSqaaiaadAfaaeqaniabgUIiYdGccaWGKbGaamyqaiabg2da9iaaic daaaa@79B4@

for all virtual velocity fields δv(y) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiaacIcacaWH5bGaai ykaaaa@35DC@ .  Then the stress field must satisfy

3.      The boundary condition n i σ ij = t j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaO Gaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9iaadsha daWgaaWcbaGaamOAaaqabaaaaa@3BCD@  on S 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaaikdaaeqaaa aa@3486@

4.      The linear momentum balance equation

σ ji y j +ρ b i =ρ d v i dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaS qaaiaadQgacaWGPbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGa amOAaaqabaaaaOGaey4kaSIaeqyWdiNaamOyamaaBaaaleaacaWGPb aabeaakiabg2da9iabeg8aYnaalaaabaGaamizaiaadAhadaWgaaWc baGaamyAaaqabaaakeaacaWGKbGaamiDaaaaaaa@45B9@

The significance of this result is that it gives us an alternative way to solve for a stress field that satisfies the linear momentum balance equation, which avoids having to differentiate the stress.  It is not easy to differentiate functions accurately in the computer, but it is easy to integrate them.  The virtual work statement is the starting point for any finite element solution involving deformable solids.

 

 

Proof: Follow the same preliminary steps as before, i..e.

σ ij δ D ij = 1 2 σ ij ( δ v i y j + δ v j y i )= 1 2 ( σ ji δ v i y j + σ ij δ v j y i )= σ ji δ v i y j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQb aabeaakiabes7aKjaadseadaWgaaWcbaGaamyAaiaadQgaaeqaaOGa eyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacqaHdpWCdaWgaaWcba GaamyAaiaadQgaaeqaaOWaaeWaaeaadaWcaaqaaiabgkGi2kabes7a KjaadAhadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaWG5bWaaS baaSqaaiaadQgaaeqaaaaakiabgUcaRmaalaaabaGaeyOaIyRaeqiT dqMaamODamaaBaaaleaacaWGQbaabeaaaOqaaiabgkGi2kaadMhada WgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacaaIXaaabaGaaGOmaaaadaqadaqaaiabeo8aZnaaBaaaleaaca WGQbGaamyAaaqabaGcdaWcaaqaaiabgkGi2kabes7aKjaadAhadaWg aaWcbaGaamyAaaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadQ gaaeqaaaaakiabgUcaRiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqa baGcdaWcaaqaaiabgkGi2kabes7aKjaadAhadaWgaaWcbaGaamOAaa qabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadMgaaeqaaaaaaOGa ayjkaiaawMcaaiabg2da9iabeo8aZnaaBaaaleaacaWGQbGaamyAaa qabaGcdaWcaaqaaiabgkGi2kabes7aKjaadAhadaWgaaWcbaGaamyA aaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadQgaaeqaaaaaaa a@7F39@

σ ji v i y j = y j ( σ ji δ v i ) σ ji y j δ v i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadQgacaWGPb aabeaakmaalaaabaGaeyOaIyRaamODamaaBaaaleaacaWGPbaabeaa aOqaaiabgkGi2kaadMhadaWgaaWcbaGaamOAaaqabaaaaOGaeyypa0 ZaaSaaaeaacqGHciITaeaacqGHciITcaWG5bWaaSbaaSqaaiaadQga aeqaaaaakmaabmaabaGaeq4Wdm3aaSbaaSqaaiaadQgacaWGPbaabe aakiabes7aKjaadAhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGL PaaacqGHsisldaWcaaqaaiabgkGi2kabeo8aZnaaBaaaleaacaWGQb GaamyAaaqabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadQgaaeqa aaaakiabes7aKjaadAhadaWgaaWcbaGaamyAaaqabaaaaa@5867@

and substitute into the virtual work equation

V { y j ( σ ji δ v i ) σ ji y j δ v i }dV+ V ρ d v i dt δ v i dV V ρ b i δ v i dV S 2 t i δ v i dA=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaKaaahaakmaacmaabaWaaSaaae aacqGHciITaeaacqGHciITcaWG5bWaaSbaaSqaaiaadQgaaeqaaaaa kmaabmaabaGaeq4Wdm3aaSbaaSqaaiaadQgacaWGPbaabeaakiabes 7aKjaadAhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacqGH sisldaWcaaqaaiabgkGi2kabeo8aZnaaBaaaleaacaWGQbGaamyAaa qabaaakeaacqGHciITcaWG5bWaaSbaaSqaaiaadQgaaeqaaaaakiab es7aKjaadAhadaWgaaWcbaGaamyAaaqabaGccaaMc8oacaGL7bGaay zFaaqcaaSaamizaiaadAfacqGHRaWkkmaapefajaaWbaGaeqyWdiNc daWcaaqaaiaadsgacaWG2bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaam izaiaadshaaaqcaaSaeqiTdqMaamODaOWaaSbaaSqaaiaadMgaaeqa aaqcbaCaaiaadAfaaeqajmaWcqGHRiI8aOGaamizaiaadAfajaaWcq GHsislkmaapefajaaWbaGaeqyWdiNaamOyaOWaaSbaaSqaaiaadMga aeqaaKaaalabes7aKjaadAhakmaaBaaaleaacaWGPbaabeaajaaWca WGKbGaamOvaiabgkHiTOWaa8quaKaaahaacaWG0bGcdaWgaaWcbaGa amyAaaqabaqcaaSaeqiTdqMaamODaOWaaSbaaSqaaiaadMgaaeqaaa qcbaCaaiaadofalmaaBaaajiaWbaGaaGOmaaqabaaajeaWbeqcdaSa ey4kIipaaKqaahaacaWGwbaabeqcdaSaey4kIipaaSqaaiaadAfaae qaniabgUIiYdGccaWGKbGaamyqaiabg2da9iaaicdaaaa@8F40@

Apply the divergence theorem to the first term in the first integral, and recall that δv=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8XjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaaCODaiabg2da9iaaicdaaa a@3531@  on S 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8XjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uamaaBaaaleaacaaIXaaabeaaaa a@328C@ , we see that

V { σ ji y j +ρ b i ρ d v i dt }δ v i dV + S 2 ( σ ji n j t i )δ v i dA=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0Yaa8quaKaaahaakmaacmaaba WaaSaaaeaacqGHciITcqaHdpWCdaWgaaWcbaGaamOAaiaadMgaaeqa aaGcbaGaeyOaIyRaamyEamaaBaaaleaacaWGQbaabeaaaaGccqGHRa WkcqaHbpGCcaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaeqyW di3aaSaaaeaacaWGKbGaamODamaaBaaaleaacaWGPbaabeaaaOqaai aadsgacaWG0baaaiaaykW7aiaawUhacaGL9baajaaWcqaH0oazcaWG 2bGcdaWgaaqcbaCaaiaadMgaaeqaaKaaalaadsgacaWGwbaaleaaca WGwbaabeqdcqGHRiI8aOGaey4kaSYaa8quaeaadaqadaqaaiabeo8a ZnaaBaaaleaacaWGQbGaamyAaaqabaGccaWGUbWaaSbaaSqaaiaadQ gaaeqaaOGaeyOeI0IaamiDamaaBaaaleaacaWGPbaabeaaaOGaayjk aiaawMcaaiabes7aKjaadAhadaWgaaWcbaGaamyAaaqabaaabaGaam 4uamaaBaaameaacaaIYaaabeaaaSqab0Gaey4kIipakiaadsgacaWG bbGaeyypa0JaaGimaaaa@6D1D@

Since this must hold for all virtual velocity fields we could choose

δ v i =f(y){ σ ji y j +ρ b i ρ d v i dt } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaakiabg2da9iaadAgacaGGOaGaaCyEaiaacMcadaGadaqaamaa laaabaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaadQgacaWGPbaabeaaaO qaaiabgkGi2kaadMhadaWgaaWcbaGaamOAaaqabaaaaOGaey4kaSIa eqyWdiNaamOyamaaBaaaleaacaWGPbaabeaakiabgkHiTiabeg8aYn aalaaabaGaamizaiaadAhadaWgaaWcbaGaamyAaaqabaaakeaacaWG KbGaamiDaaaacaaMc8oacaGL7bGaayzFaaaaaa@51C4@

where f(y)=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8XjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOzaiaacIcacaWH5bGaaiykaiabg2 da9iaaicdaaaa@35D3@  is an arbitrary function that is positive everywhere inside the solid, but is equal to zero on S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4uaaaa@31B5@ .  For this choice, the virtual work equation reduces to

V f( y ){ σ ji y j +ρ b i ρ d v i dt }{ σ ki y k +ρ b i ρ d v i dt }dV =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOeI0Yaa8quaKaaahaakiaadAgada qadaqaaiaahMhaaiaawIcacaGLPaaadaGadaqaamaalaaabaGaeyOa IyRaeq4Wdm3aaSbaaSqaaiaadQgacaWGPbaabeaaaOqaaiabgkGi2k aadMhadaWgaaWcbaGaamOAaaqabaaaaOGaey4kaSIaeqyWdiNaamOy amaaBaaaleaacaWGPbaabeaakiabgkHiTiabeg8aYnaalaaabaGaam izaiaadAhadaWgaaWcbaGaamyAaaqabaaakeaacaWGKbGaamiDaaaa caaMc8oacaGL7bGaayzFaaWaaiWaaeaadaWcaaqaaiabgkGi2kabeo 8aZnaaBaaaleaacaWGRbGaamyAaaqabaaakeaacqGHciITcaWG5bWa aSbaaSqaaiaadUgaaeqaaaaakiabgUcaRiabeg8aYjaadkgadaWgaa WcbaGaamyAaaqabaGccqGHsislcqaHbpGCdaWcaaqaaiaadsgacaWG 2bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaamizaiaadshaaaGaaGPaVd Gaay5Eaiaaw2haaKaaalaadsgacaWGwbaaleaacaWGwbaabeqdcqGH RiI8aOGaeyypa0JaaGimaaaa@6F4D@

and since the integrand is positive everywhere the only way the equation can be satisfied is if

σ ji y j +ρ b i =ρ d v i dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaS qaaiaadQgacaWGPbaabeaaaOqaaiabgkGi2kaadMhadaWgaaWcbaGa amOAaaqabaaaaOGaey4kaSIaeqyWdiNaamOyamaaBaaaleaacaWGPb aabeaakiabg2da9iabeg8aYnaalaaabaGaamizaiaadAhadaWgaaWc baGaamyAaaqabaaakeaacaWGKbGaamiDaaaaaaa@45B9@

Given this, we can next choose a virtual velocity field that satisfies

δ v i =( σ ji n j t i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeqiTdqMaamODamaaBaaaleaacaWGPb aabeaakiabg2da9maabmaabaGaeq4Wdm3aaSbaaSqaaiaadQgacaWG Pbaabeaakiaad6gadaWgaaWcbaGaamOAaaqabaGccqGHsislcaWG0b WaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaa@401A@

on S 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaaGOmaaqabaaaaa@3238@ .  For this choice (and noting that the volume integral is zero) the virtual work equation reduces to

+ S 2 ( σ ji n j t i )( σ ki n k t i ) dA=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaey4kaSYaa8quaeaadaqadaqaaiabeo 8aZnaaBaaaleaacaWGQbGaamyAaaqabaGccaWGUbWaaSbaaSqaaiaa dQgaaeqaaOGaeyOeI0IaamiDamaaBaaaleaacaWGPbaabeaaaOGaay jkaiaawMcaamaabmaabaGaeq4Wdm3aaSbaaSqaaiaadUgacaWGPbaa beaakiaad6gadaWgaaWcbaGaam4AaaqabaGccqGHsislcaWG0bWaaS baaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaleaacaWGtbWaaSba aWqaaiaaikdaaeqaaaWcbeqdcqGHRiI8aOGaamizaiaadgeacqGH9a qpcaaIWaaaaa@4E44@

Again, the integrand is positive everywhere (it is a perfect square) and so can vanish only if

σ ji n j = t i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadQgacaWGPb aabeaakiaad6gadaWgaaWcbaGaamOAaaqabaGccqGH9aqpcaWG0bWa aSbaaSqaaiaadMgaaeqaaaaa@39D6@

as stated.

 

6.3.3 The Virtual Work equation in terms of other stress measures.

 

It is often convenient to implement the virtual work equation in a finite element code using different stress measures. 

 

To do so, we define

1.      The actual deformation gradient in the solid F ij = δ ij + u i x j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAeadaWgaaWcbaGaamyAaiaadQgaae qaaOGaeyypa0JaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaakiab gUcaRmaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaWGPbaabeaaaO qaaiabgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaaaaaa@3FF8@

2.      The virtual rate of change of deformation gradient  δ F ˙ ij = δ v i y k F kj = δ v i x j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjqadAeagaGaamaaBaaaleaaca WGPbGaamOAaaqabaGccqGH9aqpdaWcaaqaaiabgkGi2kabes7aKjaa dAhadaWgaaWcbaGaamyAaaqabaaakeaacqGHciITcaWG5bWaaSbaaS qaaiaadUgaaeqaaaaakiaadAeadaWgaaWcbaGaam4AaiaadQgaaeqa aOGaeyypa0ZaaSaaaeaacqGHciITcqaH0oazcaWG2bWaaSbaaSqaai aadMgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaa aaaaaa@4B5C@

3.      The virtual rate of change of Lagrange strain δ E ˙ ij = 1 2 ( F ki δ F ˙ kj +δ F ˙ ki F kj ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjqadweagaGaamaaBaaaleaaca WGPbGaamOAaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaa amaabmaabaGaamOramaaBaaaleaacaWGRbGaamyAaaqabaGccqaH0o azceWGgbGbaiaadaWgaaWcbaGaam4AaiaadQgaaeqaaOGaey4kaSIa eqiTdqMabmOrayaacaWaaSbaaSqaaiaadUgacaWGPbaabeaakiaadA eadaWgaaWcbaGaam4AaiaadQgaaeqaaaGccaGLOaGaayzkaaaaaa@48C5@

In addition, we define (in the usual way)

1.      Kirchhoff stress  τ ij =J σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaaGPaVlabes8a0PWaaSbaaSqaai aadMgacaWGQbaabeaakiabg2da9iaadQeacqaHdpWCdaWgaaWcbaGa amyAaiaadQgaaeqaaaaa@3CA6@

2.      Nominal (First Piola-Kirchhoff) stress   S ij =J F ik 1 σ kj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaqcaaSaam4uaOWaaSbaaSqaaiaadMgaca WGQbaabeaakiabg2da9iaadQeacaWGgbWaa0baaSqaaiaadMgacaWG RbaabaGaeyOeI0IaaGymaaaakiabeo8aZnaaBaaaleaacaWGRbGaam OAaaqabaaaaa@3EB7@

3.      Material (Second Piola-Kirchhoff) stress   Σ ij =J F ik 1 σ kl F jl 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaGPaVlabfo6atnaaBaaaleaacaWGPb GaamOAaaqabaGccqGH9aqpcaWGkbGaamOramaaDaaaleaacaWGPbGa am4AaaqaaiabgkHiTiaaigdaaaGccqaHdpWCdaWgaaWcbaGaam4Aai aadYgaaeqaaOGaamOramaaDaaaleaacaWGQbGaamiBaaqaaiabgkHi Tiaaigdaaaaaaa@44A7@

 

In terms of these quantities, the virtual work equation may be expressed as

V0 τ ij δ D ij d V 0 + V 0 ρ 0 d v i dt δ v i d V 0 V0 ρ 0 b i δ v i d V 0 S 2 t i δ v i dA=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaKaaahaacqaHepaDkmaaBaaale aacaWGPbGaamOAaaqabaGccqaH0oazcaWGebWaaSbaaSqaaiaadMga caWGQbaabeaajaaWcaaMc8UaamizaiaadAfakmaaBaaaleaacaaIWa aabeaajaaWcqGHRaWkkmaapefajaaWbaGaeqyWdiNcdaWgaaWcbaGa aGimaaqabaGcdaWcaaqaaiaadsgacaWG2bWaaSbaaSqaaiaadMgaae qaaaGcbaGaamizaiaadshaaaqcaaSaeqiTdqMaamODaOWaaSbaaSqa aiaadMgaaeqaaaqcbaCaaiaadAfalmaaBaaameaacaaIWaaabeaaaK qaahqajmaWcqGHRiI8aOGaamizaiaadAfadaWgaaWcbaGaaGimaaqa baqcaaSaeyOeI0IcdaWdrbqcaaCaaiabeg8aYPWaaSbaaSqaaiaaic daaeqaaKaaalaadkgakmaaBaaaleaacaWGPbaabeaajaaWcqaH0oaz caWG2bGcdaWgaaWcbaGaamyAaaqabaqcaaSaamizaiaadAfakmaaBa aaleaacaaIWaaabeaajaaWcqGHsislkmaapefajaaWbaGaamiDaOWa aSbaaSqaaiaadMgaaeqaaKaaalabes7aKjaadAhakmaaBaaaleaaca WGPbaabeaaaKqaahaacaWGtbWcdaWgaaqccaCaaiaaikdaaeqaaaqc baCabKWaalabgUIiYdaajeaWbaGaamOvaiaaicdaaeqajmaWcqGHRi I8aaWcbaGaamOvaiaaicdaaeqaniabgUIiYdGccaWGKbGaamyqaiab g2da9iaaicdaaaa@83E7@

V0 S ij δ F ˙ ji d V 0 + V 0 ρ 0 d v i dt δ v i d V 0 V0 ρ 0 b i δ v i d V 0 S 2 t i δ v i dA=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaKaaahaacaWGtbGcdaWgaaWcba GaamyAaiaadQgaaeqaaOGaeqiTdqMabmOrayaacaWaaSbaaSqaaiaa dQgacaWGPbaabeaajaaWcaaMc8UaamizaiaadAfakmaaBaaaleaaca aIWaaabeaajaaWcqGHRaWkkmaapefajaaWbaGaeqyWdiNcdaWgaaWc baGaaGimaaqabaGcdaWcaaqaaiaadsgacaWG2bWaaSbaaSqaaiaadM gaaeqaaaGcbaGaamizaiaadshaaaqcaaSaeqiTdqMaamODaOWaaSba aSqaaiaadMgaaeqaaaqcbaCaaiaadAfalmaaBaaameaacaaIWaaabe aaaKqaahqajmaWcqGHRiI8aOGaamizaiaadAfadaWgaaWcbaGaaGim aaqabaqcaaSaeyOeI0IcdaWdrbqcaaCaaiabeg8aYPWaaSbaaSqaai aaicdaaeqaaKaaalaadkgakmaaBaaaleaacaWGPbaabeaajaaWcqaH 0oazcaWG2bGcdaWgaaWcbaGaamyAaaqabaqcaaSaamizaiaadAfakm aaBaaaleaacaaIWaaabeaajaaWcqGHsislkmaapefajaaWbaGaamiD aOWaaSbaaSqaaiaadMgaaeqaaKaaalabes7aKjaadAhakmaaBaaale aacaWGPbaabeaaaKqaahaacaWGtbWcdaWgaaqccaCaaiaaikdaaeqa aaqcbaCabKWaalabgUIiYdaajeaWbaGaamOvaiaaicdaaeqajmaWcq GHRiI8aaWcbaGaamOvaiaaicdaaeqaniabgUIiYdGccaWGKbGaamyq aiabg2da9iaaicdaaaa@8305@

V0 Σ ij δ E ˙ ij d V 0 + V 0 ρ 0 d v i dt δ v i d V 0 V0 ρ 0 b i δ v i d V 0 S 2 t i δ v i dA=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaKaaahaacqqHJoWukmaaBaaale aacaWGPbGaamOAaaqabaGccqaH0oazceWGfbGbaiaadaWgaaWcbaGa amyAaiaadQgaaeqaaKaaalaaykW7caWGKbGaamOvaOWaaSbaaSqaai aaicdaaeqaaKaaalabgUcaROWaa8quaKaaahaacqaHbpGCkmaaBaaa leaacaaIWaaabeaakmaalaaabaGaamizaiaadAhadaWgaaWcbaGaam yAaaqabaaakeaacaWGKbGaamiDaaaajaaWcqaH0oazcaWG2bGcdaWg aaWcbaGaamyAaaqabaaajeaWbaGaamOvaSWaaSbaaWqaaiaaicdaae qaaaqcbaCabKWaalabgUIiYdGccaWGKbGaamOvamaaBaaaleaacaaI WaaabeaajaaWcqGHsislkmaapefajaaWbaGaeqyWdiNcdaWgaaWcba GaaGimaaqabaqcaaSaamOyaOWaaSbaaSqaaiaadMgaaeqaaKaaalab es7aKjaadAhakmaaBaaaleaacaWGPbaabeaajaaWcaWGKbGaamOvaO WaaSbaaSqaaiaaicdaaeqaaKaaalabgkHiTOWaa8quaKaaahaacaWG 0bGcdaWgaaWcbaGaamyAaaqabaqcaaSaeqiTdqMaamODaOWaaSbaaS qaaiaadMgaaeqaaaqcbaCaaiaadofalmaaBaaajiaWbaGaaGOmaaqa baaajeaWbeqcdaSaey4kIipaaKqaahaacaWGwbGaaGimaaqabKWaal abgUIiYdaaleaacaWGwbGaaGimaaqab0Gaey4kIipakiaadsgacaWG bbGaeyypa0JaaGimaaaa@83B0@

Note that all the volume integrals are now taken over the undeformed solid MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  this is convenient for computer applications, because the shape of the undeformed solid is known.  The area integral is evaluated over the deformed solid, unfortunately.  It can be expressed as an equivalent integral over the undeformed solid, but the result is messy and will be deferred until we actually need to do it.

 

 

6.3.4 The Virtual Work equation for infinitesimal deformations.

 

For infintesimal motions, the Cauchy, Nominal, and Material stress tensors are equal; and the virtual stretch rate can be replaced by the virtual infinitesimal strain rate

δ ε ˙ ij = 1 2 ( δ v i x j + δ v j x i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH0oazcuaH1oqzgaGaamaaBaaale aacaWGPbGaamOAaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaI YaaaamaabmaabaWaaSaaaeaacqGHciITcqaH0oazcaWG2bWaaSbaaS qaaiaadMgaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaa beaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kabes7aKjaadAhadaWgaa WcbaGaamOAaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaadMga aeqaaaaaaOGaayjkaiaawMcaaaaa@4EAA@

There is no need to distinguish between the volume or surface area of the deformed and undeformed solid.  The virtual work equation can thus be expressed as

V0 σ ij δ ε ˙ ij d V 0 + V 0 ρ 0 d v i dt δ v i d V 0 V0 ρ 0 b i δ v i d V 0 S 2 t i δ v i d A 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaKaaahaacqaHdpWCkmaaBaaale aacaWGPbGaamOAaaqabaGccqaH0oazcuaH1oqzgaGaamaaBaaaleaa caWGPbGaamOAaaqabaqcaaSaaGPaVlaadsgacaWGwbGcdaWgaaWcba GaaGimaaqabaqcaaSaey4kaSIcdaWdrbqcaaCaaiabeg8aYPWaaSba aSqaaiaaicdaaeqaaOWaaSaaaeaacaWGKbGaamODamaaBaaaleaaca WGPbaabeaaaOqaaiaadsgacaWG0baaaKaaalabes7aKjaadAhakmaa BaaaleaacaWGPbaabeaaaKqaahaacaWGwbWcdaWgaaadbaGaaGimaa qabaaajeaWbeqcdaSaey4kIipakiaadsgacaWGwbWaaSbaaSqaaiaa icdaaeqaaKaaalabgkHiTOWaa8quaKaaahaacqaHbpGCkmaaBaaale aacaaIWaaabeaajaaWcaWGIbGcdaWgaaWcbaGaamyAaaqabaqcaaSa eqiTdqMaamODaOWaaSbaaSqaaiaadMgaaeqaaKaaalaadsgacaWGwb GcdaWgaaWcbaGaaGimaaqabaqcaaSaeyOeI0IcdaWdrbqcaaCaaiaa dshakmaaBaaaleaacaWGPbaabeaajaaWcqaH0oazcaWG2bGcdaWgaa WcbaGaamyAaaqabaaajeaWbaGaam4uaSWaaSbaaKGaahaacaaIYaaa beaaaKqaahqajmaWcqGHRiI8aaqcbaCaaiaadAfacaaIWaaabeqcda Saey4kIipaaSqaaiaadAfacaaIWaaabeqdcqGHRiI8aOGaamizaiaa dgeadaWgaaWcbaGaaGimaaqabaGccqGH9aqpcaaIWaaaaa@85BC@

for all kinematically admissible velocity fields.

 

 

As a special case, this expression can be applied to a quasi-static state with v i =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAhadaWgaaWcbaGaamyAaaqabaGccq GH9aqpcaaIWaaaaa@3447@ . Then, for a stress state σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3434@  satisfying the static equilibrium equation σ ij /d x i + ρ 0 b j =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaGccaGGVaGaamizaiaadIhadaWgaaWcbaGaamyAaaqabaGccqGH RaWkcqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWGIbWaaSbaaSqaai aadQgaaeqaaOGaeyypa0JaaGimaaaa@3F59@  and boundary conditions σ ij n j = t i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaGccaWGUbWaaSbaaSqaaiaadQgaaeqaaOGaeyypa0JaamiDamaa BaaaleaacaWGPbaabeaaaaa@396F@  on S 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaaGOmaaqabaaaaa@3228@ , the virtual work equation reduces to

V0 σ ij δ ε ij d V 0 = V0 ρ 0 b i δ u i d V 0 + S 2 t i δ u i dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaKaaahaacqaHdpWCkmaaBaaale aacaWGPbGaamOAaaqabaGccqaH0oazcqaH1oqzdaWgaaWcbaGaamyA aiaadQgaaeqaaKaaalaaykW7caWGKbGaamOvaOWaaSbaaSqaaiaaic daaeqaaaqaaiaadAfacaaIWaaabeqdcqGHRiI8aOGaeyypa0Zaa8qu aeaacqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWGIbWaaSbaaSqaai aadMgaaeqaaOGaeqiTdqMaamyDamaaBaaaleaacaWGPbaabeaakiaa dsgacaWGwbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSYaa8quaeaaca WG0bWaaSbaaSqaaiaadMgaaeqaaOGaeqiTdqMaamyDamaaBaaaleaa caWGPbaabeaakiaadsgacaWGbbaaleaacaWGtbWaaSbaaWqaaiaaik daaeqaaaWcbeqdcqGHRiI8aaWcbaGaamOvaiaaicdaaeqaniabgUIi Ydaaaa@6051@

In which δ u i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjaadwhadaWgaaWcbaGaamyAaa qabaaaaa@3421@  are kinematically admissible displacements components (δ u i =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacqaH0oazcaWG1bWaaSbaaSqaai aadMgaaeqaaOGaeyypa0JaaGimaaaa@3697@  on S2) and δ ε ij =( δ u i / x j +δ u j / x i )/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH0oazcqaH1oqzdaWgaaWcbaGaam yAaiaadQgaaeqaaOGaeyypa0ZaaeWaaeaacqGHciITcqaH0oazcaWG 1bWaaSbaaSqaaiaadMgaaeqaaOGaai4laiaadIhadaWgaaWcbaGaam OAaaqabaGccqGHRaWkcqGHciITcqaH0oazcaWG1bWaaSbaaSqaaiaa dQgaaeqaaOGaai4laiaadIhadaWgaaWcbaGaamyAaaqabaaakiaawI cacaGLPaaacaGGVaGaaGOmaaaa@4D01@ .

 

Conversely, if  the stress state σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3434@  satisfies V0 σ ij δ ε ij d V 0 = V0 ρ 0 b i δ u i d V 0 + S 2 t i δ u i dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaWaa8quaKaaahaacqaHdpWCkmaaBaaale aacaWGPbGaamOAaaqabaGccqaH0oazcqaH1oqzdaWgaaWcbaGaamyA aiaadQgaaeqaaKaaalaaykW7caWGKbGaamOvaOWaaSbaaSqaaiaaic daaeqaaaqaaiaadAfacaaIWaaabeqdcqGHRiI8aOGaeyypa0Zaa8qu aeaacqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWGIbWaaSbaaSqaai aadMgaaeqaaOGaeqiTdqMaamyDamaaBaaaleaacaWGPbaabeaakiaa dsgacaWGwbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSYaa8quaeaaca WG0bWaaSbaaSqaaiaadMgaaeqaaOGaeqiTdqMaamyDamaaBaaaleaa caWGPbaabeaakiaadsgacaWGbbaaleaacaWGtbWaaSbaaWqaaiaaik daaeqaaaWcbeqdcqGHRiI8aaWcbaGaamOvaiaaicdaaeqaniabgUIi Ydaaaa@6051@  for every set of kinematically admissible virtual displacements, then the stress state σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3434@  satisfies the static equilibrium equation σ ij /d x i + ρ 0 b j =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaGccaGGVaGaamizaiaadIhadaWgaaWcbaGaamyAaaqabaGccqGH RaWkcqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWGIbWaaSbaaSqaai aadQgaaeqaaOGaeyypa0JaaGimaaaa@3F59@  and boundary conditions σ ij n j = t i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaGccaWGUbWaaSbaaSqaaiaadQgaaeqaaOGaeyypa0JaamiDamaa BaaaleaacaWGPbaabeaaaaa@396F@  on S 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadofadaWgaaWcbaGaaGOmaaqabaaaaa@3228@

 

Example: The shell shown in the figure is subjected to a radial body force b=ρb(R) e R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahkgacqGH9aqpcqaHbpGCcaWGIbGaai ikaiaadkfacaGGPaGaaCyzamaaBaaaleaacaWGsbaabeaaaaa@3921@ , and a radial pressure p a , p b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadchadaWgaaWcbaGaamyyaaqabaGcca GGSaGaamiCamaaBaaaleaacaWGIbaabeaaaaa@3531@  acting on the surfaces at R=a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadkfacqGH9aqpcaWGHbaaaa@332B@  and R=b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadkfacqGH9aqpcaWGIbaaaa@332C@ . The loading induces a spherically symmetric state of stress in the shell, which can be expressed in terms of its components in a spherical-polar coordinate system as σ RR e R e R + σ θθ e θ e θ + σ ϕϕ e ϕ e ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGsbGaamOuaa qabaGccaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4LIqSaaCyzamaa BaaaleaacaWGsbaabeaakiabgUcaRiabeo8aZnaaBaaaleaacqaH4o qCcqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4L IqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIaeq4Wdm3aaS baaSqaaiabew9aMjabew9aMbqabaGccaWHLbWaaSbaaSqaaiabew9a MbqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabew9aMbqabaaaaa@5654@  (or if you prefer matrix notation

σ=[ σ RR 0 0 0 σ θθ 0 0 0 σ ϕϕ ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaho8acqGH9aqpdaWadaqaauaabeqadm aaaeaacqaHdpWCdaWgaaWcbaGaamOuaiaadkfaaeqaaaGcbaGaaGim aaqaaiaaicdaaeaacaaIWaaabaGaeq4Wdm3aaSbaaSqaaiabeI7aXj abeI7aXbqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqaH dpWCdaWgaaWcbaGaeqy1dyMaeqy1dygabeaaaaaakiaawUfacaGLDb aaaaa@47B7@

 

(a) By considering a virtual velocity of the form δv=w(R) e R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjaahAhacqGH9aqpcaWG3bGaai ikaiaadkfacaGGPaGaaCyzamaaBaaaleaacaWGsbaabeaaaaa@392F@ , (i.e. all points in the sphere can only move in the radial direction, but they can move by an arbitrary displacement) show that the stress state is in static equilibrium if

 

a b { σ RR dw dR +( σ θθ + σ ϕϕ ) w R }4π R 2 dR a b b(R)w(R)4π R 2 dR4π a 2 p a w(a)+ 4π b 2 p b w(b)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapehabaWaaiWaaeaacqaHdpWCdaWgaa WcbaGaamOuaiaadkfaaeqaaOWaaSaaaeaacaWGKbGaam4Daaqaaiaa dsgacaWGsbaaaiabgUcaRmaabmaabaGaeq4Wdm3aaSbaaSqaaiabeI 7aXjabeI7aXbqabaGccqGHRaWkcqaHdpWCdaWgaaWcbaGaeqy1dyMa eqy1dygabeaaaOGaayjkaiaawMcaamaalaaabaGaam4Daaqaaiaadk faaaaacaGL7bGaayzFaaGaaGinaiabec8aWjaadkfadaahaaWcbeqa aiaaikdaaaGccaWGKbGaamOuaaWcbaGaamyyaaqaaiaadkgaa0Gaey 4kIipakiabgkHiTmaapehabaGaamOyaiaacIcacaWGsbGaaiykaiaa dEhacaGGOaGaamOuaiaacMcacaaI0aGaeqiWdaNaamOuamaaCaaale qabaGaaGOmaaaakiaadsgacaWGsbGaeyOeI0IaaGinaiabec8aWjaa dggadaahaaWcbeqaaiaaikdaaaGccaWGWbWaaSbaaSqaaiaadggaae qaaOGaam4DaiaacIcacaWGHbGaaiykaiabgUcaRaWcbaGaamyyaaqa aiaadkgaa0Gaey4kIipakiaaisdacqaHapaCcaWGIbWaaWbaaSqabe aacaaIYaaaaOGaamiCamaaBaaaleaacaWGIbaabeaakiaadEhacaGG OaGaamOyaiaacMcacqGH9aqpcaaIWaaaaa@7C9E@

for all w(R). 

 

 

(b) Hence, show that the stress state must satisfy

d σ RR dR + 1 R ( 2 σ RR σ θθ σ ϕϕ )+b=0 σ RR = p a ( R=a ) σ RR = p b ( R=b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamizaiabeo8aZnaaBaaale aacaWGsbGaamOuaaqabaaakeaacaWGKbGaamOuaaaacqGHRaWkdaWc aaqaaiaaigdaaeaacaWGsbaaamaabmaabaGaaGOmaiabeo8aZnaaBa aaleaacaWGsbGaamOuaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGa eqiUdeNaeqiUdehabeaakiabgkHiTiabeo8aZnaaBaaaleaacqaHvp GzcqaHvpGzaeqaaaGccaGLOaGaayzkaaGaey4kaSIaamOyaiabg2da 9iaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4Wdm3aaSba aSqaaiaadkfacaWGsbaabeaakiabg2da9iabgkHiTiaadchadaWgaa WcbaGaamyyaaqabaGccaaMc8UaaGPaVlaaykW7daqadaqaaiaadkfa cqGH9aqpcaWGHbaacaGLOaGaayzkaaGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHdpWCdaWgaaWcbaGaamOu aiaadkfaaeqaaOGaeyypa0JaeyOeI0IaamiCamaaBaaaleaacaWGIb aabeaakiaaykW7caaMc8UaaGPaVpaabmaabaGaamOuaiabg2da9iaa dkgaaiaawIcacaGLPaaacaaMc8oaaa@92AD@

 

 

The principle of virtual work will usually magically give you a simplified form of the general equilibrium equation for any simplified kind of deformation.   There is a standard process to follow, which involves two steps: (i) substitute a virtual displacement field that has the same form as the simplified kind of motion; and then (usually) (ii) integrate the virtual work equation by parts to remove any derivatives of the displacement field.  

 

We will use this method here.   To evaluate the virtual work equation, we must first calculate the virtual stretch rate δD MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabes7aKjaahseaaaa@32DA@ .  By definition D={ v+ ( v ) T }/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahseacqGH9aqpdaGadaqaaiabgEGirl aahAhacqGHRaWkdaqadaqaaiabgEGirlaahAhaaiaawIcacaGLPaaa daahaaWcbeqaaiaadsfaaaaakiaawUhacaGL9baacaGGVaGaaGOmaa aa@3E60@  .   We can use the formula from Section 3.5.8 to calculate the gradient in spherical polar coordinates

v[ v R R 1 R v R θ v θ R 1 Rsinθ v R ϕ v ϕ R v θ R 1 R v θ θ + v R R 1 Rsinθ v θ ϕ cotθ v ϕ R v ϕ R 1 R v ϕ θ 1 Rsinθ v ϕ ϕ +cotθ v θ R + v R R ]=[ dw dR 0 0 0 w R 0 0 0 w R ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0caWH2b GaeyyyIO7aamWaaeaafaqabeWadaaabaWaaSaaaeaacqGHciITcaWG 2bWaaSbaaSqaaiaadkfaaeqaaaGcbaGaeyOaIyRaamOuaaaaaeaada WcaaqaaiaaigdaaeaacaWGsbaaamaalaaabaGaeyOaIyRaamODamaa BaaaleaacaWGsbaabeaaaOqaaiabgkGi2kabeI7aXbaacqGHsislda WcaaqaaiaadAhadaWgaaWcbaGaeqiUdehabeaaaOqaaiaadkfaaaaa baWaaSaaaeaacaaIXaaabaGaamOuaiGacohacaGGPbGaaiOBaiabeI 7aXbaadaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaamOuaaqabaaa keaacqGHciITcqaHvpGzaaGaeyOeI0YaaSaaaeaacaWG2bWaaSbaaS qaaiabew9aMbqabaaakeaacaWGsbaaaaqaamaalaaabaGaeyOaIyRa amODamaaBaaaleaacqaH4oqCaeqaaaGcbaGaeyOaIyRaamOuaaaaae aadaWcaaqaaiaaigdaaeaacaWGsbaaamaalaaabaGaeyOaIyRaamOD amaaBaaaleaacqaH4oqCaeqaaaGcbaGaeyOaIyRaeqiUdehaaiabgU caRmaalaaabaGaamODamaaBaaaleaacaWGsbaabeaaaOqaaiaadkfa aaaabaWaaSaaaeaacaaIXaaabaGaamOuaiGacohacaGGPbGaaiOBai abeI7aXbaadaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaeqiUdeha beaaaOqaaiabgkGi2kabew9aMbaacqGHsislciGGJbGaai4Baiaacs hacqaH4oqCdaWcaaqaaiaadAhadaWgaaWcbaGaeqy1dygabeaaaOqa aiaadkfaaaaabaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiabew 9aMbqabaaakeaacqGHciITcaWGsbaaaaqaamaalaaabaGaaGymaaqa aiaadkfaaaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiabew9aMb qabaaakeaacqGHciITcqaH4oqCaaaabaWaaSaaaeaacaaIXaaabaGa amOuaiGacohacaGGPbGaaiOBaiabeI7aXbaadaWcaaqaaiabgkGi2k aadAhadaWgaaWcbaGaeqy1dygabeaaaOqaaiabgkGi2kabew9aMbaa cqGHRaWkciGGJbGaai4BaiaacshacqaH4oqCdaWcaaqaaiaadAhada WgaaWcbaGaeqiUdehabeaaaOqaaiaadkfaaaGaey4kaSYaaSaaaeaa caWG2bWaaSbaaSqaaiaadkfaaeqaaaGcbaGaamOuaaaaaaaacaGLBb GaayzxaaGaeyypa0ZaamWaaeaafaqabeWadaaabaWaaSaaaeaacaWG KbGaam4DaaqaaiaadsgacaWGsbaaaaqaaiaaicdaaeaacaaIWaaaba GaaGimaaqaamaalaaabaGaam4DaaqaaiaadkfaaaaabaGaaGimaaqa aiaaicdaaeaacaaIWaaabaWaaSaaaeaacaWG3baabaGaamOuaaaaaa aacaGLBbGaayzxaaaaaa@C457@

 

This is symmetric already, so D=v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahseacqGH9aqpcqGHhis0caWH2baaaa@34C0@  in this case.   It follows that

σ:δD= σ RR dw dR +( σ θθ + σ ϕϕ ) w R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaho8acaGG6aGaeqiTdqMaaCiraiabg2 da9iabeo8aZnaaBaaaleaacaWGsbGaamOuaaqabaGcdaWcaaqaaiaa dsgacaWG3baabaGaamizaiaadkfaaaGaey4kaSYaaeWaaeaacqaHdp WCdaWgaaWcbaGaeqiUdeNaeqiUdehabeaakiabgUcaRiabeo8aZnaa BaaaleaacqaHvpGzcqaHvpGzaeqaaaGccaGLOaGaayzkaaWaaSaaae aacaWG3baabaGaamOuaaaaaaa@4D67@

 

The remaining terms in the virtual work equation are standard dot products, and the volume integral can be re-written as an integral with respect to the radial coordinate R, so the virtual work principle therefore reduces to

V σ:δDdV V ρbδvdV S t * δv dA = a b { σ RR dw dR +( σ θθ + σ ϕϕ ) w R }4π R 2 dR a b b(R)w(R)4π R 2 dR4π a 2 p a w(a)+ 4π b 2 p b w(b)=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaa8quaeaacaWHdpGaaiOoaiabes 7aKjaahseacaWGKbGaamOvaiabgkHiTmaapefabaGaeqyWdiNaaCOy aiabgwSixlabes7aKjaahAhacaWGKbGaamOvaiabgkHiTmaapefaba GaaCiDamaaCaaaleqabaGaaiOkaaaakiabgwSixlabes7aKjaahAha aSqaaiaadofaaeqaniabgUIiYdGccaWGKbGaamyqaaWcbaGaamOvaa qab0Gaey4kIipaaSqaaiaadAfaaeqaniabgUIiYdGccqGH9aqpaeaa daWdXbqaamaacmaabaGaeq4Wdm3aaSbaaSqaaiaadkfacaWGsbaabe aakmaalaaabaGaamizaiaadEhaaeaacaWGKbGaamOuaaaacqGHRaWk daqadaqaaiabeo8aZnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaOGaey 4kaSIaeq4Wdm3aaSbaaSqaaiabew9aMjabew9aMbqabaaakiaawIca caGLPaaadaWcaaqaaiaadEhaaeaacaWGsbaaaaGaay5Eaiaaw2haai aaisdacqaHapaCcaWGsbWaaWbaaSqabeaacaaIYaaaaOGaamizaiaa dkfaaSqaaiaadggaaeaacaWGIbaaniabgUIiYdGccqGHsisldaWdXb qaaiaadkgacaGGOaGaamOuaiaacMcacaWG3bGaaiikaiaadkfacaGG PaGaaGinaiabec8aWjaadkfadaahaaWcbeqaaiaaikdaaaGccaWGKb GaamOuaiabgkHiTiaaisdacqaHapaCcaWGHbWaaWbaaSqabeaacaaI YaaaaOGaamiCamaaBaaaleaacaWGHbaabeaakiaadEhacaGGOaGaam yyaiaacMcacqGHRaWkaSqaaiaadggaaeaacaWGIbaaniabgUIiYdGc caaI0aGaeqiWdaNaamOyamaaCaaaleqabaGaaGOmaaaakiaadchada WgaaWcbaGaamOyaaqabaGccaWG3bGaaiikaiaadkgacaGGPaGaeyyp a0JaaGimaaaaaa@A125@

 

In this form, the equation does not tell us anything interesting.   However, if we integrate the first term by parts, we can re-write the virtual work equation as

a b { 1 R 2 d( R 2 σ RR ) dR +( σ θθ + σ ϕϕ ) 1 R b(R) }w4π R 2 dR 4π a 2 ( σ RR (a)+ p a )w(a)+4π b 2 ( σ RR (b)+ p b )w(b)=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaa8qCaeaadaGadaqaamaalaaaba GaaGymaaqaaiaadkfadaahaaWcbeqaaiaaikdaaaaaaOWaaSaaaeaa caWGKbGaaiikaiaadkfadaahaaWcbeqaaiaaikdaaaGccqaHdpWCda WgaaWcbaGaamOuaiaadkfaaeqaaOGaaiykaaqaaiaadsgacaWGsbaa aiabgUcaRmaabmaabaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI7aXb qabaGccqGHRaWkcqaHdpWCdaWgaaWcbaGaeqy1dyMaeqy1dygabeaa aOGaayjkaiaawMcaamaalaaabaGaaGymaaqaaiaadkfaaaGaeyOeI0 IaamOyaiaacIcacaWGsbGaaiykaaGaay5Eaiaaw2haaiaadEhacaaI 0aGaeqiWdaNaamOuamaaCaaaleqabaGaaGOmaaaakiaadsgacaWGsb aaleaacaWGHbaabaGaamOyaaqdcqGHRiI8aaGcbaGaeyOeI0IaaGin aiabec8aWjaadggadaahaaWcbeqaaiaaikdaaaGccaGGOaGaeq4Wdm 3aaSbaaSqaaiaadkfacaWGsbaabeaakiaacIcacaWGHbGaaiykaiab gUcaRiaadchadaWgaaWcbaGaamyyaaqabaGccaGGPaGaam4DaiaacI cacaWGHbGaaiykaiabgUcaRiaaisdacqaHapaCcaWGIbWaaWbaaSqa beaacaaIYaaaaOGaaiikaiabeo8aZnaaBaaaleaacaWGsbGaamOuaa qabaGccaGGOaGaamOyaiaacMcacqGHRaWkcaWGWbWaaSbaaSqaaiaa dkgaaeqaaOGaaiykaiaadEhacaGGOaGaamOyaiaacMcacqGH9aqpca aIWaaaaaa@84EF@

This must vanish for all w.   Since this includes any w with w=0 at R=a,R=B, it follows that

a b { 1 R 2 d( R 2 σ RR ) dR +( σ θθ + σ ϕϕ ) 1 R b(R) }w4π R 2 dR =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapehabaWaaiWaaeaadaWcaaqaaiaaig daaeaacaWGsbWaaWbaaSqabeaacaaIYaaaaaaakmaalaaabaGaamiz aiaacIcacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaeq4Wdm3aaSbaaS qaaiaadkfacaWGsbaabeaakiaacMcaaeaacaWGKbGaamOuaaaacqGH RaWkdaqadaqaaiabeo8aZnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaO Gaey4kaSIaeq4Wdm3aaSbaaSqaaiabew9aMjabew9aMbqabaaakiaa wIcacaGLPaaadaWcaaqaaiaaigdaaeaacaWGsbaaaiabgkHiTiaadk gacaGGOaGaamOuaiaacMcaaiaawUhacaGL9baacaWG3bGaaGinaiab ec8aWjaadkfadaahaaWcbeqaaiaaikdaaaGccaWGKbGaamOuaaWcba Gaamyyaaqaaiaadkgaa0Gaey4kIipakiabg2da9iaaicdaaaa@5F93@

This must vanish even if we happen to pick

w= 1 R 2 d( R 2 σ RR ) dR +( σ θθ + σ ϕϕ ) 1 R b(R) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadEhacqGH9aqpdaWcaaqaaiaaigdaae aacaWGsbWaaWbaaSqabeaacaaIYaaaaaaakmaalaaabaGaamizaiaa cIcacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaeq4Wdm3aaSbaaSqaai aadkfacaWGsbaabeaakiaacMcaaeaacaWGKbGaamOuaaaacqGHRaWk daqadaqaaiabeo8aZnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaOGaey 4kaSIaeq4Wdm3aaSbaaSqaaiabew9aMjabew9aMbqabaaakiaawIca caGLPaaadaWcaaqaaiaaigdaaeaacaWGsbaaaiabgkHiTiaadkgaca GGOaGaamOuaiaacMcaaaa@5263@

which requires that

a b { 1 R 2 d( R 2 σ RR ) dR +( σ θθ + σ ϕϕ ) 1 R b(R) } 2 4π R 2 dR =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaapehabaWaaiWaaeaadaWcaaqaaiaaig daaeaacaWGsbWaaWbaaSqabeaacaaIYaaaaaaakmaalaaabaGaamiz aiaacIcacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaeq4Wdm3aaSbaaS qaaiaadkfacaWGsbaabeaakiaacMcaaeaacaWGKbGaamOuaaaacqGH RaWkdaqadaqaaiabeo8aZnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaO Gaey4kaSIaeq4Wdm3aaSbaaSqaaiabew9aMjabew9aMbqabaaakiaa wIcacaGLPaaadaWcaaqaaiaaigdaaeaacaWGsbaaaiabgkHiTiaadk gacaGGOaGaamOuaiaacMcaaiaawUhacaGL9baadaahaaWcbeqaaiaa ikdaaaGccaaI0aGaeqiWdaNaamOuamaaCaaaleqabaGaaGOmaaaaki aadsgacaWGsbaaleaacaWGHbaabaGaamOyaaqdcqGHRiI8aOGaeyyp a0JaaGimaaaa@5F8A@

The integrand is now positive or zero everywhere, so the integral can only be zero if the integrand is zero.   Therefore

d σ RR dR + 1 R ( 2 σ RR σ θθ σ ϕϕ )+b=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamizaiabeo8aZnaaBaaale aacaWGsbGaamOuaaqabaaakeaacaWGKbGaamOuaaaacqGHRaWkdaWc aaqaaiaaigdaaeaacaWGsbaaamaabmaabaGaaGOmaiabeo8aZnaaBa aaleaacaWGsbGaamOuaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGa eqiUdeNaeqiUdehabeaakiabgkHiTiabeo8aZnaaBaaaleaacqaHvp GzcqaHvpGzaeqaaaGccaGLOaGaayzkaaGaey4kaSIaamOyaiabg2da 9iaaicdacaaMc8UaaGPaVdaa@529F@

Since the integrand vanishes, we now are left with

4π a 2 ( σ RR (a)+ p a )w(a)+4π b 2 ( σ RR (b)+ p b )w(b)=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgkHiTiaaisdacqaHapaCcaWGHbWaaW baaSqabeaacaaIYaaaaOGaaiikaiabeo8aZnaaBaaaleaacaWGsbGa amOuaaqabaGccaGGOaGaamyyaiaacMcacqGHRaWkcaWGWbWaaSbaaS qaaiaadggaaeqaaOGaaiykaiaadEhacaGGOaGaamyyaiaacMcacqGH RaWkcaaI0aGaeqiWdaNaamOyamaaCaaaleqabaGaaGOmaaaakiaacI cacqaHdpWCdaWgaaWcbaGaamOuaiaadkfaaeqaaOGaaiikaiaadkga caGGPaGaey4kaSIaamiCamaaBaaaleaacaWGIbaabeaakiaacMcaca WG3bGaaiikaiaadkgacaGGPaGaeyypa0JaaGimaaaa@577D@

Again, this condition must be satisfied for all w, which is only possible if

σ RR = p a ( R=a ) σ RR = p b ( R=b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGsbGaamOuaa qabaGccqGH9aqpcqGHsislcaWGWbWaaSbaaSqaaiaadggaaeqaaOGa aGPaVlaaykW7caaMc8+aaeWaaeaacaWGsbGaeyypa0JaamyyaaGaay jkaiaawMcaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8Uaeq4Wdm3aaSbaaSqaaiaadkfacaWGsbaabeaakiabg2 da9iabgkHiTiaadchadaWgaaWcbaGaamOyaaqabaGccaaMc8UaaGPa VlaaykW7daqadaqaaiaadkfacqGH9aqpcaWGIbaacaGLOaGaayzkaa aaaa@5DF2@