Chapter 8

 

Small Strain Static Solutions for Elastic Solids

 

In many engineering applications, the component or solid of interest is stiff, and is subjected only to modest stresses.   This is because large stresses, and large shape changes, usually cause a component to fail.  Stiff solids subjected to modest loads experience only small changes in shape, and the material can be assumed to deform elastically.    Under these conditions, it is often possible to calculate exactly the distributions of stress and strain in the solid.   Analysis of this kind is called ‘linear elasticity.’

 

In this chapter, we present a very brief survey of the field of linear elasticity.  Specifically,

1.      We will outline some important general features of solutions to for linear elastic solids subjected to external forces;

2.      We will discuss some solution techniques and present solutions to a few selected problems of interest;

3.      We will discuss energy methods for solving problems involving linear elastic solids.   These will later be used to develop the finite element method for calculating stresses in elastic solids.

 

 

8.1 Summary of the governing equations of linear elasticity

 

For a stiff solid subjected to modest stresses, we can assume

1.      All displacements are small.  This means that we can use the infinitesimal strain tensor to characterize deformation; we do not need to distinguish between stress measures, and we do not need to distinguish between deformed and undeformed configurations of the solid when writing equilibrium equations and boundary conditions.

2.      The material is a linear elastic solid.  In most practical applications, we can also assume the material is isotropic, with Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH9oGBaaa@347D@ , and mass density ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHbpGCdaWgaaWcbaGaaGimaaqaba aaaa@356C@

 

In any application, we must be given:

1.      The shape of the solid in its unloaded condition R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaamOuaaaa@31B4@

2.      The initial stress field in the solid (we will take this to be zero)

3.      The elastic constants for the solid C ijkl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaam4qamaaBaaaleaacaWGPbGaamOAai aadUgacaWGSbaabeaaaaa@358F@  and its mass density ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg8aYnaaBaaaleaacaaIWaaabeaaaa a@331E@

4.      The thermal expansion coefficients for the solid, and temperature change from the initial configuration ΔT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam ivaaaa@3835@

5.      A body force distribution b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCOyaaaa@31C8@  (per unit mass) acting on the solid

6.      Boundary conditions, specifying displacements u * (x) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaaCyDamaaCaaaleqabaGaaiOkaaaaki aacIcacaWH4bGaaiykaaaa@351A@  on a portion 1 R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaigdaaeqaaO GaamOuaaaa@340B@  or tractions on a portion 2 R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8YjY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa biaabeqaaiqabaWaaaGcbaGaeyOaIy7aaSbaaSqaaiaaikdaaeqaaO GaamOuaaaa@340C@  of the boundary of R

 

Our goal is then to calculate the displacement field u i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaa aa@34D9@ , the strain field ε ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamyAaiaadQ gaaeqaaaaa@3675@  and the stress field σ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQ gaaeqaaaaa@3691@  satisfying the following equations:

 Displacement MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieqajugybabaaa aaaaaapeGaa8hfGaaa@3724@ strain relation ε= 1 2 ( u+ ( u ) T ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH1oGaeyypa0 ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaaiabgEGirlaahwha cqGHRaWkdaqadaqaaiabgEGirlaahwhaaiaawIcacaGLPaaadaahaa WcbeqaaiaadsfaaaaakiaawIcacaGLPaaaaaa@4350@    or ε ij = 1 2 ( u i x j + u j x i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqa amaalaaabaGaeyOaIyRaamyDamaaBaaaleaacaWGPbaabeaaaOqaai abgkGi2kaadIhadaWgaaWcbaGaamOAaaqabaaaaOGaey4kaSYaaSaa aeaacqGHciITcaWG1bWaaSbaaSqaaiaadQgaaeqaaaGcbaGaeyOaIy RaamiEamaaBaaaleaacaWGPbaabeaaaaaakiaawIcacaGLPaaaaaa@49AF@

* The Stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieqajugybabaaa aaaaaapeGaa8hfGaaa@3724@ strain-temperature relation σ=C(εαΔT) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaMc8UaaC4Wdi abg2da9iaahoeacaGGOaGaaCyTdiabgkHiTiaahg7acqqHuoarcaWG ubGaaiykaaaa@4125@

or, for an isotropic material: σ ij = E 1+ν { ε ij + ν 12ν ε kk δ ij } EαΔT 12ν δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaeyypa0ZaaSaaaeaacaWGfbaabaGaaGymaiabgUcaRiab e27aUbaadaGadaqaaiabew7aLnaaBaaaleaacaWGPbGaamOAaaqaba GccqGHRaWkdaWcaaqaaiabe27aUbqaaiaaigdacqGHsislcaaIYaGa eqyVd4gaaiabew7aLnaaBaaaleaacaWGRbGaam4AaaqabaGccqaH0o azdaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGL7bGaayzFaaGaeyOe I0YaaSaaaeaacaWGfbGaeqySdeMaeuiLdqKaamivaaqaaiaaigdacq GHsislcaaIYaGaeqyVd4gaaiabes7aKnaaBaaaleaacaWGPbGaamOA aaqabaaaaa@5D65@

* Equilibrium Equation σ+ ρ 0 b=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0cqGHfl Y1caWHdpGaey4kaSIaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaaCOy aiabg2da9iaahcdaaaa@40D1@  or σ ij x i + ρ 0 b j =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiabgkGi2kabeo8aZnaaBa aaleaacaWGPbGaamOAaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqa aiaadMgaaeqaaaaakiabgUcaRiabeg8aYnaaBaaaleaacaaIWaaabe aakiaadkgadaWgaaWcbaGaamOAaaqabaGccqGH9aqpcaaIWaaaaa@42F6@  

* Traction boundary conditions nσ= t * on 2 R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWHUbGaeyyXIC TaaC4WdiaaykW7caaMc8Uaeyypa0JaaCiDamaaCaaaleqabaGaaiOk aaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caqGVbGaaeOBaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaeyOaIy7aaSbaaSqaaiaaikdaaeqaaOGaamOuaaaa@5C3B@  on parts of the boundary where tractions are known.

 

 Displacement boundary conditions u= u * on 1 R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWH1bGaeyypa0 JaaCyDamaaCaaaleqabaGaaiOkaaaakiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaae 4Baiaab6gacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgkGi2oaa BaaaleaacaaIXaaabeaakiaadkfaaaa@571E@   on parts of the boundary where displacements are known.

 

Before actually solving these equations, we will discuss some general features of the solutions.

 

 

8.2 Superposition and linearity of solutions

 

The governing equations of elasticity are linear.  This has two important consequences:

1.      The stresses, strains and displacements in a solid are directly proportional to the loads (or displacements) applied to the solid. 

2.      If you can find two sets of displacements, strains and stresses that satisfy the governing equations, you can add them to create more solutions.

 

These principles can be illustrated clearly using some of the simple solutions derived in the next section.  For example, examine the solution to the pressurized sphere (Sect 4.1.4).    As an example, the radial stress induced by pressure p a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadggaaeqaaa aa@34CD@  on the interior, and zero pressure on the exterior surface is

σ rr = ( p a a 3 ) ( b 3 a 3 ) ( 1 b 3 r 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOCaiaadk haaeqaaOGaeyypa0ZaaSaaaeaadaqadaqaaiaadchadaWgaaWcbaGa amyyaaqabaGccaWGHbWaaWbaaSqabeaacaaIZaaaaaGccaGLOaGaay zkaaaabaWaaeWaaeaacaWGIbWaaWbaaSqabeaacaaIZaaaaOGaeyOe I0IaamyyamaaCaaaleqabaGaaG4maaaaaOGaayjkaiaawMcaaaaada qadaqaaiaaigdacqGHsisldaWcaaqaaiaadkgadaahaaWcbeqaaiaa iodaaaaakeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkai aawMcaaiaaykW7caaMc8oaaa@4D7E@     

The radial stress induced by pressure p b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadkgaaeqaaa aa@34CE@  on the exterior surface, with zero pressure on the interior surface is

σ rr = p b b 3 ( b 3 a 3 ) ( 1 a 3 r 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOCaiaadk haaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaWGWbWaaSbaaSqaaiaa dkgaaeqaaOGaamOyamaaCaaaleqabaGaaG4maaaaaOqaamaabmaaba GaamOyamaaCaaaleqabaGaaG4maaaakiabgkHiTiaadggadaahaaWc beqaaiaaiodaaaaakiaawIcacaGLPaaaaaWaaeWaaeaacaaIXaGaey OeI0YaaSaaaeaacaWGHbWaaWbaaSqabeaacaaIZaaaaaGcbaGaamOC amaaCaaaleqabaGaaG4maaaaaaaakiaawIcacaGLPaaacaaMc8oaaa@4B59@

Note that in both cases the stress is directly proportional to the pressure.  In addition, to find the radial stress by combined pressures p a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadggaaeqaaa aa@34CD@  on the interior and p b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadkgaaeqaaa aa@34CE@  on the exterior surface, you can just add these two solutions.

 

 

8.3  Uniqueness and existence of solutions to the linear elasticity equations

 

The following results are useful:

1.      If only displacements are prescribed on the boundary of the solid, the governing equations of linear elasticity always have a solution, and the solution is unique.

2.      If mixed boundary conditions are specified, a static solution exists and is unique if the displacements constrain rigid motions. A dynamic solution always exists and is unique, provided the velocity field and displacement field at time t=0 are known.

3.      If only tractions are prescribed on the boundary, a static solution exists only if the tractions are in equilibrium.  In this case, the stresses and strains are unique, but the displacements are not.  A dynamic solution always exists and is unique, again, providing initial conditions are known.

 

 

8.4 Saint-Venant’s principle

 

Saint-Venant’s principle is often invoked to justify approximate solutions to boundary value problems in linear elasticity.  For example, when we solve problems involving bending or axial deformation of slender beams and rods in elementary strength of materials courses, we only specify the resultant forces acting on the ends of a rod, or the magnitudes of point forces acting on a beam, we don’t specify the distribution of traction in detail.  We rely on Saint Venant’s principle to justify this approach. In this context, the principle states the following.

 

The stresses, strains and displacements far from the ends of a rod or beam subjected to end loading depend only on the resultant forces and moments acting on its ends, and do not depend on how the tractions themselves are distributed.

 

Although SVP is widely used, it turns out to be remarkably difficult to prove mathematically.   The difficulty is partly that it is not easy to state the principle itself precisely enough to apply any mathematical machinery to it.  A rigorous statement is given by Sternberg (Q. J. Appl. Mech 11 p. 393 1954), among several other versions.  Here, we will just illustrate the most common applications of the principle through specific examples.

 

One version of SVP can be stated as follows.

 

Suppose that we calculate the stress, strain and displacement induced in a solid by two different traction distributions t (1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahshadaahaaWcbeqaaiaacIcacaaIXa Gaaiykaaaaaaa@33B6@  and t (2) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahshadaahaaWcbeqaaiaacIcacaaIYa Gaaiykaaaaaaa@33B7@  that act on some small region of a solid with characteristic size a.  If the tractions exert the same resultant force and moment, then the stresses, strains and displacements induced by the two traction distributions at a distance r from the loaded region are identical for large r/a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadkhacaGGVaGaamyyaaaa@3308@ . 

 

In practice `large’ usually means r/a>3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGYbGaai4laiaadggacqGH+aGpca aIZaaaaa@372B@ .

 

This principle can be illustrated using a simple example.

Consider a large solid with a flat surface, as shown in the picture.  It is possible to calculate formulas for the stresses and displacements induced by various pressure distributions acting on the flat surface MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  the procedure to do this will be outlined later.  For now, we will compare the stresses induced by

1.      A uniform pressure p(r)=P/( π a 2 )ra MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadchacaGGOaGaamOCaiaacMcacqGH9a qpcaWGqbGaai4lamaabmaabaGaeqiWdaNaamyyamaaCaaaleqabaGa aGOmaaaaaOGaayjkaiaawMcaaiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caWGYbGaeyizImQaamyyaaaa@52FB@

2.      A parabolic pressure  p(r)= 3P 2π a 2 (1 r 2 / a 2 ) 1/2 ra MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchacaGGOa GaamOCaiaacMcacqGH9aqpdaWcaaqaaiaaiodacaWGqbaabaGaaGOm aiabec8aWjaaykW6caWGHbWaaWbaaSqabeaacaaIYaaaaaaakiaacI cacaaIXaGaeyOeI0IaamOCamaaCaaaleqabaGaaGOmaaaakiaac+ca caWGHbWaaWbaaSqabeaacaaIYaaaaOGaaiykamaaCaaaleqabaGaaG ymaiaac+cacaaIYaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caWGYbGaeyizImQaamyyaaaa@55EE@

You can verify for yourself that both pressure distributions exert a resultant force P acting in the vertical direction on the surface, and exert zero moment about the origin.  The variation of stress down the axis of symmetry ( r= x 1 2 + x 2 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadkhacqGH9aqpdaGcaaqaaiaadIhada qhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcaWG4bWaa0baaSqa aiaaikdaaeaacaaIYaaaaaqabaGccqGH9aqpcaaIWaaaaa@3A7E@  ), expressed in cylindrical-polar coordinates, can be derived as

 

 

Case 1: Uniform pressure

σ zz = P π a 2 ( 1 z 3 ( a 2 + z 2 ) 3/2 ) σ rr = σ θθ = P π a 2 ( 1+2ν 2 (1+ν)z ( a 2 + z 2 ) 1/2 + z 3 2 ( a 2 + z 2 ) 3/2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaBa aaleaacaWG6bGaamOEaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaa dcfaaeaacqaHapaCcaWGHbWaaWbaaSqabeaacaaIYaaaaaaakmaabm aabaGaaGymaiabgkHiTmaalaaabaGaamOEamaaDaaaleaaaeaacaaI ZaaaaaGcbaGaaiikaiaadggadaahaaWcbeqaaiaaikdaaaGccqGHRa WkcaWG6bWaaWbaaSqabeaacaaIYaaaaOGaaiykamaaCaaaleqabaGa aG4maiaac+cacaaIYaaaaaaaaOGaayjkaiaawMcaaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeo8a ZnaaBaaaleaacaWGYbGaamOCaaqabaGccqGH9aqpcqaHdpWCdaWgaa WcbaGaeqiUdeNaeqiUdehabeaakiabg2da9iabgkHiTmaalaaabaGa amiuaaqaaiabec8aWjaadggadaahaaWcbeqaaiaaikdaaaaaaOWaae WaaeaadaWcaaqaaiaaigdacqGHRaWkcaaIYaGaeqyVd4gabaGaaGOm aaaacqGHsisldaWcaaqaaiaacIcacaaIXaGaey4kaSIaeqyVd4Maai ykaiaadQhaaeaacaGGOaGaamyyamaaCaaaleqabaGaaGOmaaaakiab gUcaRiaadQhadaahaaWcbeqaaiaaikdaaaGccaGGPaWaaWbaaSqabe aacaaIXaGaai4laiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaWG6bWa aWbaaSqabeaacaaIZaaaaaGcbaGaaGOmaiaacIcacaWGHbWaaWbaaS qabeaacaaIYaaaaOGaey4kaSIaamOEamaaCaaaleqabaGaaGOmaaaa kiaacMcadaahaaWcbeqaaiaaiodacaGGVaGaaGOmaaaaaaaakiaawI cacaGLPaaaaaa@8D2D@

Case 2: Parabolic pressure

σ zz = 3P 2π a 2 a 2 ( a 2 + z 2 ) σ rr = σ θθ = 3P 2π a 2 { (1+ν)( 1 z a tan -1 a z ) 1 2 a 2 a 2 + z 2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaBa aaleaacaWG6bGaamOEaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaa iodacaWGqbaabaGaaGOmaiabec8aWjaadggadaahaaWcbeqaaiaaik daaaaaaOWaaSaaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaaGcbaWa aeWaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOEam aaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaaacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7cqaHdpWCdaWgaaWcbaGaamOCaiaadkhaaeqaaOGa eyypa0Jaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI7aXbqabaGccqGH9a qpcqGHsisldaWcaaqaaiaaiodacaWGqbaabaGaaGOmaiabec8aWjaa dggadaahaaWcbeqaaiaaikdaaaaaaOWaaiWaaeaacaGGOaGaaGymai abgUcaRiabe27aUjaacMcadaqadaqaaiaaigdacqGHsisldaWcaaqa aiaadQhaaeaacaWGHbaaaiaabshacaqGHbGaaeOBamaaCaaaleqaba GaaeylaiaabgdaaaGcdaWcaaqaaiaadggaaeaacaWG6baaaaGaayjk aiaawMcaaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaWaaSaaae aacaWGHbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamyyamaaCaaaleqa baGaaGOmaaaakiabgUcaRiaadQhadaahaaWcbeqaaiaaikdaaaaaaa GccaGL7bGaayzFaaaaaa@892C@

Now, to demonstrate SVP, we want to show that the stresses are equal for large z/a.  We can do this graphically MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  the figures below compare the variation of vertical and radial stress down the axis of symmetry with z/a.

                      

 

The stresses induced by the two different pressures are clearly indistinguishable for z/a>3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG6bGaai4laiaadggacqGH+aGpca aIZaaaaa@3733@ .  This example helps to quantify what we mean by a `large’ distance.

 

The second commonly used application of SVP is a rather vague statement that

 

 A localized geometrical feature with characteristic size R in a large solid only influences the stress in a region with size approximately 3R surrounding the feature.

 

This is more a rule of thumb than a precise mathematical statement.  It can be illustrated by looking at specific solutions.  For example, the figure below shows the Mises stress contours surrounding a circular hole in a thin rectangular plate that is subjected to extensional loading (calculated using the finite element method). Far from the hole, the stress is uniform.  The contours deviate from the uniform solution in a region that is about three times the hole radius.

 

 

 

 

8.5 Simplified equations for spherically symmetric linear elasticity problems

 

It is easiest to solve the linear elasticity problems if the solid of interest has symmetry of some kind, and is subjected to simple loading.   Spheres and cylinders are two examples.

 

A representative spherically symmetric problem is illustrated in the picture.  We consider a hollow, spherical solid, which is subjected to spherically symmetric loading (i.e. internal body forces, as well as tractions or displacements applied to the surface, are independent of θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH4oqCaaa@347C@  and ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHvpGzaaa@348E@ , and act in the radial direction only).  If the temperature of the sphere is non-uniform, it must also be spherically symmetric (a function of R only).

 

The solution is most conveniently expressed using a spherical-polar coordinate system, illustrated in the figure.  The general procedure for solving problems using spherical and cylindrical coordinates is complicated, and is discussed in detail in Appendix E.  In this section, we summarize the special form of these equations for spherically symmetric problems.

 

As usual, a point in the solid is identified by its spherical-polar co-ordinates (R,θ,ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGOaGaamOuaiaacYcacqaH4oqCca GGSaGaeqy1dyMaaiykaaaa@39D4@ . All vectors and tensors are expressed as components in the basis { e R , e θ , e ϕ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaGadaqaaiaahwgadaWgaaWcbaGaam OuaaqabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiil aiaahwgadaWgaaWcbaGaeqy1dygabeaaaOGaay5Eaiaaw2haaaaa@3E18@  shown in the figure.  For a spherically symmetric problem

 Position Vector       x=R e R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH4bGaeyypa0JaamOuaiaahwgada WgaaWcbaGaamOuaaqabaaaaa@3794@

 Displacement vector u=u(R) e R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaeyypa0JaamyDaiaacIcaca WGsbGaaiykaiaahwgadaWgaaWcbaGaamOuaaqabaaaaa@39E4@

 Body force vector b= ρ 0 b(R) e R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHIbGaeyypa0JaeqyWdi3aaSbaaS qaaiaaicdaaeqaaOGaamOyaiaacIcacaWGsbGaaiykaiaahwgadaWg aaWcbaGaamOuaaqabaaaaa@3C6E@

 

Here, u( R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bWaaeWaaeaacaWGsbaacaGLOa Gaayzkaaaaaa@3620@  and b( R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGIbWaaeWaaeaacaWGsbaacaGLOa Gaayzkaaaaaa@360D@  are scalar functions. The stress and strain tensors (written as components in { e R , e θ , e ϕ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGG7bGaaCyzamaaBaaaleaacaWGsb aabeaakiaacYcacaWHLbWaaSbaaSqaaiabeI7aXbqabaGccaGGSaGa aCyzamaaBaaaleaacqaHvpGzaeqaaOGaaiyFaaaa@3DE6@  ) have the form

σ[ σ RR 0 0 0 σ θθ 0 0 0 σ ϕϕ ]ε[ ε RR 0 0 0 ε θθ 0 0 0 ε ϕϕ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCcqGHHjIUdaWadaqaauaabe qadmaaaeaacqaHdpWCdaWgaaWcbaGaamOuaiaadkfaaeqaaaGcbaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4Wdm3aaSbaaSqaaiabeI 7aXjabeI7aXbqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaa cqaHdpWCdaWgaaWcbaGaeqy1dyMaeqy1dygabeaaaaaakiaawUfaca GLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabew7aLj abggMi6oaadmaabaqbaeqabmWaaaqaaiabew7aLnaaBaaaleaacaWG sbGaamOuaaqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacq aH1oqzdaWgaaWcbaGaeqiUdeNaeqiUdehabeaaaOqaaiaaicdaaeaa caaIWaaabaGaaGimaaqaaiabew7aLnaaBaaaleaacqaHvpGzcqaHvp GzaeqaaaaaaOGaay5waiaaw2faaaaa@78FB@

and furthermore must satisfy σ θθ = σ ϕϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaeqiUdeNaeq iUdehabeaakiabg2da9iabeo8aZnaaBaaaleaacqaHvpGzcqaHvpGz aeqaaaaa@3EB0@   ε θθ = ε ϕϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaeqiUdeNaeq iUdehabeaakiabg2da9iabew7aLnaaBaaaleaacqaHvpGzcqaHvpGz aeqaaaaa@3E78@ . The tensor components have exactly the same physical interpretation as they did when we used a fixed { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGG7bGaaCyzamaaBaaaleaacaaIXa aabeaakiaacYcacaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaaG4maaqabaGccaGG9baaaa@3BC5@  basis, except that the subscripts (1,2,3) have been replaced by (R,θ,ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGOaGaamOuaiaacYcacqaH4oqCca GGSaGaeqy1dyMaaiykaaaa@39D3@ .

 

For spherical symmetry, the governing equations of linear elasticity reduce to

 

 Strain Displacement Relations ε RR = du dR ε ϕϕ = ε θθ = u R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamOuaiaadk faaeqaaOGaeyypa0ZaaSaaaeaacaWGKbGaamyDaaqaaiaadsgacaWG sbaaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlabew7aLnaaBaaaleaacqaHvpGzcqaHvpGzaeqaaOGa eyypa0JaeqyTdu2aaSbaaSqaaiabeI7aXjabeI7aXbqabaGccqGH9a qpdaWcaaqaaiaadwhaaeaacaWGsbaaaaaa@5790@

 Stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieqajugybabaaa aaaaaapeGaa8hfGaaa@3724@ Strain relations

σ RR = E ( 1+ν )( 12ν ) { (1ν) ε RR +ν ε θθ +ν ε ϕϕ } EαΔT 12ν σ θθ = σ ϕϕ = E ( 1+ν )( 12ν ) { ε θθ +ν ε RR } EαΔT 12ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiabeo8aZnaaBaaaleaacaWGsb GaamOuaaqabaGccqGH9aqpdaWcaaqaaiaadweaaeaadaqadaqaaiaa igdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaadaqadaqaaiaaigdacq GHsislcaaIYaGaeqyVd4gacaGLOaGaayzkaaaaamaacmaabaGaaiik aiaaigdacqGHsislcqaH9oGBcaGGPaGaeqyTdu2aaSbaaSqaaiaadk facaWGsbaabeaakiabgUcaRiabe27aUjabew7aLnaaBaaaleaacqaH 4oqCcqaH4oqCaeqaaOGaey4kaSIaeqyVd4MaeqyTdu2aaSbaaSqaai abew9aMjabew9aMbqabaaakiaawUhacaGL9baacqGHsisldaWcaaqa aiaadweacqaHXoqycqqHuoarcaWGubaabaGaaGymaiabgkHiTiaaik dacqaH9oGBaaaabaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI7aXbqa baGccqGH9aqpcqaHdpWCdaWgaaWcbaGaeqy1dyMaeqy1dygabeaaki abg2da9maalaaabaGaamyraaqaamaabmaabaGaaGymaiabgUcaRiab e27aUbGaayjkaiaawMcaamaabmaabaGaaGymaiabgkHiTiaaikdacq aH9oGBaiaawIcacaGLPaaaaaWaaiWaaeaacqaH1oqzdaWgaaWcbaGa eqiUdeNaeqiUdehabeaakiabgUcaRiabe27aUjabew7aLnaaBaaale aacaWGsbGaamOuaaqabaaakiaawUhacaGL9baacqGHsisldaWcaaqa aiaadweacqaHXoqycqqHuoarcaWGubaabaGaaGymaiabgkHiTiaaik dacqaH9oGBaaaaaaa@96AD@

 Equilibrium Equations

d σ RR dR + 1 R ( 2 σ RR σ θθ σ ϕϕ )+ ρ 0 b R =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiaadsgacqaHdpWCdaWgaa WcbaGaamOuaiaadkfaaeqaaaGcbaGaamizaiaadkfaaaGaey4kaSYa aSaaaeaacaaIXaaabaGaamOuaaaadaqadaqaaiaaikdacqaHdpWCda WgaaWcbaGaamOuaiaadkfaaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqa aiabeI7aXjabeI7aXbqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaeq y1dyMaeqy1dygabeaaaOGaayjkaiaawMcaaiaaykW7caaMc8Uaey4k aSIaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaamOyamaaBaaaleaaca WGsbaabeaakiabg2da9iaaicdaaaa@58B9@

 Boundary Conditions

 

Prescribed Displacements u R (a)= g a u R (b)= g b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bWaaSbaaSqaaiaadkfaaeqaaO GaaiikaiaadggacaGGPaGaeyypa0Jaam4zamaaBaaaleaacaWGHbaa beaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caWG1bWaaSbaaSqaaiaadkfaaeqaaOGaaiikaiaadkgacaGGPa Gaeyypa0Jaam4zamaaBaaaleaacaWGIbaabeaaaaa@5A15@

Prescribed Tractions σ RR (a)= t a σ RR (b)= t b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOuaiaadk faaeqaaOGaaiikaiaadggacaGGPaGaeyypa0JaamiDamaaBaaaleaa caWGHbaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlabeo8aZnaaBaaaleaacaWGsbGaamOuaaqa baGccaGGOaGaamOyaiaacMcacqGH9aqpcaWG0bWaaSbaaSqaaiaadk gaaeqaaaaa@52A2@

 

These results can be derived as a special case of the general 3D equations of linear elasticity in spherical coordinates.  The details are left as an exercise.

 

 

8.6 General solution to the spherically symmetric linear elasticity problem

 

Our goal is to solve the equations given in Section 8.5 for the displacement, strain and stress in the sphere.  To do so,

1.      Substitute the strain-displacement relations into the stress-strain law to show that

[ σ RR σ θθ ]= E ( 1+ν )( 12ν ) [ 1ν 2ν ν 1 ][ du dR u R ] EαΔT 12ν [ 1 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaceaaaeaacqaHdp WCdaWgaaWcbaGaamOuaiaadkfaaeqaaaGcbaGaeq4Wdm3aaSbaaSqa aiabeI7aXjabeI7aXbqabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaaS aaaeaacaWGfbaabaWaaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGL OaGaayzkaaWaaeWaaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbGaay jkaiaawMcaaaaadaWadaqaauaabeqaciaaaeaacaaIXaGaeyOeI0Ia eqyVd4gabaGaaGOmaiabe27aUbqaaiabe27aUbqaaiaaigdaaaaaca GLBbGaayzxaaWaamWaaeaafaqabeGabaaabaWaaSaaaeaacaWGKbGa amyDaaqaaiaadsgacaWGsbaaaaqaamaalaaabaGaamyDaaqaaiaadk faaaaaaaGaay5waiaaw2faaiabgkHiTmaalaaabaGaamyraiabeg7a Hjabfs5aejaadsfaaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbaada WadaqaauaabeqaceaaaeaacaaIXaaabaGaaGymaaaaaiaawUfacaGL Dbaaaaa@6946@

2.      Substitute this expression for the stress into the equilibrium equation and rearrange the result to see that

d 2 u d R 2 + 2 R du dR 2u R 2 = d dR { 1 R 2 d dR ( R 2 u ) }= α( 1+ν ) ( 1ν ) dΔT dR ( 1+ν )( 12ν ) E( 1ν ) ρ 0 b(R) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiaadsgadaahaaWcbeqaai aaikdaaaGccaWG1baabaGaamizaiaadkfadaahaaWcbeqaaiaaikda aaaaaOGaey4kaSYaaSaaaeaacaaIYaaabaGaamOuaaaadaWcaaqaai aadsgacaWG1baabaGaamizaiaadkfaaaGaeyOeI0YaaSaaaeaacaaI YaGaamyDaaqaaiaadkfadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0 ZaaSaaaeaacaWGKbaabaGaamizaiaadkfaaaWaaiWaaeaadaWcaaqa aiaaigdaaeaacaWGsbWaaWbaaSqabeaacaaIYaaaaaaakmaalaaaba GaamizaaqaaiaadsgacaWGsbaaamaabmaabaGaamOuamaaCaaaleqa baGaaGOmaaaakiaadwhaaiaawIcacaGLPaaaaiaawUhacaGL9baacq GH9aqpdaWcaaqaaiabeg7aHnaabmaabaGaaGymaiabgUcaRiabe27a UbGaayjkaiaawMcaaaqaamaabmaabaGaaGymaiabgkHiTiabe27aUb GaayjkaiaawMcaaaaadaWcaaqaaiaadsgacqqHuoarcaWGubaabaGa amizaiaadkfaaaGaeyOeI0YaaSaaaeaadaqadaqaaiaaigdacqGHRa WkcqaH9oGBaiaawIcacaGLPaaadaqadaqaaiaaigdacqGHsislcaaI YaGaeqyVd4gacaGLOaGaayzkaaaabaGaamyramaabmaabaGaaGymai abgkHiTiabe27aUbGaayjkaiaawMcaaaaacqaHbpGCdaWgaaWcbaGa aGimaaqabaGccaWGIbGaaiikaiaadkfacaGGPaaaaa@7B0D@

 

Given the temperature distribution and body force this equation can easily be integrated to calculate the displacement u.  Two arbitrary constants of integration will appear when you do the integral MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  these must be determined from the boundary conditions at the inner and outer surface of the sphere.  Specifically, the constants must be selected so that either the displacement or the radial stress have prescribed values on the inner and outer surface of the sphere.

 

In the following sections, this procedure is used to derive solutions to various boundary value problems of practical interest.

 

 

 

8.7 Examples of solutions to the spherically symmetric linear elasticity problem

 

 

 

Example 1: Pressurized hollow sphere

 

Assume that

 No body forces act on the sphere

 The sphere has uniform temperature

 The inner surface R=a is subjected to pressure p a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadggaaeqaaa aa@34CD@

 The outer surface R=b is subjected to pressure p b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadkgaaeqaaa aa@34CE@

 

 

 

Show that the displacement, strain and stress fields in the sphere are

u= 1 2E( b 3 a 3 ) R 2 { 2( p a a 3 p b b 3 )( 12ν ) R 3 +( p a p b )( 1+ν ) b 3 a 3 } e R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaeyypa0ZaaSaaaeaacaaIXa aabaGaaGOmaiaadweadaqadaqaaiaadkgadaahaaWcbeqaaiaaioda aaGccqGHsislcaWGHbWaaWbaaSqabeaacaaIZaaaaaGccaGLOaGaay zkaaGaamOuamaaCaaaleqabaGaaGOmaaaaaaGcdaGadaqaaiaaikda daqadaqaaiaadchadaWgaaWcbaGaamyyaaqabaGccaWGHbWaaWbaaS qabeaacaaIZaaaaOGaeyOeI0IaamiCamaaBaaaleaacaWGIbaabeaa kiaadkgadaahaaWcbeqaaiaaiodaaaaakiaawIcacaGLPaaadaqada qaaiaaigdacqGHsislcaaIYaGaeqyVd4gacaGLOaGaayzkaaGaamOu amaaCaaaleqabaGaaG4maaaakiabgUcaRmaabmaabaGaamiCamaaBa aaleaacaWGHbaabeaakiabgkHiTiaadchadaWgaaWcbaGaamOyaaqa baaakiaawIcacaGLPaaadaqadaqaaiaaigdacqGHRaWkcqaH9oGBai aawIcacaGLPaaacaWGIbWaaWbaaSqabeaacaaIZaaaaOGaamyyamaa CaaaleqabaGaaG4maaaaaOGaay5Eaiaaw2haaiaahwgadaWgaaWcba GaamOuaaqabaaaaa@65BA@ ε RR = 1 E( b 3 a 3 ) R 3 { ( p a a 3 p b b 3 )( 12ν ) R 3 ( p a p b )( 1+ν ) b 3 a 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamOuaiaadk faaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaamyramaabmaabaGa amOyamaaCaaaleqabaGaaG4maaaakiabgkHiTiaadggadaahaaWcbe qaaiaaiodaaaaakiaawIcacaGLPaaacaWGsbWaaWbaaSqabeaacaaI ZaaaaaaakmaacmaabaWaaeWaaeaacaWGWbWaaSbaaSqaaiaadggaae qaaOGaamyyamaaCaaaleqabaGaaG4maaaakiabgkHiTiaadchadaWg aaWcbaGaamOyaaqabaGccaWGIbWaaWbaaSqabeaacaaIZaaaaaGcca GLOaGaayzkaaWaaeWaaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbGa ayjkaiaawMcaaiaadkfadaahaaWcbeqaaiaaiodaaaGccqGHsislda qadaqaaiaadchadaWgaaWcbaGaamyyaaqabaGccqGHsislcaWGWbWa aSbaaSqaaiaadkgaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacaaIXa Gaey4kaSIaeqyVd4gacaGLOaGaayzkaaGaamOyamaaCaaaleqabaGa aG4maaaakiaadggadaahaaWcbeqaaiaaiodaaaaakiaawUhacaGL9b aaaaa@64EA@

ε θθ = ε ϕϕ = 1 2E( b 3 a 3 ) R 3 { 2( p a a 3 p b b 3 )( 12ν ) R 3 +( p a p b )( 1+ν ) b 3 a 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaeqiUdeNaeq iUdehabeaakiabg2da9iabew7aLnaaBaaaleaacqaHvpGzcqaHvpGz aeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaiaadweadaqada qaaiaadkgadaahaaWcbeqaaiaaiodaaaGccqGHsislcaWGHbWaaWba aSqabeaacaaIZaaaaaGccaGLOaGaayzkaaGaamOuamaaCaaaleqaba GaaG4maaaaaaGcdaGadaqaaiaaikdadaqadaqaaiaadchadaWgaaWc baGaamyyaaqabaGccaWGHbWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0 IaamiCamaaBaaaleaacaWGIbaabeaakiaadkgadaahaaWcbeqaaiaa iodaaaaakiaawIcacaGLPaaadaqadaqaaiaaigdacqGHsislcaaIYa GaeqyVd4gacaGLOaGaayzkaaGaamOuamaaCaaaleqabaGaaG4maaaa kiabgUcaRmaabmaabaGaamiCamaaBaaaleaacaWGHbaabeaakiabgk HiTiaadchadaWgaaWcbaGaamOyaaqabaaakiaawIcacaGLPaaadaqa daqaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaacaWGIbWaaW baaSqabeaacaaIZaaaaOGaamyyamaaCaaaleqabaGaaG4maaaaaOGa ay5Eaiaaw2haaaaa@6E88@

σ RR = ( p a a 3 p b b 3 ) ( b 3 a 3 ) ( p a p b ) b 3 a 3 ( b 3 a 3 ) R 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOuaiaadk faaeqaaOGaeyypa0ZaaSaaaeaadaqadaqaaiaadchadaWgaaWcbaGa amyyaaqabaGccaWGHbWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0Iaam iCamaaBaaaleaacaWGIbaabeaakiaadkgadaahaaWcbeqaaiaaioda aaaakiaawIcacaGLPaaaaeaadaqadaqaaiaadkgadaahaaWcbeqaai aaiodaaaGccqGHsislcaWGHbWaaWbaaSqabeaacaaIZaaaaaGccaGL OaGaayzkaaaaaiaaykW7caaMc8UaeyOeI0YaaSaaaeaadaqadaqaai aadchadaWgaaWcbaGaamyyaaqabaGccqGHsislcaWGWbWaaSbaaSqa aiaadkgaaeqaaaGccaGLOaGaayzkaaGaamOyamaaCaaaleqabaGaaG 4maaaakiaadggadaahaaWcbeqaaiaaiodaaaaakeaadaqadaqaaiaa dkgadaahaaWcbeqaaiaaiodaaaGccqGHsislcaWGHbWaaWbaaSqabe aacaaIZaaaaaGccaGLOaGaayzkaaGaamOuamaaCaaaleqabaGaaG4m aaaaaaaaaa@5E49@      σ θθ = σ ϕϕ = ( p a a 3 p b b 3 ) ( b 3 a 3 ) + ( p a p b ) b 3 a 3 2( b 3 a 3 ) R 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaeqiUdeNaeq iUdehabeaakiabg2da9iabeo8aZnaaBaaaleaacqaHvpGzcqaHvpGz aeqaaOGaeyypa0ZaaSaaaeaadaqadaqaaiaadchadaWgaaWcbaGaam yyaaqabaGccaWGHbWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0IaamiC amaaBaaaleaacaWGIbaabeaakiaadkgadaahaaWcbeqaaiaaiodaaa aakiaawIcacaGLPaaaaeaadaqadaqaaiaadkgadaahaaWcbeqaaiaa iodaaaGccqGHsislcaWGHbWaaWbaaSqabeaacaaIZaaaaaGccaGLOa GaayzkaaaaaiabgUcaRmaalaaabaWaaeWaaeaacaWGWbWaaSbaaSqa aiaadggaaeqaaOGaeyOeI0IaamiCamaaBaaaleaacaWGIbaabeaaaO GaayjkaiaawMcaaiaadkgadaahaaWcbeqaaiaaiodaaaGccaWGHbWa aWbaaSqabeaacaaIZaaaaaGcbaGaaGOmamaabmaabaGaamOyamaaCa aaleqabaGaaG4maaaakiabgkHiTiaadggadaahaaWcbeqaaiaaioda aaaakiaawIcacaGLPaaacaWGsbWaaWbaaSqabeaacaaIZaaaaaaaaa a@6431@

 

Solution:  The solution can be found by applying the procedure outlined in Sect 4.1.3.

1.      Note that the governing equation for u (Sect 4.1.3) reduces to

d dR { 1 R 2 d dR ( R 2 u ) }=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiaadsgaaeaacaWGKbGaam OuaaaadaGadaqaamaalaaabaGaaGymaaqaaiaadkfadaahaaWcbeqa aiaaikdaaaaaaOWaaSaaaeaacaWGKbaabaGaamizaiaadkfaaaWaae WaaeaacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaamyDaaGaayjkaiaa wMcaaaGaay5Eaiaaw2haaiabg2da9iaaicdaaaa@430B@

2.      Integrating twice gives

u=AR+ B R 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bGaeyypa0Jaamyqaiaadkfacq GHRaWkdaWcaaqaaiaadkeaaeaacaWGsbWaaWbaaSqabeaacaaIYaaa aaaaaaa@39DC@

where A and B are constants of integration to be determined.

3.      The radial stress follows by substituting into the stress-displacement formulas

σ RR = E ( 1+ν )( 12ν ) { ( 1ν ) du dR +2ν u R }= E ( 1+ν )( 12ν ) { ( 1+ν )A2( 12ν ) B R 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOuaiaadk faaeqaaOGaeyypa0ZaaSaaaeaacaWGfbaabaWaaeWaaeaacaaIXaGa ey4kaSIaeqyVd4gacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaeyOeI0 IaaGOmaiabe27aUbGaayjkaiaawMcaaaaadaGadaqaamaabmaabaGa aGymaiabgkHiTiabe27aUbGaayjkaiaawMcaamaalaaabaGaamizai aadwhaaeaacaWGKbGaamOuaaaacqGHRaWkcaaIYaGaeqyVd42aaSaa aeaacaWG1baabaGaamOuaaaaaiaawUhacaGL9baacqGH9aqpdaWcaa qaaiaadweaaeaadaqadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawIca caGLPaaadaqadaqaaiaaigdacqGHsislcaaIYaGaeqyVd4gacaGLOa GaayzkaaaaamaacmaabaWaaeWaaeaacaaIXaGaey4kaSIaeqyVd4ga caGLOaGaayzkaaGaamyqaiabgkHiTiaaikdadaqadaqaaiaaigdacq GHsislcaaIYaGaeqyVd4gacaGLOaGaayzkaaWaaSaaaeaacaWGcbaa baGaamOuamaaCaaaleqabaGaaG4maaaaaaaakiaawUhacaGL9baaaa a@70FB@

4.      To satisfy the boundary conditions, A and B must be chosen so that σ RR (R=a)= p a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOuaiaadk faaeqaaOGaaiikaiaadkfacqGH9aqpcaWGHbGaaiykaiabg2da9iab gkHiTiaadchadaWgaaWcbaGaamyyaaqabaaaaa@3E83@  and σ RR (R=b)= p b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOuaiaadk faaeqaaOGaaiikaiaadkfacqGH9aqpcaWGIbGaaiykaiabg2da9iab gkHiTiaadchadaWgaaWcbaGaamOyaaqabaaaaa@3E85@  (the stress is negative because the pressure is compressive).  This gives two equations for A and B that are easily solved to find

A= ( p b b 3 p a a 3 )( 12ν ) ( a 3 b 3 )E B= ( p b p a )( 1+ν ) b 3 a 3 2( a 3 b 3 )E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGbbGaeyypa0ZaaSaaaeaadaqada qaaiaadchadaWgaaWcbaGaamOyaaqabaGccaWGIbWaaWbaaSqabeaa caaIZaaaaOGaeyOeI0IaamiCamaaBaaaleaacaWGHbaabeaakiaadg gadaahaaWcbeqaaiaaiodaaaaakiaawIcacaGLPaaadaqadaqaaiaa igdacqGHsislcaaIYaGaeqyVd4gacaGLOaGaayzkaaaabaWaaeWaae aacaWGHbWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0IaamOyamaaCaaa leqabaGaaG4maaaaaOGaayjkaiaawMcaaiaadweaaaGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caWGcbGaeyypa0ZaaSaaaeaada qadaqaaiaadchadaWgaaWcbaGaamOyaaqabaGccqGHsislcaWGWbWa aSbaaSqaaiaadggaaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacaaIXa Gaey4kaSIaeqyVd4gacaGLOaGaayzkaaGaamOyamaaCaaaleqabaGa aG4maaaakiaadggadaahaaWcbeqaaiaaiodaaaaakeaacaaIYaWaae WaaeaacaWGHbWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0IaamOyamaa CaaaleqabaGaaG4maaaaaOGaayjkaiaawMcaaiaadweaaaaaaa@79DE@

5.      Finally, expressions for displacement, strain and stress follow by substituting for A and B in the formula for u in (2), and using the formulas for strain and stress in terms of u in Section 4.1.2.

 

 

Example 2:  Gravitating sphere

 

A planet under its own gravitational attraction may be idealized (rather crudely) as a solid sphere with radius a, with the following loading

 A body force b=(gR/a) e R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHIbGaeyypa0JaeyOeI0Iaaiikai aadEgacaaMc8UaamOuaiaac+cacaWGHbGaaiykaiaahwgadaWgaaWc baGaamOuaaqabaaaaa@3DD5@  per unit mass, where g is the acceleration due to gravity at the surface of the sphere

 A uniform temperature distribution

 A traction free surface at R=a

 

Show that the displacement, strain and stress in the sphere follow as

u= ( 12ν ) 10aE( 1ν ) ρ 0 gR{ ( 1+ν ) R 2 ( 3ν ) a 2 } e R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaeyypa0ZaaSaaaeaadaqada qaaiaaigdacqGHsislcaaIYaGaeqyVd4gacaGLOaGaayzkaaaabaGa aGymaiaaicdacaWGHbGaamyramaabmaabaGaaGymaiabgkHiTiabe2 7aUbGaayjkaiaawMcaaaaacqaHbpGCdaWgaaWcbaGaaGimaaqabaGc caWGNbGaamOuamaacmaabaWaaeWaaeaacaaIXaGaey4kaSIaeqyVd4 gacaGLOaGaayzkaaGaamOuamaaCaaaleqabaGaaGOmaaaakiabgkHi TmaabmaabaGaaG4maiabgkHiTiabe27aUbGaayjkaiaawMcaaiaadg gadaahaaWcbeqaaiaaikdaaaaakiaawUhacaGL9baacaWHLbWaaSba aSqaaiaadkfaaeqaaaaa@597B@

ε RR = ( 12ν ) 10aE( 1ν ) ρ 0 g{ 3( 1+ν ) R 2 ( 3ν ) a 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamOuaiaadk faaeqaaOGaeyypa0ZaaSaaaeaadaqadaqaaiaaigdacqGHsislcaaI YaGaeqyVd4gacaGLOaGaayzkaaaabaGaaGymaiaaicdacaWGHbGaam yramaabmaabaGaaGymaiabgkHiTiabe27aUbGaayjkaiaawMcaaaaa cqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWGNbWaaiWaaeaacaaIZa WaaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaGaamOu amaaCaaaleqabaGaaGOmaaaakiabgkHiTmaabmaabaGaaG4maiabgk HiTiabe27aUbGaayjkaiaawMcaaiaadggadaahaaWcbeqaaiaaikda aaaakiaawUhacaGL9baaaaa@59FD@

ε θθ = ε ϕϕ = ( 12ν ) 10aE( 1ν ) ρ 0 g{ ( 1+ν ) R 2 ( 3ν ) a 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaeqiUdeNaeq iUdehabeaakiabg2da9iabew7aLnaaBaaaleaacqaHvpGzcqaHvpGz aeqaaOGaeyypa0ZaaSaaaeaadaqadaqaaiaaigdacqGHsislcaaIYa GaeqyVd4gacaGLOaGaayzkaaaabaGaaGymaiaaicdacaWGHbGaamyr amaabmaabaGaaGymaiabgkHiTiabe27aUbGaayjkaiaawMcaaaaacq aHbpGCdaWgaaWcbaGaaGimaaqabaGccaWGNbWaaiWaaeaadaqadaqa aiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaacaWGsbWaaWbaaS qabeaacaaIYaaaaOGaeyOeI0YaaeWaaeaacaaIZaGaeyOeI0IaeqyV d4gacaGLOaGaayzkaaGaamyyamaaCaaaleqabaGaaGOmaaaaaOGaay 5Eaiaaw2haaaaa@6171@

σ RR = ρ 0 g(3ν) 10a( 1ν ) ( R 2 a 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOuaiaadk faaeqaaOGaeyypa0ZaaSaaaeaacqaHbpGCdaWgaaWcbaGaaGimaaqa baGccaWGNbGaaiikaiaaiodacqGHsislcqaH9oGBcaGGPaaabaGaaG ymaiaaicdacaWGHbWaaeWaaeaacaaIXaGaeyOeI0IaeqyVd4gacaGL OaGaayzkaaaaamaabmaabaGaamOuamaaCaaaleqabaGaaGOmaaaaki abgkHiTiaadggadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaa aaa@4D37@             σ θθ = σ ϕϕ = ρ 0 g 10a( 1ν ) { ( 3ν+1 ) R 2 ( 3ν ) a 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaeqiUdeNaeq iUdehabeaakiabg2da9iabeo8aZnaaBaaaleaacqaHvpGzcqaHvpGz aeqaaOGaeyypa0ZaaSaaaeaacqaHbpGCdaWgaaWcbaGaaGimaaqaba GccaWGNbaabaGaaGymaiaaicdacaWGHbWaaeWaaeaacaaIXaGaeyOe I0IaeqyVd4gacaGLOaGaayzkaaaaamaacmaabaWaaeWaaeaacaaIZa GaeqyVd4Maey4kaSIaaGymaaGaayjkaiaawMcaaiaadkfadaahaaWc beqaaiaaikdaaaGccqGHsisldaqadaqaaiaaiodacqGHsislcqaH9o GBaiaawIcacaGLPaaacaWGHbWaaWbaaSqabeaacaaIYaaaaaGccaGL 7bGaayzFaaaaaa@5BF7@

 

Solution:

1.      Begin by writing the governing equation for u given in 4.1.3 as

d dR { 1 R 2 d dR ( R 2 u ) }= ( 1+ν )( 12ν ) E( 1ν ) ρ 0 gR a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiaadsgaaeaacaWGKbGaam OuaaaadaGadaqaamaalaaabaGaaGymaaqaaiaadkfadaahaaWcbeqa aiaaikdaaaaaaOWaaSaaaeaacaWGKbaabaGaamizaiaadkfaaaWaae WaaeaacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaamyDaaGaayjkaiaa wMcaaaGaay5Eaiaaw2haaiabg2da9maalaaabaWaaeWaaeaacaaIXa Gaey4kaSIaeqyVd4gacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaeyOe I0IaaGOmaiabe27aUbGaayjkaiaawMcaaaqaaiaadweadaqadaqaai aaigdacqGHsislcqaH9oGBaiaawIcacaGLPaaaaaWaaSaaaeaacqaH bpGCdaWgaaWcbaGaaGimaaqabaGccaWGNbGaamOuaaqaaiaadggaaa aaaa@5800@

2.      Integrating

u= ( 1+ν )( 12ν ) E( 1ν ) ρ 0 g R 3 10a +AR+ B R 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bGaeyypa0ZaaSaaaeaadaqada qaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaadaqadaqaaiaa igdacqGHsislcaaIYaGaeqyVd4gacaGLOaGaayzkaaaabaGaamyram aabmaabaGaaGymaiabgkHiTiabe27aUbGaayjkaiaawMcaaaaadaWc aaqaaiabeg8aYnaaBaaaleaacaaIWaaabeaakiaadEgacaWGsbWaaW baaSqabeaacaaIZaaaaaGcbaGaaGymaiaaicdacaWGHbaaaiabgUca RiaadgeacaWGsbGaey4kaSYaaSaaaeaacaWGcbaabaGaamOuamaaCa aaleqabaGaaGOmaaaaaaaaaa@52D6@

where A and B are constants of integration that must be determined from boundary conditions.

3.      The radial stress follows from the formulas in 4.1.3 as

σ RR = E ( 1+ν )( 12ν ) { ( 1ν ) du dR +2ν u R }= ρ 0 g(3ν) R 2 10a(1ν) + E ( 1+ν )( 12ν ) { ( 1+ν )A2( 12ν ) B R 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOuaiaadk faaeqaaOGaeyypa0ZaaSaaaeaacaWGfbaabaWaaeWaaeaacaaIXaGa ey4kaSIaeqyVd4gacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaeyOeI0 IaaGOmaiabe27aUbGaayjkaiaawMcaaaaadaGadaqaamaabmaabaGa aGymaiabgkHiTiabe27aUbGaayjkaiaawMcaamaalaaabaGaamizai aadwhaaeaacaWGKbGaamOuaaaacqGHRaWkcaaIYaGaeqyVd42aaSaa aeaacaWG1baabaGaamOuaaaaaiaawUhacaGL9baacqGH9aqpdaWcaa qaaiabeg8aYnaaBaaaleaacaaIWaaabeaakiaadEgacaGGOaGaaG4m aiabgkHiTiabe27aUjaacMcacaWGsbWaaWbaaSqabeaacaaIYaaaaa GcbaGaaGymaiaaicdacaWGHbGaaiikaiaaigdacqGHsislcqaH9oGB caGGPaaaaiabgUcaRmaalaaabaGaamyraaqaamaabmaabaGaaGymai abgUcaRiabe27aUbGaayjkaiaawMcaamaabmaabaGaaGymaiabgkHi TiaaikdacqaH9oGBaiaawIcacaGLPaaaaaWaaiWaaeaadaqadaqaai aaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaacaWGbbGaeyOeI0Ia aGOmamaabmaabaGaaGymaiabgkHiTiaaikdacqaH9oGBaiaawIcaca GLPaaadaWcaaqaaiaadkeaaeaacaWGsbWaaWbaaSqabeaacaaIZaaa aaaaaOGaay5Eaiaaw2haaaaa@8322@

4.      Finally, the constants A and B can be determined as follows: (i) The stress must be finite at R0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGsbGaeyOKH4QaaGimaaaa@3644@ , which is only possible if B=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGcbGaeyypa0JaaGimaaaa@354D@ .  (ii) The surface of the sphere is traction free, which requires σ RR =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOuaiaadk faaeqaaOGaeyypa0JaaGimaaaa@382D@  at R=a.  Substituting the latter condition into the formula for stress in (3) and solving for A gives

A= ( 12ν )( 3ν ) ρ 0 ga 10E(1ν) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGbbGaeyypa0JaeyOeI0YaaSaaae aadaqadaqaaiaaigdacqGHsislcaaIYaGaeqyVd4gacaGLOaGaayzk aaWaaeWaaeaacaaIZaGaeyOeI0IaeqyVd4gacaGLOaGaayzkaaGaeq yWdi3aaSbaaSqaaiaaicdaaeqaaOGaam4zaiaadggaaeaacaaIXaGa aGimaiaadweacaGGOaGaaGymaiabgkHiTiabe27aUjaacMcaaaaaaa@4B99@

5.      The final formulas for stress and strain follow by substituting the result of (4) back into (2), and using the formulas in Section 4.1.2.

 

 

 

 

 

 

Example 3: Sphere with steady state heat flow

 

The deformation and stress in a sphere that is heated on the inside (or outside), and has reached its steady state temperature distribution can be calculated as follows.  Assume that

 No body force acts on the sphere

 The temperature distribution in the sphere is

T= T b b T a a ba + ( T a T b )ab (ba)R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGubGaeyypa0ZaaSaaaeaacaWGub WaaSbaaSqaaiaadkgaaeqaaOGaamOyaiabgkHiTiaadsfadaWgaaWc baGaamyyaaqabaGccaWGHbaabaGaamOyaiabgkHiTiaadggaaaGaey 4kaSYaaSaaaeaadaqadaqaaiaadsfadaWgaaWcbaGaamyyaaqabaGc cqGHsislcaWGubWaaSbaaSqaaiaadkgaaeqaaaGccaGLOaGaayzkaa GaamyyaiaadkgaaeaacaGGOaGaamOyaiabgkHiTiaadggacaGGPaGa amOuaaaaaaa@4C1E@

where T a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGubWaaSbaaSqaaiaadggaaeqaaa aa@34B1@  and T b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGubWaaSbaaSqaaiaadkgaaeqaaa aa@34B2@  are the temperatures at the inner and outer surfaces.  The total rate of heat loss from the sphere is Q ˙ =4πk( T a T b )ab/(ba) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaaceWGrbGbaiaacqGH9aqpcaaI0aGaeq iWdaNaam4AaiaacIcacaWGubWaaSbaaSqaaiaadggaaeqaaOGaeyOe I0IaamivamaaBaaaleaacaWGIbaabeaakiaacMcacaWGHbGaamOyai aac+cacaGGOaGaamOyaiabgkHiTiaadggacaGGPaaaaa@44DA@ , where k is the thermal conductivity.

 The surfaces at R=a  and R=b are traction free.

 

Show that the displacement, strain and stress fields in the sphere follow are

u= α ( 1ν ) ( T a T b )a 2( b 3 a 3 ) { (1+ν)b( a 2 +ab+ b 2 )+2(ν a 2 a 2 νabν b 2 )R(1+ν) a 2 b 3 R 2 }+ T b αR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bGaeyypa0ZaaSaaaeaacqaHXo qyaeaadaqadaqaaiaaigdacqGHsislcqaH9oGBaiaawIcacaGLPaaa aaWaaSaaaeaadaqadaqaaiaadsfadaWgaaWcbaGaamyyaaqabaGccq GHsislcaWGubWaaSbaaSqaaiaadkgaaeqaaaGccaGLOaGaayzkaaGa amyyaaqaaiaaikdacaGGOaGaamOyamaaCaaaleqabaGaaG4maaaaki abgkHiTiaadggadaahaaWcbeqaaiaaiodaaaGccaGGPaaaamaacmaa baGaaiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaGaamOyaiaacIcaca WGHbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyaiaadkgacqGH RaWkcaWGIbWaaWbaaSqabeaacaaIYaaaaOGaaiykaiabgUcaRiaaik dacaGGOaGaeqyVd4MaamyyamaaCaaaleqabaGaaGOmaaaakiabgkHi TiaadggadaahaaWcbeqaaiaaikdaaaGccqGHsislcqaH9oGBcaWGHb GaamOyaiabgkHiTiabe27aUjaadkgadaahaaWcbeqaaiaaikdaaaGc caGGPaGaamOuaiabgkHiTiaacIcacaaIXaGaey4kaSIaeqyVd4Maai ykamaalaaabaGaamyyamaaCaaaleqabaGaaGOmaaaakiaadkgadaah aaWcbeqaaiaaiodaaaaakeaacaWGsbWaaWbaaSqabeaacaaIYaaaaa aaaOGaay5Eaiaaw2haaiabgUcaRiaadsfadaWgaaWcbaGaamOyaaqa baGccqaHXoqycaWGsbaaaa@7D5C@

ε RR = α ( 1ν ) ( T a T b )a ( b 3 a 3 ) { (ν a 2 a 2 νabν b 2 )+(1+ν) a 2 b 3 R 3 }+ T b α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamOuaiaadk faaeqaaOGaeyypa0ZaaSaaaeaacqaHXoqyaeaadaqadaqaaiaaigda cqGHsislcqaH9oGBaiaawIcacaGLPaaaaaWaaSaaaeaadaqadaqaai aadsfadaWgaaWcbaGaamyyaaqabaGccqGHsislcaWGubWaaSbaaSqa aiaadkgaaeqaaaGccaGLOaGaayzkaaGaamyyaaqaaiaacIcacaWGIb WaaWbaaSqabeaacaaIZaaaaOGaeyOeI0IaamyyamaaCaaaleqabaGa aG4maaaakiaacMcaaaWaaiWaaeaacaGGOaGaeqyVd4MaamyyamaaCa aaleqabaGaaGOmaaaakiabgkHiTiaadggadaahaaWcbeqaaiaaikda aaGccqGHsislcqaH9oGBcaWGHbGaamOyaiabgkHiTiabe27aUjaadk gadaahaaWcbeqaaiaaikdaaaGccaGGPaGaey4kaSIaaiikaiaaigda cqGHRaWkcqaH9oGBcaGGPaWaaSaaaeaacaWGHbWaaWbaaSqabeaaca aIYaaaaOGaamOyamaaCaaaleqabaGaaG4maaaaaOqaaiaadkfadaah aaWcbeqaaiaaiodaaaaaaaGccaGL7bGaayzFaaGaey4kaSIaamivam aaBaaaleaacaWGIbaabeaakiabeg7aHbaa@6DA9@

ε θθ = ε ϕϕ = α ( 1ν ) ( T a T b )a 2( b 3 a 3 )R { (1+ν)b( a 2 +ab+ b 2 )+2(ν a 2 a 2 νabν b 2 )R(1+ν) a 2 b 3 R 2 }+ T b α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaeqiUdeNaeq iUdehabeaakiabg2da9iabew7aLnaaBaaaleaacqaHvpGzcqaHvpGz aeqaaOGaeyypa0ZaaSaaaeaacqaHXoqyaeaadaqadaqaaiaaigdacq GHsislcqaH9oGBaiaawIcacaGLPaaaaaWaaSaaaeaadaqadaqaaiaa dsfadaWgaaWcbaGaamyyaaqabaGccqGHsislcaWGubWaaSbaaSqaai aadkgaaeqaaaGccaGLOaGaayzkaaGaamyyaaqaaiaaikdacaGGOaGa amOyamaaCaaaleqabaGaaG4maaaakiabgkHiTiaadggadaahaaWcbe qaaiaaiodaaaGccaGGPaGaamOuaaaadaGadaqaaiaacIcacaaIXaGa ey4kaSIaeqyVd4MaaiykaiaadkgacaGGOaGaamyyamaaCaaaleqaba GaaGOmaaaakiabgUcaRiaadggacaWGIbGaey4kaSIaamOyamaaCaaa leqabaGaaGOmaaaakiaacMcacqGHRaWkcaaIYaGaaiikaiabe27aUj aadggadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGHbWaaWbaaSqa beaacaaIYaaaaOGaeyOeI0IaeqyVd4MaamyyaiaadkgacqGHsislcq aH9oGBcaWGIbWaaWbaaSqabeaacaaIYaaaaOGaaiykaiaadkfacqGH sislcaGGOaGaaGymaiabgUcaRiabe27aUjaacMcadaWcaaqaaiaadg gadaahaaWcbeqaaiaaikdaaaGccaWGIbWaaWbaaSqabeaacaaIZaaa aaGcbaGaamOuamaaCaaaleqabaGaaGOmaaaaaaaakiaawUhacaGL9b aacqGHRaWkcaWGubWaaSbaaSqaaiaadkgaaeqaaOGaeqySdegaaa@881E@

σ RR = Eαν ( 1ν ) ( T a T b )ab ( b 3 a 3 ) (Ra)(Rb)(Ra+Rb+ab) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOuaiaadk faaeqaaOGaeyypa0ZaaSaaaeaacaWGfbGaeqySdeMaeqyVd4gabaWa aeWaaeaacaaIXaGaeyOeI0IaeqyVd4gacaGLOaGaayzkaaaaamaala aabaWaaeWaaeaacaWGubWaaSbaaSqaaiaadggaaeqaaOGaeyOeI0Ia amivamaaBaaaleaacaWGIbaabeaaaOGaayjkaiaawMcaaiaadggaca WGIbaabaGaaiikaiaadkgadaahaaWcbeqaaiaaiodaaaGccqGHsisl caWGHbWaaWbaaSqabeaacaaIZaaaaOGaaiykaaaacaGGOaGaamOuai abgkHiTiaadggacaGGPaGaaiikaiaadkfacqGHsislcaWGIbGaaiyk aiaacIcacaWGsbGaamyyaiabgUcaRiaadkfacaWGIbGaey4kaSIaam yyaiaadkgacaGGPaaaaa@5F32@

σ θθ = σ ϕϕ = Eα 2( 1ν ) ( T a T b )ab ( b 3 a 3 ) { 2(a+b) a 2 +ab+ b 2 R a 2 b 2 R 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaeqiUdeNaeq iUdehabeaakiabg2da9iabeo8aZnaaBaaaleaacqaHvpGzcqaHvpGz aeqaaOGaeyypa0ZaaSaaaeaacaWGfbGaeqySdegabaGaaGOmamaabm aabaGaaGymaiabgkHiTiabe27aUbGaayjkaiaawMcaaaaadaWcaaqa amaabmaabaGaamivamaaBaaaleaacaWGHbaabeaakiabgkHiTiaads fadaWgaaWcbaGaamOyaaqabaaakiaawIcacaGLPaaacaWGHbGaamOy aaqaaiaacIcacaWGIbWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0Iaam yyamaaCaaaleqabaGaaG4maaaakiaacMcaaaWaaiWaaeaacaaIYaGa aiikaiaadggacqGHRaWkcaWGIbGaaiykaiabgkHiTmaalaaabaGaam yyamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadggacaWGIbGaey4k aSIaamOyamaaCaaaleqabaGaaGOmaaaaaOqaaiaadkfaaaGaeyOeI0 YaaSaaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaamOyamaaCaaa leqabaGaaGOmaaaaaOqaaiaadkfadaahaaWcbeqaaiaaiodaaaaaaa GccaGL7bGaayzFaaaaaa@6C9F@

 

Solution:

1.      The differential equation for u reduces to

d dR { 1 R 2 d dR ( R 2 u ) }= α( 1+ν ) ( 1ν ) ( T a T b )ab (ba) R 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiaadsgaaeaacaWGKbGaam OuaaaadaGadaqaamaalaaabaGaaGymaaqaaiaadkfadaahaaWcbeqa aiaaikdaaaaaaOWaaSaaaeaacaWGKbaabaGaamizaiaadkfaaaWaae WaaeaacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaamyDaaGaayjkaiaa wMcaaaGaay5Eaiaaw2haaiabg2da9iabgkHiTmaalaaabaGaeqySde 2aaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaaabaWa aeWaaeaacaaIXaGaeyOeI0IaeqyVd4gacaGLOaGaayzkaaaaamaala aabaWaaeWaaeaacaWGubWaaSbaaSqaaiaadggaaeqaaOGaeyOeI0Ia amivamaaBaaaleaacaWGIbaabeaaaOGaayjkaiaawMcaaiaadggaca WGIbaabaGaaiikaiaadkgacqGHsislcaWGHbGaaiykaiaadkfadaah aaWcbeqaaiaaikdaaaaaaaaa@5CC5@

2.      Integrating

u= α( 1+ν ) 2( 1ν ) ( T a T b )ab (ba) +AR+ B R 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bGaeyypa0ZaaSaaaeaacqaHXo qydaqadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaaaeaa caaIYaWaaeWaaeaacaaIXaGaeyOeI0IaeqyVd4gacaGLOaGaayzkaa aaamaalaaabaWaaeWaaeaacaWGubWaaSbaaSqaaiaadggaaeqaaOGa eyOeI0IaamivamaaBaaaleaacaWGIbaabeaaaOGaayjkaiaawMcaai aadggacaWGIbaabaGaaiikaiaadkgacqGHsislcaWGHbGaaiykaaaa cqGHRaWkcaWGbbGaamOuaiabgUcaRmaalaaabaGaamOqaaqaaiaadk fadaahaaWcbeqaaiaaikdaaaaaaaaa@5341@

where A and B are constants of integration.

3.      The radial stress follows from the formulas as

σ RR = E ( 1+ν )( 12ν ) { ( 1ν ) du dR +2ν u R } EαΔT 12ν = Eνα ( 12ν )( 1ν ) ( T a T b )ab (ba)R + E ( 1+ν )( 12ν ) { ( 1+ν )A2( 12ν ) B R 3 } Eα 12ν { T b b T a a ba + ( T a T b )ab (ba)R } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiabeo8aZnaaBaaaleaacaWGsb GaamOuaaqabaGccqGH9aqpdaWcaaqaaiaadweaaeaadaqadaqaaiaa igdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaadaqadaqaaiaaigdacq GHsislcaaIYaGaeqyVd4gacaGLOaGaayzkaaaaamaacmaabaWaaeWa aeaacaaIXaGaeyOeI0IaeqyVd4gacaGLOaGaayzkaaWaaSaaaeaaca WGKbGaamyDaaqaaiaadsgacaWGsbaaaiabgUcaRiaaikdacqaH9oGB daWcaaqaaiaadwhaaeaacaWGsbaaaaGaay5Eaiaaw2haaiabgkHiTm aalaaabaGaamyraiabeg7aHjabfs5aejaadsfaaeaacaaIXaGaeyOe I0IaaGOmaiabe27aUbaaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyypa0ZaaSaaaeaa caWGfbGaeqyVd4MaeqySdegabaWaaeWaaeaacaaIXaGaeyOeI0IaaG Omaiabe27aUbGaayjkaiaawMcaamaabmaabaGaaGymaiabgkHiTiab e27aUbGaayjkaiaawMcaaaaadaWcaaqaamaabmaabaGaamivamaaBa aaleaacaWGHbaabeaakiabgkHiTiaadsfadaWgaaWcbaGaamOyaaqa baaakiaawIcacaGLPaaacaWGHbGaamOyaaqaaiaacIcacaWGIbGaey OeI0IaamyyaiaacMcacaWGsbaaaiabgUcaRmaalaaabaGaamyraaqa amaabmaabaGaaGymaiabgUcaRiabe27aUbGaayjkaiaawMcaamaabm aabaGaaGymaiabgkHiTiaaikdacqaH9oGBaiaawIcacaGLPaaaaaWa aiWaaeaadaqadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPa aacaWGbbGaeyOeI0IaaGOmamaabmaabaGaaGymaiabgkHiTiaaikda cqaH9oGBaiaawIcacaGLPaaadaWcaaqaaiaadkeaaeaacaWGsbWaaW baaSqabeaacaaIZaaaaaaaaOGaay5Eaiaaw2haaaqaaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlabgkHiTmaalaaabaGaamyraiab eg7aHbqaaiaaigdacqGHsislcaaIYaGaeqyVd4gaamaacmaabaWaaS aaaeaacaWGubWaaSbaaSqaaiaadkgaaeqaaOGaamOyaiabgkHiTiaa dsfadaWgaaWcbaGaamyyaaqabaGccaWGHbaabaGaamOyaiabgkHiTi aadggaaaGaey4kaSYaaSaaaeaadaqadaqaaiaadsfadaWgaaWcbaGa amyyaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaadkgaaeqaaaGcca GLOaGaayzkaaGaamyyaiaadkgaaeaacaGGOaGaamOyaiabgkHiTiaa dggacaGGPaGaamOuaaaaaiaawUhacaGL9baaaaaa@F671@

4.      The boundary conditions require that σ rr =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOCaiaadk haaeqaaOGaeyypa0JaaGimaaaa@386D@  at r=a and r=b.  Substituting these conditions into the result of step (3) gives two equations for A and B which can be solved to see that

A= (1ν)( T b b 3 T a a 3 )+( T a T b )νab(a+b) ( 1ν )( a 3 b 3 ) B= α( T a T b )( 1+ν ) 2( 1ν ) a 3 b 3 ( b 3 a 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGbbGaeyypa0ZaaSaaaeaacaGGOa GaaGymaiabgkHiTiabe27aUjaacMcacaGGOaGaamivamaaBaaaleaa caWGIbaabeaakiaadkgadaahaaWcbeqaaiaaiodaaaGccqGHsislca WGubWaaSbaaSqaaiaadggaaeqaaOGaamyyamaaCaaaleqabaGaaG4m aaaakiaacMcacqGHRaWkcaGGOaGaamivamaaBaaaleaacaWGHbaabe aakiabgkHiTiaadsfadaWgaaWcbaGaamOyaaqabaGccaGGPaGaeqyV d4MaamyyaiaadkgacaGGOaGaamyyaiabgUcaRiaadkgacaGGPaaaba WaaeWaaeaacaaIXaGaeyOeI0IaeqyVd4gacaGLOaGaayzkaaWaaeWa aeaacaWGHbWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0IaamOyamaaCa aaleqabaGaaG4maaaaaOGaayjkaiaawMcaaaaacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaadkeacqGH9aqpdaWcaaqaaiabeg7a HnaabmaabaGaamivamaaBaaaleaacaWGHbaabeaakiabgkHiTiaads fadaWgaaWcbaGaamOyaaqabaaakiaawIcacaGLPaaadaqadaqaaiaa igdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaaaeaacaaIYaWaaeWaae aacaaIXaGaeyOeI0IaeqyVd4gacaGLOaGaayzkaaaaamaalaaabaGa amyyamaaCaaaleqabaGaaG4maaaakiaadkgadaahaaWcbeqaaiaaio daaaaakeaadaqadaqaaiaadkgadaahaaWcbeqaaiaaiodaaaGccqGH sislcaWGHbWaaWbaaSqabeaacaaIZaaaaaGccaGLOaGaayzkaaaaaa aa@90DF@

 

 

 

8.8 Simplified equations for axially symmetric linear elasticity problems

 

Two examples of axially symmetric problems are illustrated in the picture.  In both cases the solid is a circular cylinder, which is subjected to axially symmetric loading (i.e. internal body forces, as well as tractions or displacements applied to the surface, are independent of θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH4oqCaaa@347C@  and z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG6baaaa@33C5@ , and act in the radial direction only).  If the temperature of the sphere is non-uniform, it must also be axially symmetric (a function of r only).  Finally, the solid can spin with steady angular velocity about the e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaaiodaaeqaaa aa@349D@  axis.

 

The two solids have different shapes.  In the first case, the length of the cylinder is substantially greater than any cross-sectional dimension.  In the second case, the length of the cylinder is much less than its outer radius. 

 

The state of stress and strain in the solid depends on the loads applied to the ends of the cylinder. Specifically

 If the cylinder is completely prevented from stretching in the e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaaiodaaeqaaa aa@349D@  direction a state of plane strain exists in the solid.  This is an exact solution to the 3D equations of elasticity, is valid for a cylinder with any length, and is accurate everywhere in the cylinder.

 If the top and bottom surface of the short plate-like cylinder are free of traction, a state of plane stress exists in the solid.  This is an approximate solution to the 3D equations of elasticity, and is accurate only if the cylinder’s length is much less than its diameter 

 If the top and bottom  ends of the long cylinder are subjected to a prescribed force (or the ends are free of force) a state of generalized plane strain exists in the cylinder.  This is an approximate solution, which is accurate only away from the ends of a long cylinder.  As a rule of thumb, the solution is applicable approximately three cylinder radii away from the ends.

 

The solution is most conveniently expressed using a spherical-polar coordinate system, illustrated in the figure.  A point in the solid is identified by its spherical-polar co-ordinates (r,θ,z) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGGOaGaamOCaiaacYcacqaH4oqCca GGSaGaamOEaiaacMcaaaa@392B@ . All vectors and tensors are expressed as components in the basis { e r , e θ , e z } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaGadaqaaiaahwgadaWgaaWcbaGaam OCaaqabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiil aiaahwgadaWgaaWcbaGaamOEaaqabaaakiaawUhacaGL9baaaaa@3D6F@  shown in the figure.  For an axially symmetric problem

  Position Vector       x=r e r +z e z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH4bGaeyypa0JaamOCaiaahwgada WgaaWcbaGaamOCaaqabaGccqGHRaWkcaWG6bGaaCyzamaaBaaaleaa caWG6baabeaaaaa@3BD8@

  Displacement vector u=u(r) e r + ε zz z e z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaeyypa0JaamyDaiaacIcaca WGYbGaaiykaiaahwgadaWgaaWcbaGaamOCaaqabaGccqGHRaWkcqaH 1oqzdaWgaaWcbaGaamOEaiaadQhaaeqaaOGaamOEaiaahwgadaWgaa WcbaGaamOEaaqabaaaaa@4203@

  Body force vector b= ρ 0 b(r) e r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHIbGaeyypa0JaeqyWdi3aaSbaaS qaaiaaicdaaeqaaOGaamOyaiaacIcacaWGYbGaaiykaiaahwgadaWg aaWcbaGaamOCaaqabaaaaa@3CAE@

  Acceleration vector a= ω 2 r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHHbGaeyypa0JaeyOeI0IaeqyYdC 3aaWbaaSqabeaacaaIYaaaaOGaamOCaaaa@395A@

Here, u( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bWaaeWaaeaacaWGYbaacaGLOa Gaayzkaaaaaa@3640@  and b( r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGIbWaaeWaaeaacaWGYbaacaGLOa Gaayzkaaaaaa@362D@  are scalar functions.

 

The stress and strain tensors (written as components in { e r , e θ , e z } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGG7bGaaCyzamaaBaaaleaacaWGYb aabeaakiaacYcacaWHLbWaaSbaaSqaaiabeI7aXbqabaGccaGGSaGa aCyzamaaBaaaleaacaWG6baabeaakiaac2haaaa@3D3D@  ) have the form

σ[ σ rr 0 0 0 σ θθ 0 0 0 σ zz ]ε[ ε rr 0 0 0 ε θθ 0 0 0 ε zz ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCcqGHHjIUdaWadaqaauaabe qadmaaaeaacqaHdpWCdaWgaaWcbaGaamOCaiaadkhaaeqaaaGcbaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4Wdm3aaSbaaSqaaiabeI 7aXjabeI7aXbqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaa cqaHdpWCdaWgaaWcbaGaamOEaiaadQhaaeqaaaaaaOGaay5waiaaw2 faaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqyTduMaey yyIO7aamWaaeaafaqabeWadaaabaGaeqyTdu2aaSbaaSqaaiaadkha caWGYbaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabew 7aLnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGcbaGaaGimaaqaaiaa icdaaeaacaaIWaaabaGaeqyTdu2aaSbaaSqaaiaadQhacaWG6baabe aaaaaakiaawUfacaGLDbaaaaa@7657@

 

For axial symmetry, the governing equations of linear elasticity reduce to

 

 Strain Displacement Relations ε rr = du dr ε θθ = u r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamOCaiaadk haaeqaaOGaeyypa0ZaaSaaaeaacaWGKbGaamyDaaqaaiaadsgacaWG YbaaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlabew7aLnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaOGa eyypa0ZaaSaaaeaacaWG1baabaGaamOCaaaaaaa@519D@

 Stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieqajugybabaaa aaaaaapeGaa8hfGaaa@3724@ Strain relations (plane strain and generalized plane strain)

[ σ rr σ θθ σ zz ]= E (1+ν)(12ν) [ 1ν ν ν ν 1ν ν ν ν 1ν ][ ε rr ε θθ ε zz ] EαΔT 12ν [ 1 1 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqadeaaaeaacqaHdp WCdaWgaaWcbaGaamOCaiaadkhaaeqaaaGcbaGaeq4Wdm3aaSbaaSqa aiabeI7aXjabeI7aXbqabaaakeaacqaHdpWCdaWgaaWcbaGaamOEai aadQhaaeqaaaaaaOGaay5waiaaw2faaiabg2da9maalaaabaGaamyr aaqaaiaacIcacaaIXaGaey4kaSIaeqyVd4MaaiykaiaacIcacaaIXa GaeyOeI0IaaGOmaiabe27aUjaacMcaaaWaamWaaeaafaqabeWadaaa baGaaGymaiabgkHiTiabe27aUbqaaiabe27aUbqaaiabe27aUbqaai abe27aUbqaaiaaigdacqGHsislcqaH9oGBaeaacqaH9oGBaeaacqaH 9oGBaeaacqaH9oGBaeaacaaIXaGaeyOeI0IaeqyVd4gaaaGaay5wai aaw2faamaadmaabaqbaeqabmqaaaqaaiabew7aLnaaBaaaleaacaWG YbGaamOCaaqabaaakeaacqaH1oqzdaWgaaWcbaGaeqiUdeNaeqiUde habeaaaOqaaiabew7aLnaaBaaaleaacaWG6bGaamOEaaqabaaaaaGc caGLBbGaayzxaaGaeyOeI0YaaSaaaeaacaWGfbGaeqySdeMaeuiLdq KaamivaaqaaiaaigdacqGHsislcaaIYaGaeqyVd4gaamaadmaabaqb aeqabmqaaaqaaiaaigdaaeaacaaIXaaabaGaaGymaaaaaiaawUfaca GLDbaaaaa@8169@

    where ε zz =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamOEaiaadQ haaeqaaOGaeyypa0JaaGimaaaa@3861@  for plane strain, and constant for generalized plane strain.

 Stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieqajugybabaaa aaaaaapeGaa8hfGaaa@3724@ Strain relations (plane stress)

[ σ rr σ θθ ]= E 1 ν 2 [ 1 ν ν 1 ][ ε rr ε θθ ] EαΔT 1ν [ 1 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaceaaaeaacqaHdp WCdaWgaaWcbaGaamOCaiaadkhaaeqaaaGcbaGaeq4Wdm3aaSbaaSqa aiabeI7aXjabeI7aXbqabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaaS aaaeaacaWGfbaabaGaaGymaiabgkHiTiabe27aUnaaCaaaleqabaGa aGOmaaaaaaGcdaWadaqaauaabeqaciaaaeaacaaIXaaabaGaeqyVd4 gabaGaeqyVd4gabaGaaGymaaaaaiaawUfacaGLDbaadaWadaqaauaa beqaceaaaeaacqaH1oqzdaWgaaWcbaGaamOCaiaadkhaaeqaaaGcba GaeqyTdu2aaSbaaSqaaiabeI7aXjabeI7aXbqabaaaaaGccaGLBbGa ayzxaaGaeyOeI0YaaSaaaeaacaWGfbGaeqySdeMaeuiLdqKaamivaa qaaiaaigdacqGHsislcqaH9oGBaaWaamWaaeaafaqabeGabaaabaGa aGymaaqaaiaaigdaaaaacaGLBbGaayzxaaaaaa@62B9@

σ zz =0 ε zz = ν E ( σ rr + σ θθ )+αΔT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOEaiaadQ haaeqaaOGaeyypa0JaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqyTdu2aaS baaSqaaiaadQhacaWG6baabeaakiabg2da9iabgkHiTmaalaaabaGa eqyVd4gabaGaamyraaaadaqadaqaaiabeo8aZnaaBaaaleaacaWGYb GaamOCaaqabaGccqGHRaWkcqaHdpWCdaWgaaWcbaGaeqiUdeNaeqiU dehabeaaaOGaayjkaiaawMcaaiabgUcaRiabeg7aHjabfs5aejaads faaaa@624D@

 Equation of motion

d σ rr dr + 1 r ( σ rr σ θθ )+ ρ 0 b r = ρ 0 ω 2 r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiaadsgacqaHdpWCdaWgaa WcbaGaamOCaiaadkhaaeqaaaGcbaGaamizaiaadkhaaaGaey4kaSYa aSaaaeaacaaIXaaabaGaamOCaaaadaqadaqaaiabeo8aZnaaBaaale aacaWGYbGaamOCaaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaeqiU deNaeqiUdehabeaaaOGaayjkaiaawMcaaiaaykW7caaMc8Uaey4kaS IaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaamOyamaaBaaaleaacaWG Ybaabeaakiabg2da9iabgkHiTiabeg8aYnaaBaaaleaacaaIWaaabe aakiabeM8a3naaCaaaleqabaGaaGOmaaaakiaadkhaaaa@5901@

 Boundary Conditions

 

Prescribed Displacements u r (a)= g a u r (b)= g b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bWaaSbaaSqaaiaadkhaaeqaaO GaaiikaiaadggacaGGPaGaeyypa0Jaam4zamaaBaaaleaacaWGHbaa beaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caWG1bWaaSbaaSqaaiaadkhaaeqaaOGaaiikaiaadkgacaGGPa Gaeyypa0Jaam4zamaaBaaaleaacaWGIbaabeaaaaa@5A55@

Prescribed Tractions σ rr (a)= t a σ rr (b)= t b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOCaiaadk haaeqaaOGaaiikaiaadggacaGGPaGaeyypa0JaamiDamaaBaaaleaa caWGHbaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlabeo8aZnaaBaaaleaacaWGYbGaamOCaaqa baGccaGGOaGaamOyaiaacMcacqGH9aqpcaWG0bWaaSbaaSqaaiaadk gaaeqaaaaa@5322@

Plane strain solution ε zz =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamOEaiaadQ haaeqaaOGaeyypa0JaaGimaaaa@3860@

Generalized plane strain solution, with axial force F z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGgbWaaSbaaSqaaiaadQhaaeqaaa aa@34BC@  applied to cylinder:

a b 2πr σ zz dr= F z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWdXbqaaiaaikdacqaHapaCcaWGYb Gaeq4Wdm3aaSbaaSqaaiaadQhacaWG6baabeaaaeaacaWGHbaabaGa amOyaaqdcqGHRiI8aOGaamizaiaadkhacqGH9aqpcaWGgbWaaSbaaS qaaiaadQhaaeqaaaaa@4334@

 

These results can either be derived as a special case of the general 3D equations of linear elasticity in spherical coordinates.  The details are left as an exercise.

 

 

8.9 General solution to the axisymmetric boundary value problem

 

Our goal is to solve the equations given in Section 4.1.2 for the displacement, strain and stress in the sphere.  To do so,

1.      Substitute the strain-displacement relations into the stress-strain law to show that, for generalized plane strain

[ σ rr σ θθ σ zz ]= E (1+ν)(12ν) [ 1ν ν ν ν 1ν ν ν ν 1ν ][ du dr u r ε zz ] EαΔT 12ν [ 1 1 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqadeaaaeaacqaHdp WCdaWgaaWcbaGaamOCaiaadkhaaeqaaaGcbaGaeq4Wdm3aaSbaaSqa aiabeI7aXjabeI7aXbqabaaakeaacqaHdpWCdaWgaaWcbaGaamOEai aadQhaaeqaaaaaaOGaay5waiaaw2faaiabg2da9maalaaabaGaamyr aaqaaiaacIcacaaIXaGaey4kaSIaeqyVd4MaaiykaiaacIcacaaIXa GaeyOeI0IaaGOmaiabe27aUjaacMcaaaWaamWaaeaafaqabeWadaaa baGaaGymaiabgkHiTiabe27aUbqaaiabe27aUbqaaiabe27aUbqaai abe27aUbqaaiaaigdacqGHsislcqaH9oGBaeaacqaH9oGBaeaacqaH 9oGBaeaacqaH9oGBaeaacaaIXaGaeyOeI0IaeqyVd4gaaaGaay5wai aaw2faamaadmaabaqbaeqabmqaaaqaamaalaaabaGaamizaiaadwha aeaacaWGKbGaamOCaaaaaeaadaWcaaqaaiaadwhaaeaacaWGYbaaaa qaaiabew7aLnaaBaaaleaacaWG6bGaamOEaaqabaaaaaGccaGLBbGa ayzxaaGaeyOeI0YaaSaaaeaacaWGfbGaeqySdeMaeuiLdqKaamivaa qaaiaaigdacqGHsislcaaIYaGaeqyVd4gaamaadmaabaqbaeqabmqa aaqaaiaaigdaaeaacaaIXaaabaGaaGymaaaaaiaawUfacaGLDbaaaa a@7E29@

where ε zz MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamOEaiaadQ haaeqaaaaa@3697@  is constant.  The equivalent expression for plane stress is

[ σ rr σ θθ ]= E 1 ν 2 [ 1 ν ν 1 ][ du dr u r ] EαΔT 1ν [ 1 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWadaqaauaabeqaceaaaeaacqaHdp WCdaWgaaWcbaGaamOCaiaadkhaaeqaaaGcbaGaeq4Wdm3aaSbaaSqa aiabeI7aXjabeI7aXbqabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaaS aaaeaacaWGfbaabaGaaGymaiabgkHiTiabe27aUnaaCaaaleqabaGa aGOmaaaaaaGcdaWadaqaauaabeqaciaaaeaacaaIXaaabaGaeqyVd4 gabaGaeqyVd4gabaGaaGymaaaaaiaawUfacaGLDbaadaWadaqaauaa beqaceaaaeaadaWcaaqaaiaadsgacaWG1baabaGaamizaiaadkhaaa aabaWaaSaaaeaacaWG1baabaGaamOCaaaaaaaacaGLBbGaayzxaaGa eyOeI0YaaSaaaeaacaWGfbGaeqySdeMaeuiLdqKaamivaaqaaiaaig dacqGHsislcqaH9oGBaaWaamWaaeaafaqabeGabaaabaGaaGymaaqa aiaaigdaaaaacaGLBbGaayzxaaaaaa@5F79@

2.      Substitute these expressions for the stress into the equilibrium equation and rearrange the result to see that, for generalized plane strain

2 u r 2 + 1 r u r u r 2 = r { 1 r r ( ru ) }= α( 1+ν ) ( 1ν ) ΔT r ( 1+ν )( 12ν ) E(1ν) ρ 0 (b+ ω 2 r) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhaaeaacqGHciITcaWGYbWaaWbaaSqabeaacaaI YaaaaaaakiabgUcaRmaalaaabaGaaGymaaqaaiaadkhaaaWaaSaaae aacqGHciITcaWG1baabaGaeyOaIyRaamOCaaaacqGHsisldaWcaaqa aiaadwhaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9m aalaaabaGaeyOaIylabaGaeyOaIyRaamOCaaaadaGadaqaamaalaaa baGaaGymaaqaaiaadkhaaaWaaSaaaeaacqGHciITaeaacqGHciITca WGYbaaamaabmaabaGaamOCaiaadwhaaiaawIcacaGLPaaaaiaawUha caGL9baacqGH9aqpdaWcaaqaaiabeg7aHnaabmaabaGaaGymaiabgU caRiabe27aUbGaayjkaiaawMcaaaqaamaabmaabaGaaGymaiabgkHi Tiabe27aUbGaayjkaiaawMcaaaaadaWcaaqaaiabgkGi2kabfs5aej aadsfaaeaacqGHciITcaWGYbaaaiabgkHiTmaalaaabaWaaeWaaeaa caaIXaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaWaaeWaaeaacaaIXa GaeyOeI0IaaGOmaiabe27aUbGaayjkaiaawMcaaaqaaiaadweacaGG OaGaaGymaiabgkHiTiabe27aUjaacMcaaaGaeqyWdi3aaSbaaSqaai aaicdaaeqaaOGaaiikaiaadkgacqGHRaWkcqaHjpWDdaahaaWcbeqa aiaaikdaaaGccaWGYbGaaiykaaaa@81FE@

while for plane stress

2 u r 2 + 1 r u r u r 2 = r { 1 r r ( ru ) }=α( 1+ν ) ΔT r ( 1 ν 2 ) E ρ 0 (b+ ω 2 r) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhaaeaacqGHciITcaWGYbWaaWbaaSqabeaacaaI YaaaaaaakiabgUcaRmaalaaabaGaaGymaaqaaiaadkhaaaWaaSaaae aacqGHciITcaWG1baabaGaeyOaIyRaamOCaaaacqGHsisldaWcaaqa aiaadwhaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9m aalaaabaGaeyOaIylabaGaeyOaIyRaamOCaaaadaGadaqaamaalaaa baGaaGymaaqaaiaadkhaaaWaaSaaaeaacqGHciITaeaacqGHciITca WGYbaaamaabmaabaGaamOCaiaadwhaaiaawIcacaGLPaaaaiaawUha caGL9baacqGH9aqpcqaHXoqydaqadaqaaiaaigdacqGHRaWkcqaH9o GBaiaawIcacaGLPaaadaWcaaqaaiabgkGi2kabfs5aejaadsfaaeaa cqGHciITcaWGYbaaaiabgkHiTmaalaaabaWaaeWaaeaacaaIXaGaey OeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaa baGaamyraaaacqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaGGOaGaam OyaiabgUcaRiabeM8a3naaCaaaleqabaGaaGOmaaaakiaadkhacaGG Paaaaa@73A5@

 

Given the temperature distribution and body force these equations can be integrated to calculate the displacement u.  Two arbitrary constants of integration will appear when you do the integral MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  these must be determined from the boundary conditions at the inner and outer surface of the sphere.  Specifically, the constants must be selected so that either the displacement or the radial stress have prescribed values on the inner and outer surface of the sphere.  Finally, for the generalized plane strain solution, the axial strain ε zz MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamOEaiaadQ haaeqaaaaa@3697@  must be determined, using the equation for the axial force acting on the ends of the cylinder.

 

In the following sections, this procedure is used to derive solutions to various boundary value problems of practical interest.

 

 

8.10 Example solutions for cylindrically symmetric solids

 

 

Example 1: Long (generalized plane strain) cylinder subjected to internal and external pressure.

We consider a long hollow cylinder with internal radius a and external radius b as shown in the figure. 

Assume that

 No body forces act on the cylinder

 The cylinder has zero angular velocity

 The sphere has uniform temperature

 The inner surface r=a is subjected to pressure p a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadggaaeqaaa aa@34CD@

 The outer surface r=b is subjected to pressure p b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbWaaSbaaSqaaiaadkgaaeqaaa aa@34CE@

 For the plane strain solution, the cylinder does not stretch parallel to its axis.  For the generalized plane strain solution, the ends of the cylinder are subjected to an axial force F z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGgbWaaSbaaSqaaiaadQhaaeqaaa aa@34BC@  as shown.  In particular, for a closed ended cylinder the axial force exerted by the pressure inside the cylinder acting on the closed ends is F z =π( p a a 2 p b b 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGgbWaaSbaaSqaaiaadQhaaeqaaO Gaeyypa0JaeqiWda3aaeWaaeaacaWGWbWaaSbaaSqaaiaadggaaeqa aOGaamyyamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadchadaWgaa WcbaGaamOyaaqabaGccaWGIbWaaWbaaSqabeaacaaIYaaaaaGccaGL OaGaayzkaaaaaa@41D5@

 

The displacement, strain and stress fields in the cylinder are

u= ( 1+ν ) a 2 b 2 E( b 2 a 2 ) { ( p a p b ) r +( 12ν ) ( p a a 2 p b b 2 ) a 2 b 2 r } e r ν ε zz r e r + ε zz z e z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaeyypa0ZaaSaaaeaadaqada qaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaacaWGHbWaaWba aSqabeaacaaIYaaaaOGaamOyamaaCaaaleqabaGaaGOmaaaaaOqaai aadweadaqadaqaaiaadkgadaahaaWcbeqaaiaaikdaaaGccqGHsisl caWGHbWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaaamaacm aabaWaaSaaaeaadaqadaqaaiaadchadaWgaaWcbaGaamyyaaqabaGc cqGHsislcaWGWbWaaSbaaSqaaiaadkgaaeqaaaGccaGLOaGaayzkaa aabaGaamOCaaaacqGHRaWkdaqadaqaaiaaigdacqGHsislcaaIYaGa eqyVd4gacaGLOaGaayzkaaWaaSaaaeaadaqadaqaaiaadchadaWgaa WcbaGaamyyaaqabaGccaWGHbWaaWbaaSqabeaacaaIYaaaaOGaeyOe I0IaamiCamaaBaaaleaacaWGIbaabeaakiaadkgadaahaaWcbeqaai aaikdaaaaakiaawIcacaGLPaaaaeaacaWGHbWaaWbaaSqabeaacaaI YaaaaOGaamOyamaaCaaaleqabaGaaGOmaaaaaaGccaWGYbaacaGL7b GaayzFaaGaaCyzamaaBaaaleaacaWGYbaabeaakiabgkHiTiabe27a Ujabew7aLnaaBaaaleaacaWG6bGaamOEaaqabaGccaWGYbGaaCyzam aaBaaaleaacaWGYbaabeaakiabgUcaRiabew7aLnaaBaaaleaacaWG 6bGaamOEaaqabaGccaWG6bGaaCyzamaaBaaaleaacaWG6baabeaaaa a@773D@

ε rr = ( 1+ν ) a 2 b 2 E( b 2 a 2 ) { ( p a p b ) r 2 +( 12ν ) ( p a a 2 p b b 2 ) a 2 b 2 }ν ε zz ε θθ = ( 1+ν ) a 2 b 2 E( b 2 a 2 ) { ( p a p b ) r 2 +( 12ν ) ( p a a 2 p b b 2 ) a 2 b 2 }ν ε zz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiabew7aLnaaBaaaleaacaWGYb GaamOCaaqabaGccqGH9aqpdaWcaaqaamaabmaabaGaaGymaiabgUca Riabe27aUbGaayjkaiaawMcaaiaadggadaahaaWcbeqaaiaaikdaaa GccaWGIbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamyramaabmaabaGa amOyamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadggadaahaaWcbe qaaiaaikdaaaaakiaawIcacaGLPaaaaaWaaiWaaeaacqGHsisldaWc aaqaamaabmaabaGaamiCamaaBaaaleaacaWGHbaabeaakiabgkHiTi aadchadaWgaaWcbaGaamOyaaqabaaakiaawIcacaGLPaaaaeaacaWG YbWaaWbaaSqabeaacaaIYaaaaaaakiabgUcaRmaabmaabaGaaGymai abgkHiTiaaikdacqaH9oGBaiaawIcacaGLPaaadaWcaaqaamaabmaa baGaamiCamaaBaaaleaacaWGHbaabeaakiaadggadaahaaWcbeqaai aaikdaaaGccqGHsislcaWGWbWaaSbaaSqaaiaadkgaaeqaaOGaamOy amaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaqaaiaadggada ahaaWcbeqaaiaaikdaaaGccaWGIbWaaWbaaSqabeaacaaIYaaaaaaa aOGaay5Eaiaaw2haaiabgkHiTiabe27aUjabew7aLnaaBaaaleaaca WG6bGaamOEaaqabaaakeaacqaH1oqzdaWgaaWcbaGaeqiUdeNaeqiU dehabeaakiabg2da9maalaaabaWaaeWaaeaacaaIXaGaey4kaSIaeq yVd4gacaGLOaGaayzkaaGaamyyamaaCaaaleqabaGaaGOmaaaakiaa dkgadaahaaWcbeqaaiaaikdaaaaakeaacaWGfbWaaeWaaeaacaWGIb WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyyamaaCaaaleqabaGa aGOmaaaaaOGaayjkaiaawMcaaaaadaGadaqaamaalaaabaWaaeWaae aacaWGWbWaaSbaaSqaaiaadggaaeqaaOGaeyOeI0IaamiCamaaBaaa leaacaWGIbaabeaaaOGaayjkaiaawMcaaaqaaiaadkhadaahaaWcbe qaaiaaikdaaaaaaOGaey4kaSYaaeWaaeaacaaIXaGaeyOeI0IaaGOm aiabe27aUbGaayjkaiaawMcaamaalaaabaWaaeWaaeaacaWGWbWaaS baaSqaaiaadggaaeqaaOGaamyyamaaCaaaleqabaGaaGOmaaaakiab gkHiTiaadchadaWgaaWcbaGaamOyaaqabaGccaWGIbWaaWbaaSqabe aacaaIYaaaaaGccaGLOaGaayzkaaaabaGaamyyamaaCaaaleqabaGa aGOmaaaakiaadkgadaahaaWcbeqaaiaaikdaaaaaaaGccaGL7bGaay zFaaGaeyOeI0IaeqyVd4MaeqyTdu2aaSbaaSqaaiaadQhacaWG6baa beaaaaaa@A9AB@

σ rr ={ ( p a a 2 p b b 2 ) b 2 a 2 a 2 b 2 ( b 2 a 2 ) r 2 ( p a p b ) } σ θθ ={ ( p a a 2 p b b 2 ) b 2 a 2 + a 2 b 2 ( b 2 a 2 ) r 2 ( p a p b ) } σ zz =2ν ( p a a 2 p b b 2 ) b 2 a 2 +E ε zz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiabeo8aZnaaBaaaleaacaWGYb GaamOCaaqabaGccqGH9aqpdaGadaqaamaalaaabaWaaeWaaeaacaWG WbWaaSbaaSqaaiaadggaaeqaaOGaamyyamaaCaaaleqabaGaaGOmaa aakiabgkHiTiaadchadaWgaaWcbaGaamOyaaqabaGccaWGIbWaaWba aSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaabaGaamOyamaaCaaale qabaGaaGOmaaaakiabgkHiTiaadggadaahaaWcbeqaaiaaikdaaaaa aOGaeyOeI0YaaSaaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaam OyamaaCaaaleqabaGaaGOmaaaaaOqaamaabmaabaGaamOyamaaCaaa leqabaGaaGOmaaaakiabgkHiTiaadggadaahaaWcbeqaaiaaikdaaa aakiaawIcacaGLPaaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaakmaa bmaabaGaamiCamaaBaaaleaacaWGHbaabeaakiabgkHiTiaadchada WgaaWcbaGaamOyaaqabaaakiaawIcacaGLPaaaaiaawUhacaGL9baa aeaacqaHdpWCdaWgaaWcbaGaeqiUdeNaeqiUdehabeaakiabg2da9m aacmaabaWaaSaaaeaadaqadaqaaiaadchadaWgaaWcbaGaamyyaaqa baGccaWGHbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamiCamaaBa aaleaacaWGIbaabeaakiaadkgadaahaaWcbeqaaiaaikdaaaaakiaa wIcacaGLPaaaaeaacaWGIbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0 IaamyyamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaa dggadaahaaWcbeqaaiaaikdaaaGccaWGIbWaaWbaaSqabeaacaaIYa aaaaGcbaWaaeWaaeaacaWGIbWaaWbaaSqabeaacaaIYaaaaOGaeyOe I0IaamyyamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiaadk hadaahaaWcbeqaaiaaikdaaaaaaOWaaeWaaeaacaWGWbWaaSbaaSqa aiaadggaaeqaaOGaeyOeI0IaamiCamaaBaaaleaacaWGIbaabeaaaO GaayjkaiaawMcaaaGaay5Eaiaaw2haaaqaaiabeo8aZnaaBaaaleaa caWG6bGaamOEaaqabaGccqGH9aqpcaaIYaGaeqyVd42aaSaaaeaada qadaqaaiaadchadaWgaaWcbaGaamyyaaqabaGccaWGHbWaaWbaaSqa beaacaaIYaaaaOGaeyOeI0IaamiCamaaBaaaleaacaWGIbaabeaaki aadkgadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaaaeaacaWG IbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyyamaaCaaaleqaba GaaGOmaaaaaaGccqGHRaWkcaWGfbGaeqyTdu2aaSbaaSqaaiaadQha caWG6baabeaaaaaa@A316@

where ε zz =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamOEaiaadQ haaeqaaOGaeyypa0JaaGimaaaa@3861@  for plane strain, while

ε zz = F z πE( b 2 a 2 ) 2ν E ( p a a 2 p b b 2 ) ( b 2 a 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamOEaiaadQ haaeqaaOGaeyypa0ZaaSaaaeaacaWGgbWaaSbaaSqaaiaadQhaaeqa aaGcbaGaeqiWdaNaamyraiaacIcacaWGIbWaaWbaaSqabeaacaaIYa aaaOGaeyOeI0IaamyyamaaCaaaleqabaGaaGOmaaaakiaacMcaaaGa eyOeI0YaaSaaaeaacaaIYaGaeqyVd4gabaGaamyraaaadaWcaaqaam aabmaabaGaamiCamaaBaaaleaacaWGHbaabeaakiaadggadaahaaWc beqaaiaaikdaaaGccqGHsislcaWGWbWaaSbaaSqaaiaadkgaaeqaaO GaamOyamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaqaaiaa cIcacaWGIbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyyamaaCa aaleqabaGaaGOmaaaakiaacMcaaaaaaa@56C7@

for generalized plane strain.

 

Derivation: These results can be derived as follows.  The governing equation reduces to

2 u r 2 + 1 r u r u r 2 = r { 1 r r ( ru ) }=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhaaeaacqGHciITcaWGYbWaaWbaaSqabeaacaaI YaaaaaaakiabgUcaRmaalaaabaGaaGymaaqaaiaadkhaaaWaaSaaae aacqGHciITcaWG1baabaGaeyOaIyRaamOCaaaacqGHsisldaWcaaqa aiaadwhaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9m aalaaabaGaeyOaIylabaGaeyOaIyRaamOCaaaadaGadaqaamaalaaa baGaaGymaaqaaiaadkhaaaWaaSaaaeaacqGHciITaeaacqGHciITca WGYbaaamaabmaabaGaamOCaiaadwhaaiaawIcacaGLPaaaaiaawUha caGL9baacqGH9aqpcaaIWaaaaa@56A4@

The equation can be integrated to see that

u=Ar+ B r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bGaeyypa0Jaamyqaiaadkhacq GHRaWkdaWcaaqaaiaadkeaaeaacaWGYbaaaaaa@3932@

The radial stress follows as

σ rr = E ( 1+ν )( 12ν ) { (1ν) u r +ν u r }= E ( 1+ν )( 12ν ) { A(12ν) B r 2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOCaiaadk haaeqaaOGaeyypa0ZaaSaaaeaacaWGfbaabaWaaeWaaeaacaaIXaGa ey4kaSIaeqyVd4gacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaeyOeI0 IaaGOmaiabe27aUbGaayjkaiaawMcaaaaadaGadaqaaiaacIcacaaI XaGaeyOeI0IaeqyVd4MaaiykamaalaaabaGaeyOaIyRaamyDaaqaai abgkGi2kaadkhaaaGaey4kaSIaeqyVd42aaSaaaeaacaWG1baabaGa amOCaaaaaiaawUhacaGL9baacqGH9aqpdaWcaaqaaiaadweaaeaada qadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaadaqadaqa aiaaigdacqGHsislcaaIYaGaeqyVd4gacaGLOaGaayzkaaaaamaacm aabaGaamyqaiabgkHiTiaacIcacaaIXaGaeyOeI0IaaGOmaiabe27a UjaacMcadaWcaaqaaiaadkeaaeaacaWGYbWaaWbaaSqabeaacaaIYa aaaaaaaOGaay5Eaiaaw2haaaaa@6BDE@

The boundary conditions are σ rr (r=a)= p a σ rr (r=b)= p b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOCaiaadk haaeqaaOGaaiikaiaadkhacqGH9aqpcaWGHbGaaiykaiabg2da9iab gkHiTiaadchadaWgaaWcbaGaamyyaaqabaGccaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7cqaHdpWCdaWgaaWcbaGaamOCaiaadkha aeqaaOGaaiikaiaadkhacqGH9aqpcaWGIbGaaiykaiabg2da9iabgk HiTiaadchadaWgaaWcbaGaamOyaaqabaaaaa@544D@  (the stresses are negative because the pressure is compressive).  This yields two equations for A and B that area easily solved to see that

A= ( 1+ν )( 12ν ) E ( p a a 2 p b b 2 ) b 2 a 2 B= ( 1+ν ) E a 2 b 2 b 2 a 2 ( p a p b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGbbGaeyypa0ZaaSaaaeaadaqada qaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaadaqadaqaaiaa igdacqGHsislcaaIYaGaeqyVd4gacaGLOaGaayzkaaaabaGaamyraa aadaWcaaqaamaabmaabaGaamiCamaaBaaaleaacaWGHbaabeaakiaa dggadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGWbWaaSbaaSqaai aadkgaaeqaaOGaamOyamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaa wMcaaaqaaiaadkgadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGHb WaaWbaaSqabeaacaaIYaaaaaaakiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamOqai abg2da9maalaaabaWaaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGL OaGaayzkaaaabaGaamyraaaadaWcaaqaaiaadggadaahaaWcbeqaai aaikdaaaGccaWGIbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOyamaa CaaaleqabaGaaGOmaaaakiabgkHiTiaadggadaahaaWcbeqaaiaaik daaaaaaOWaaeWaaeaacaWGWbWaaSbaaSqaaiaadggaaeqaaOGaeyOe I0IaamiCamaaBaaaleaacaWGIbaabeaaaOGaayjkaiaawMcaaaaa@7664@

The remaining results follow by elementary algebraic manipulations.

 

 

 

 

Example 2: Spinning circular plate

 

We consider a thin solid plate with radius a that spins with angular speed ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHjpWDaaa@3493@  about its axis. Assume that

 No body forces act on the disk

 The disk has constant angular velocity

 The disk has uniform temperature

 The outer surface r=a and the top and bottom faces of the disk are free of traction.

 The disk is sufficiently thin to ensure a state of plane stress in the disk.

u=(1ν) ρ 0 ω 2 8E { ( 3+ν ) a 2 r( 1+ν ) r 3 } e r +z ε zz e z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaeyypa0Jaaiikaiaaigdacq GHsislcqaH9oGBcaGGPaWaaSaaaeaacqaHbpGCdaWgaaWcbaGaaGim aaqabaGccqaHjpWDdaahaaWcbeqaaiaaikdaaaaakeaacaaI4aGaam yraaaadaGadaqaamaabmaabaGaaG4maiabgUcaRiabe27aUbGaayjk aiaawMcaaiaadggadaahaaWcbeqaaiaaikdaaaGccaWGYbGaeyOeI0 YaaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaGaamOC amaaCaaaleqabaGaaG4maaaaaOGaay5Eaiaaw2haaiaahwgadaWgaa WcbaGaamOCaaqabaGccqGHRaWkcaWG6bGaeqyTdu2aaSbaaSqaaiaa dQhacaWG6baabeaakiaahwgadaWgaaWcbaGaamOEaaqabaaaaa@5C15@

ε rr =(1ν) ρ 0 ω 2 8E { ( 3+ν ) a 2 3( 1+ν ) r 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamOCaiaadk haaeqaaOGaeyypa0JaaiikaiaaigdacqGHsislcqaH9oGBcaGGPaWa aSaaaeaacqaHbpGCdaWgaaWcbaGaaGimaaqabaGccqaHjpWDdaahaa WcbeqaaiaaikdaaaaakeaacaaI4aGaamyraaaadaGadaqaamaabmaa baGaaG4maiabgUcaRiabe27aUbGaayjkaiaawMcaaiaadggadaahaa WcbeqaaiaaikdaaaGccqGHsislcaaIZaWaaeWaaeaacaaIXaGaey4k aSIaeqyVd4gacaGLOaGaayzkaaGaamOCamaaCaaaleqabaGaaGOmaa aaaOGaay5Eaiaaw2haaaaa@54B8@            ε θθ =(1ν) ρ 0 ω 2 8E { ( 3+ν ) a 2 ( 1+ν ) r 2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaeqiUdeNaeq iUdehabeaakiabg2da9iaacIcacaaIXaGaeyOeI0IaeqyVd4Maaiyk amaalaaabaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaeqyYdC3aaW baaSqabeaacaaIYaaaaaGcbaGaaGioaiaadweaaaWaaiWaaeaadaqa daqaaiaaiodacqGHRaWkcqaH9oGBaiaawIcacaGLPaaacaWGHbWaaW baaSqabeaacaaIYaaaaOGaeyOeI0YaaeWaaeaacaaIXaGaey4kaSIa eqyVd4gacaGLOaGaayzkaaGaamOCamaaCaaaleqabaGaaGOmaaaaaO Gaay5Eaiaaw2haaaaa@5578@

ε zz =ν ρ 0 ω 2 8E { 2( 3+ν ) a 2 (3ν+2) r 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamOEaiaadQ haaeqaaOGaeyypa0JaeyOeI0IaeqyVd42aaSaaaeaacqaHbpGCdaWg aaWcbaGaaGimaaqabaGccqaHjpWDdaahaaWcbeqaaiaaikdaaaaake aacaaI4aGaamyraaaadaGadaqaaiaaikdadaqadaqaaiaaiodacqGH RaWkcqaH9oGBaiaawIcacaGLPaaacaWGHbWaaWbaaSqabeaacaaIYa aaaOGaeyOeI0IaaiikaiaaiodacqaH9oGBcqGHRaWkcaaIYaGaaiyk aiaadkhadaahaaWcbeqaaiaaikdaaaaakiaawUhacaGL9baaaaa@5341@

σ rr =( 3+ν ) ρ 0 ω 2 8 { a 2 r 2 } σ θθ = ρ 0 ω 2 8 { (3+ν) a 2 (3ν+1) r 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiabeo8aZnaaBaaaleaacaWGYb GaamOCaaqabaGccqGH9aqpdaqadaqaaiaaiodacqGHRaWkcqaH9oGB aiaawIcacaGLPaaadaWcaaqaaiabeg8aYnaaBaaaleaacaaIWaaabe aakiabeM8a3naaCaaaleqabaGaaGOmaaaaaOqaaiaaiIdaaaWaaiWa aeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamOCamaaCa aaleqabaGaaGOmaaaaaOGaay5Eaiaaw2haaaqaaiabeo8aZnaaBaaa leaacqaH4oqCcqaH4oqCaeqaaOGaeyypa0ZaaSaaaeaacqaHbpGCda WgaaWcbaGaaGimaaqabaGccqaHjpWDdaahaaWcbeqaaiaaikdaaaaa keaacaaI4aaaamaacmaabaGaaiikaiaaiodacqGHRaWkcqaH9oGBca GGPaGaamyyamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaacIcacaaI ZaGaeqyVd4Maey4kaSIaaGymaiaacMcacaWGYbWaaWbaaSqabeaaca aIYaaaaaGccaGL7bGaayzFaaaaaaa@6766@

 

 

Derivation: To derive these results, recall that the governing equation is

2 u r 2 + 1 r u r u r 2 = r { 1 r r ( ru ) }= ( 1 ν 2 ) E ρ 0 ω 2 r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhaaeaacqGHciITcaWGYbWaaWbaaSqabeaacaaI YaaaaaaakiabgUcaRmaalaaabaGaaGymaaqaaiaadkhaaaWaaSaaae aacqGHciITcaWG1baabaGaeyOaIyRaamOCaaaacqGHsisldaWcaaqa aiaadwhaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9m aalaaabaGaeyOaIylabaGaeyOaIyRaamOCaaaadaGadaqaamaalaaa baGaaGymaaqaaiaadkhaaaWaaSaaaeaacqGHciITaeaacqGHciITca WGYbaaamaabmaabaGaamOCaiaadwhaaiaawIcacaGLPaaaaiaawUha caGL9baacqGH9aqpcqGHsisldaWcaaqaamaabmaabaGaaGymaiabgk HiTiabe27aUnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaqa aiaadweaaaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaeqyYdC3aaW baaSqabeaacaaIYaaaaOGaamOCaaaa@63F4@

The equation can be integrated to see that

u=Ar+ B r ( 1 ν 2 ) 8E ρ 0 ω 2 r 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bGaeyypa0Jaamyqaiaadkhacq GHRaWkdaWcaaqaaiaadkeaaeaacaWGYbaaaiabgkHiTmaalaaabaWa aeWaaeaacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaa GccaGLOaGaayzkaaaabaGaaGioaiaadweaaaGaeqyWdi3aaSbaaSqa aiaaicdaaeqaaOGaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGaamOCam aaCaaaleqabaGaaG4maaaaaaa@48E8@

The radial stress follows as

σ rr = E 1 ν 2 ( du dr +ν u r )= E 1 ν 2 { ( 1+ν )A( 1ν ) B r 2 ( 1 ν 2 ) ρ 0 ω 2 8E ( 3+ν ) r 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOCaiaadk haaeqaaOGaeyypa0ZaaSaaaeaacaWGfbaabaGaaGymaiabgkHiTiab e27aUnaaCaaaleqabaGaaGOmaaaaaaGcdaqadaqaamaalaaabaGaam izaiaadwhaaeaacaWGKbGaamOCaaaacqGHRaWkcqaH9oGBdaWcaaqa aiaadwhaaeaacaWGYbaaaaGaayjkaiaawMcaaiabg2da9maalaaaba GaamyraaqaaiaaigdacqGHsislcqaH9oGBdaahaaWcbeqaaiaaikda aaaaaOWaaiWaaeaadaqadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawI cacaGLPaaacaWGbbGaeyOeI0YaaeWaaeaacaaIXaGaeyOeI0IaeqyV d4gacaGLOaGaayzkaaWaaSaaaeaacaWGcbaabaGaamOCamaaCaaale qabaGaaGOmaaaaaaGccqGHsisldaWcaaqaamaabmaabaGaaGymaiab gkHiTiabe27aUnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaai abeg8aYnaaBaaaleaacaaIWaaabeaakiabeM8a3naaCaaaleqabaGa aGOmaaaaaOqaaiaaiIdacaWGfbaaamaabmaabaGaaG4maiabgUcaRi abe27aUbGaayjkaiaawMcaaiaadkhadaahaaWcbeqaaiaaikdaaaaa kiaawUhacaGL9baaaaa@7215@

The radial stress must be bounded at r=0, which is only possible if B=0.  In addition, the radial stress must be zero at r=a, which requires that

A= ρ 0 ω 2 8E ( 3+ν ) (1+ν) a 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGbbGaeyypa0ZaaSaaaeaacqaHbp GCdaWgaaWcbaGaaGimaaqabaGccqaHjpWDdaahaaWcbeqaaiaaikda aaaakeaacaaI4aGaamyraaaadaWcaaqaamaabmaabaGaaG4maiabgU caRiabe27aUbGaayjkaiaawMcaaaqaaiaacIcacaaIXaGaey4kaSIa eqyVd4MaaiykaaaacaWGHbWaaWbaaSqabeaacaaIYaaaaaaa@470B@

The remaining results follow by straightforward algebra.

 

Example 3: Stresses induced by an interference fit between two cylinders

 

Interference fits are often used to secure a bushing or a bearing housing to a shaft.  In this problem we calculate the stress induced by such an interference fit.

Consider a hollow cylindrical bushing, with outer radius b and inner radius a.  Suppose that a solid shaft with radius a+Δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGHbGaey4kaSIaeuiLdqeaaa@35F4@ , with Δ/a<<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqqHuoarcaGGVaGaamyyaiabgYda8i abgYda8iaaigdaaaa@3888@  is inserted into the cylinder as shown.  (In practice, this is done by heating the cylinder or cooling the shaft until they fit, and then letting the system return to thermal equilibrium)

 No body forces act on the solids

 The angular velocity is zero

 The cylinders have uniform temperature

 The shaft slides freely inside the bushing

 The ends of the cylinder are free of force.

 Both the shaft and cylinder have the same Young’s modulus E and Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH9oGBaaa@347E@

 The cylinder and shaft are sufficiently long to ensure that a state of generalized plane strain can be developed in each solid.

 

The displacements, strains and stresses in the solid shaft  (r<a) are

u= ( 1+ν )( 12ν )Δ( b 2 a 2 ) 2a b 2 r e r 2 ν 2 Δ( b 2 a 2 ) 2a b 2 r e r +2ν Δ( b 2 a 2 ) 2a b 2 z e z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaeyypa0JaeyOeI0YaaSaaae aadaqadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaadaqa daqaaiaaigdacqGHsislcaaIYaGaeqyVd4gacaGLOaGaayzkaaGaeu iLdqKaaiikaiaadkgadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG HbWaaWbaaSqabeaacaaIYaaaaOGaaiykaaqaaiaaikdacaWGHbGaam OyamaaCaaaleqabaGaaGOmaaaaaaGccaWGYbGaaCyzamaaBaaaleaa caWGYbaabeaakiabgkHiTiaaikdacqaH9oGBdaahaaWcbeqaaiaaik daaaGcdaWcaaqaaiabfs5aejaacIcacaWGIbWaaWbaaSqabeaacaaI YaaaaOGaeyOeI0IaamyyamaaCaaaleqabaGaaGOmaaaakiaacMcaae aacaaIYaGaamyyaiaadkgadaahaaWcbeqaaiaaikdaaaaaaOGaamOC aiaahwgadaWgaaWcbaGaamOCaaqabaGccqGHRaWkcaaIYaGaeqyVd4 2aaSaaaeaacqqHuoarcaGGOaGaamOyamaaCaaaleqabaGaaGOmaaaa kiabgkHiTiaadggadaahaaWcbeqaaiaaikdaaaGccaGGPaaabaGaaG OmaiaadggacaWGIbWaaWbaaSqabeaacaaIYaaaaaaakiaadQhacaWH LbWaaSbaaSqaaiaadQhaaeqaaaaa@71E0@

ε rr = ε θθ = ( 1+ν )( 12ν )Δ( b 2 a 2 ) 2a b 2 2 ν 2 Δ( b 2 a 2 ) 2a b 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamOCaiaadk haaeqaaOGaeyypa0JaeqyTdu2aaSbaaSqaaiabeI7aXjabeI7aXbqa baGccqGH9aqpcqGHsisldaWcaaqaamaabmaabaGaaGymaiabgUcaRi abe27aUbGaayjkaiaawMcaamaabmaabaGaaGymaiabgkHiTiaaikda cqaH9oGBaiaawIcacaGLPaaacqqHuoarcaGGOaGaamOyamaaCaaale qabaGaaGOmaaaakiabgkHiTiaadggadaahaaWcbeqaaiaaikdaaaGc caGGPaaabaGaaGOmaiaadggacaWGIbWaaWbaaSqabeaacaaIYaaaaa aakiabgkHiTiaaikdacqaH9oGBdaahaaWcbeqaaiaaikdaaaGcdaWc aaqaaiabfs5aejaacIcacaWGIbWaaWbaaSqabeaacaaIYaaaaOGaey OeI0IaamyyamaaCaaaleqabaGaaGOmaaaakiaacMcaaeaacaaIYaGa amyyaiaadkgadaahaaWcbeqaaiaaikdaaaaaaaaa@6375@

σ rr = σ θθ = EΔ( b 2 a 2 ) 2a b 2 σ zz =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOCaiaadk haaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI7aXbqa baGccqGH9aqpcqGHsisldaWcaaqaaiaadweacqqHuoarcaGGOaGaam OyamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadggadaahaaWcbeqa aiaaikdaaaGccaGGPaaabaGaaGOmaiaadggacaWGIbWaaWbaaSqabe aacaaIYaaaaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8Uaeq4Wdm3aaSbaaSqaaiaadQhacaWG6baa beaakiabg2da9iaaicdaaaa@6AB1@

In the hollow cylinder, they are

u= ( 1+ν )a r Δ 2 { 1+( 12ν ) r 2 b 2 } e r ν 2 Δa b 2 r e r +2 ν 2 Δa b 2 z e z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaeyypa0ZaaSaaaeaadaqada qaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaacaWGHbaabaGa amOCaaaadaWcaaqaaiabfs5aebqaaiaaikdaaaWaaiWaaeaacaaIXa Gaey4kaSYaaeWaaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbGaayjk aiaawMcaamaalaaabaGaamOCamaaCaaaleqabaGaaGOmaaaaaOqaai aadkgadaahaaWcbeqaaiaaikdaaaaaaaGccaGL7bGaayzFaaGaaCyz amaaBaaaleaacaWGYbaabeaakiabgkHiTiabe27aUnaaCaaaleqaba GaaGOmaaaakmaalaaabaGaeuiLdqKaamyyaaqaaiaadkgadaahaaWc beqaaiaaikdaaaaaaOGaamOCaiaahwgadaWgaaWcbaGaamOCaaqaba GccqGHRaWkcaaIYaGaeqyVd42aaWbaaSqabeaacaaIYaaaaOWaaSaa aeaacqqHuoarcaWGHbaabaGaamOyamaaCaaaleqabaGaaGOmaaaaaa GccaWG6bGaaCyzamaaBaaaleaacaWG6baabeaaaaa@639F@

ε rr = ( 1+ν )a r 2 Δ 2 { 1+( 12ν ) r 2 b 2 } ν 2 Δa b 2 ε θθ = ( 1+ν )a r 2 Δ 2 { 1+( 12ν ) r 2 b 2 } ν 2 Δa b 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiabew7aLnaaBaaaleaacaWGYb GaamOCaaqabaGccqGH9aqpdaWcaaqaamaabmaabaGaaGymaiabgUca Riabe27aUbGaayjkaiaawMcaaiaadggaaeaacaWGYbWaaWbaaSqabe aacaaIYaaaaaaakmaalaaabaGaeuiLdqeabaGaaGOmaaaadaGadaqa aiabgkHiTiaaigdacqGHRaWkdaqadaqaaiaaigdacqGHsislcaaIYa GaeqyVd4gacaGLOaGaayzkaaWaaSaaaeaacaWGYbWaaWbaaSqabeaa caaIYaaaaaGcbaGaamOyamaaCaaaleqabaGaaGOmaaaaaaaakiaawU hacaGL9baacqGHsislcqaH9oGBdaahaaWcbeqaaiaaikdaaaGcdaWc aaqaaiabfs5aejaadggaaeaacaWGIbWaaWbaaSqabeaacaaIYaaaaa aaaOqaaiabew7aLnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaOGaeyyp a0ZaaSaaaeaadaqadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawIcaca GLPaaacaWGHbaabaGaamOCamaaCaaaleqabaGaaGOmaaaaaaGcdaWc aaqaaiabfs5aebqaaiaaikdaaaWaaiWaaeaacaaIXaGaey4kaSYaae WaaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbGaayjkaiaawMcaamaa laaabaGaamOCamaaCaaaleqabaGaaGOmaaaaaOqaaiaadkgadaahaa WcbeqaaiaaikdaaaaaaaGccaGL7bGaayzFaaGaeyOeI0IaeqyVd42a aWbaaSqabeaacaaIYaaaaOWaaSaaaeaacqqHuoarcaWGHbaabaGaam OyamaaCaaaleqabaGaaGOmaaaaaaaaaaa@7CD9@

σ rr = EΔa 2 b 2 { 1 b 2 r 2 } σ θθ = EΔa 2 b 2 { 1+ b 2 r 2 } σ zz =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamOCaiaadk haaeqaaOGaeyypa0ZaaSaaaeaacaWGfbGaeuiLdqKaamyyaaqaaiaa ikdacaWGIbWaaWbaaSqabeaacaaIYaaaaaaakmaacmaabaGaaGymai abgkHiTmaalaaabaGaamOyamaaCaaaleqabaGaaGOmaaaaaOqaaiaa dkhadaahaaWcbeqaaiaaikdaaaaaaaGccaGL7bGaayzFaaGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlabeo8aZnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaOGaeyypa0 ZaaSaaaeaacaWGfbGaeuiLdqKaamyyaaqaaiaaikdacaWGIbWaaWba aSqabeaacaaIYaaaaaaakmaacmaabaGaaGymaiabgUcaRmaalaaaba GaamOyamaaCaaaleqabaGaaGOmaaaaaOqaaiaadkhadaahaaWcbeqa aiaaikdaaaaaaaGccaGL7bGaayzFaaGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8Uaeq4Wdm3aaSbaaSqaaiaadQhacaWG6baabeaakiabg2da9iaaic daaaa@808D@

 

Derivation: These results can be derived using the solution to a pressurized cylinder given in Section 4.1.9. After the shaft is inserted into the tube, a pressure p acts to compress the shaft, and the same pressure pushes outwards to expand the cylinder.  Suppose that this pressure induces a radial displacement u s (r) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bWaaWbaaSqabeaacaWGZbaaaO GaaiikaiaadkhacaGGPaaaaa@373F@  in the solid cylinder, and a radial displacement u c (r) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bWaaWbaaSqabeaacaWGJbaaaO GaaiikaiaadkhacaGGPaaaaa@372F@  in the hollow tube.  To accommodate the interference, the displacements must satisfy

u c (r=a) u s (r=a)=Δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bWaaWbaaSqabeaacaWGJbaaaO GaaiikaiaadkhacqGH9aqpcaWGHbGaaiykaiabgkHiTiaadwhadaah aaWcbeqaaiaadohaaaGccaGGOaGaamOCaiabg2da9iaadggacaGGPa Gaeyypa0JaeuiLdqeaaa@42D9@

Evaluating the relevant displacements using the formulas in 4.1.9 gives

u s (r=a)= ( 12ν )( 1+ν ) E pa 2 ν 2 E pa u c (r=a)= ( 1+ν ) a 2 b 2 E( b 2 a 2 ) { p a +( 12ν ) pa b 2 }+ 2 ν 2 p a 3 E( b 2 a 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaadwhadaahaaWcbeqaaiaado haaaGccaGGOaGaamOCaiabg2da9iaadggacaGGPaGaeyypa0JaeyOe I0YaaSaaaeaadaqadaqaaiaaigdacqGHsislcaaIYaGaeqyVd4gaca GLOaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGLOaGa ayzkaaaabaGaamyraaaacaWGWbGaamyyaiabgkHiTmaalaaabaGaaG Omaiabe27aUnaaCaaaleqabaGaaGOmaaaaaOqaaiaadweaaaGaamiC aiaadggaaeaacaWG1bWaaWbaaSqabeaacaWGJbaaaOGaaiikaiaadk hacqGH9aqpcaWGHbGaaiykaiabg2da9maalaaabaWaaeWaaeaacaaI XaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaGaamyyamaaCaaaleqaba GaaGOmaaaakiaadkgadaahaaWcbeqaaiaaikdaaaaakeaacaWGfbWa aeWaaeaacaWGIbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0Iaamyyam aaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaaadaGadaqaamaa laaabaGaamiCaaqaaiaadggaaaGaey4kaSYaaeWaaeaacaaIXaGaey OeI0IaaGOmaiabe27aUbGaayjkaiaawMcaamaalaaabaGaamiCaiaa dggaaeaacaWGIbWaaWbaaSqabeaacaaIYaaaaaaaaOGaay5Eaiaaw2 haaiabgUcaRmaalaaabaGaaGOmaiabe27aUnaaCaaaleqabaGaaGOm aaaakiaadchacaWGHbWaaWbaaSqabeaacaaIZaaaaaGcbaGaamyrai aacIcacaWGIbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0Iaamyyamaa CaaaleqabaGaaGOmaaaakiaacMcaaaaaaaa@82A8@

Here, we have assumed that the axial force acting on both the shaft and the tube must vanish separately, since they slide freely relative to one another.  Solving these two equations for p shows that

p= EΔ( b 2 a 2 ) 2a b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGWbGaeyypa0ZaaSaaaeaacaWGfb GaeuiLdqKaaiikaiaadkgadaahaaWcbeqaaiaaikdaaaGccqGHsisl caWGHbWaaWbaaSqabeaacaaIYaaaaOGaaiykaaqaaiaaikdacaWGHb GaamOyamaaCaaaleqabaGaaGOmaaaaaaaaaa@406C@

 

 

 8.11 Airy Function Solution to Plane Stress and Strain Static Linear Elastic Problems

 

In this section we outline a general technique for solving 2D static linear elasticity problems.  The technique is known as the `Airy Stress Function’ method.

 

A typical plane elasticity problem is illustrated in the picture.  The solid is two dimensional, which means either that

1.      The solid is a thin sheet, with small thickness h, and is loaded only in the { e 1 , e 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaaigdaae qaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGG9baaaa@36D7@  plane.  In this case the plane stress solution is applicable

2.      The solid is very long in the e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@323F@  direction, is prevented from stretching parallel to the e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@323F@  axis, and every cross section is loaded identically and only in the { e 1 , e 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaaigdaae qaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGG9baaaa@36D7@  plane.  In this case, the plane strain solution is applicable.

 

Some additional basic assumptions and restrictions are:

 The Airy stress function is applicable only to isotropic solids.  We will assume that the solid has Young’s modulus E, Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUbaa@3220@  and mass density ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg8aYnaaBaaaleaacaaIWaaabeaaaa a@330E@

 The Airy Stress function can only be used if the body force has a special form. Specifically, the requirement is

ρ 0 b 1 = Ω x 1 ρ 0 b 2 = Ω x 2 b 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg8aYnaaBaaaleaacaaIWaaabeaaki aadkgadaWgaaWcbaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiabgkGi 2kabfM6axbqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaO GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaeqyWdi3aaSbaaSqaaiaaicdaae qaaOGaamOyamaaBaaaleaacaaIYaaabeaakiabg2da9maalaaabaGa eyOaIyRaeuyQdCfabaGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabe aaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caWGIbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaaG imaaaa@6C36@

where Ω( x 1 , x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfM6axjaacIcacaWG4bWaaSbaaSqaai aaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGG Paaaaa@37EB@  is a scalar function of position.  Fortunately, most practical body forces can be expressed in this form, including gravity.

 The Airy Stress Function approach works best for problems where a solid is subjected to prescribed tractions on its boundary, rather than prescribed displacements.  Specifically, we will assume that the solid is loaded by boundary tractions t 1 ( x 1 , x 2 ) t 2 ( x 1 , x 2 ) t 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadshadaWgaaWcbaGaaGymaaqabaGcca GGOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSba aSqaaiaaikdaaeqaaOGaaiykaiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaadshadaWgaaWcbaGaaGOmaaqabaGccaGGOaGaamiE amaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaik daaeqaaOGaaiykaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaamiDamaaBaaaleaacaaIZaaabeaakiabg2da9i aaicdaaaa@594F@ .

 

 

The Airy solution in rectangular coordinates

 

The Airy function procedure can then be summarized as follows:

1.      Begin by finding a scalar function ϕ( x 1 , x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew9aMjaacIcacaWG4bWaaSbaaSqaai aaigdaaeqaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaGG Paaaaa@3815@  (known as the Airy potential) which satisfies:

4 ϕ 4 ϕ x 1 4 +2 4 ϕ x 1 2 x 2 2 + 4 ϕ x 1 4 =C( ν )( b 1 x 1 + b 2 x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgEGirpaaCaaaleqabaGaaGinaaaaki abew9aMjabggMi6oaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI0aaa aOGaeqy1dygabaGaeyOaIyRaamiEamaaDaaaleaacaaIXaaabaGaaG inaaaaaaGccqGHRaWkcaaIYaWaaSaaaeaacqGHciITdaahaaWcbeqa aiaaisdaaaGccqaHvpGzaeaacqGHciITcaWG4bWaa0baaSqaaiaaig daaeaacaaIYaaaaOGaeyOaIyRaamiEamaaDaaaleaacaaIYaaabaGa aGOmaaaaaaGccqGHRaWkdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaG inaaaakiabew9aMbqaaiabgkGi2kaadIhadaqhaaWcbaGaaGymaaqa aiaaisdaaaaaaOGaeyypa0Jaam4qamaabmaabaGaeqyVd4gacaGLOa GaayzkaaWaaeWaaeaadaWcaaqaaiabgkGi2kaadkgadaWgaaWcbaGa aGymaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaa aakiabgUcaRmaalaaabaGaeyOaIyRaamOyamaaBaaaleaacaaIYaaa beaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaaGcca GLOaGaayzkaaaaaa@6A95@

where

C( ν )={ 1ν 12ν (Plane Strain) 1 1ν (Plane Stress) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadoeadaqadaqaaiabe27aUbGaayjkai aawMcaaiabg2da9maaceaaeaqabeaadaWcaaqaaiaaigdacqGHsisl cqaH9oGBaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbaacaaMc8UaaG PaVlaaykW7caaMc8UaaeikaiaabcfacaqGSbGaaeyyaiaab6gacaqG LbGaaeiiaiaabofacaqG0bGaaeOCaiaabggacaqGPbGaaeOBaiaabM caaeaadaWcaaqaaiaabgdaaeaacaqGXaGaeyOeI0IaeqyVd4gaaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaabIcacaqGqbGaaeiBaiaabggacaqGUbGaaeyzaiaabccacaqG tbGaaeiDaiaabkhacaqGLbGaae4CaiaabohacaqGPaaaaiaawUhaai aaykW7aaa@6FE5@

In addition  must satisfy the following traction boundary conditions on the surface of the solid

2 ϕ x 2 2 n 1 2 ϕ x 1 x 2 n 2 = t 1 2 ϕ x 1 2 n 2 2 ϕ x 1 x 2 n 1 = t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIy7aaWbaaSqabeaaca aIYaaaaOGaeqy1dygabaGaeyOaIyRaamiEamaaDaaaleaacaaIYaaa baGaaGOmaaaaaaGccaWGUbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0 YaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccqaHvpGzaeaa cqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOaIyRaamiEam aaBaaaleaacaaIYaaabeaaaaGccaWGUbWaaSbaaSqaaiaaikdaaeqa aOGaeyypa0JaamiDamaaBaaaleaacaaIXaaabeaakiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaacqGHciITdaahaaWcbe qaaiaaikdaaaGccqaHvpGzaeaacqGHciITcaWG4bWaa0baaSqaaiaa igdaaeaacaaIYaaaaaaakiaad6gadaWgaaWcbaGaaGOmaaqabaGccq GHsisldaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabew9a MbqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaGccqGHciITca WG4bWaaSbaaSqaaiaaikdaaeqaaaaakiaad6gadaWgaaWcbaGaaGym aaqabaGccqGH9aqpcaWG0bWaaSbaaSqaaiaaikdaaeqaaaaa@7B7D@

where ( n 1 , n 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacIcacaWGUbWaaSbaaSqaaiaaigdaae qaaOGaaiilaiaad6gadaWgaaWcbaGaaGOmaaqabaGccaGGPaaaaa@363A@  are the components of a unit vector normal to the boundary.

2.      Given , the stress field within the region of interest can be calculated from the formulas

σ 11 = 2 ϕ x 2 2 Ω σ 22 = 2 ϕ x 1 2 Ω σ 12 = σ 21 = 2 ϕ x 1 x 2 σ 33 =0(Plane Stress) σ 33 =ν( σ 11 + σ 22 )(Plane Strain) σ 23 = σ 13 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaeq4Wdm3aaSbaaSqaaiaaigdaca aIXaaabeaakiabg2da9maalaaabaGaeyOaIy7aaWbaaSqabeaacaaI YaaaaOGaeqy1dygabaGaeyOaIyRaamiEamaaDaaaleaacaaIYaaaba GaaGOmaaaaaaGccaaMc8UaeyOeI0IaeuyQdCLaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHdpWCdaWg aaWcbaGaaGOmaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacqGHciITda ahaaWcbeqaaiaaikdaaaGccqaHvpGzaeaacqGHciITcaWG4bWaa0ba aSqaaiaaigdaaeaacaaIYaaaaaaakiaaykW7cqGHsislcqqHPoWvca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq 4Wdm3aaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da9iabeo8aZnaa BaaaleaacaaIYaGaaGymaaqabaGccqGH9aqpcqGHsisldaWcaaqaai abgkGi2oaaCaaaleqabaGaaGOmaaaakiabew9aMbqaaiabgkGi2kaa dIhadaWgaaWcbaGaaGymaaqabaGccqGHciITcaWG4bWaaSbaaSqaai aaikdaaeqaaaaaaOqaaiabeo8aZnaaBaaaleaacaaIZaGaaG4maaqa baGccqGH9aqpcaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaiikaiaabcfacaqGSbGaaeyy aiaab6gacaqGLbGaaeiiaiaabofacaqG0bGaaeOCaiaabwgacaqGZb Gaae4CaiaabMcaaeaacqaHdpWCdaWgaaWcbaGaae4maiaabodaaeqa aOGaeyypa0JaeqyVd42aaeWaaeaacqaHdpWCdaWgaaWcbaGaaGymai aaigdaaeqaaOGaey4kaSIaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaa beaaaOGaayjkaiaawMcaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaiikaiaabcfacaqGSbGaaeyyaiaab6gacaqGLbGaaeiiai aabofacaqG0bGaaeOCaiaabggacaqGPbGaaeOBaiaabMcaaeaacqaH dpWCdaWgaaWcbaGaaeOmaiaabodaaeqaaOGaeyypa0Jaeq4Wdm3aaS baaSqaaiaaigdacaaIZaaabeaakiabg2da9iaaicdaaaaa@263C@

3.      If the strains are needed, they may be computed from the stresses using the elastic stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8hfGaaa@3723@ strain relations.

4.      If the displacement field is needed, it may be computed by integrating the strains, following the procedure described in Section 2.1.20.  An example (in polar coordinates) is given in Section 5.2.4 below.

 

Although it is easier to solve for  than it is to solve for stress directly, this is still not a trivial exercise.  Usually, one guesses a suitable form for , as illustrated below.  This may seem highly unsatisfactory, but remember that we are essentially integrating a system of PDEs.  The general procedure to evaluate any integral is to guess a solution, differentiate it, and see if the guess was correct. 

 

 

Demonstration that the Airy solution satisfies the governing equations

 

Recall that to solve a linear elasticity problem, we need to satisfy the following equations:

 Displacement MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieqajugybabaaa aaaaaapeGaa8hfGaaa@3724@ strain relation ε ij = 1 2 ( u i x j + u j x i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaWa aSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaey OaIyRaamiEamaaBaaaleaacaWGQbaabeaaaaGccqGHRaWkdaWcaaqa aiabgkGi2kaadwhadaWgaaWcbaGaamOAaaqabaaakeaacqGHciITca WG4bWaaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaaaa@4751@

 Stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieqajugybabaaa aaaaaapeGaa8hfGaaa@3724@ strain relation ε ij = 1+ν E σ ij ν E σ kk δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpdaWcaaqaaiaaigdacqGHRaWkcqaH9oGBaeaacaWG fbaaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsislda Wcaaqaaiabe27aUbqaaiaadweaaaGaeq4Wdm3aaSbaaSqaaiaadUga caWGRbaabeaakiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaaaaa@4832@

 Equilibrium Equation σ ij x i + ρ 0 b j =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaS qaaiaadMgacaWGQbaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGa amyAaaqabaaaaOGaey4kaSIaeqyWdi3aaSbaaSqaaiaaicdaaeqaaO GaamOyamaaBaaaleaacaWGQbaabeaakiabg2da9iaaicdaaaa@4098@  

 where we have neglected thermal expansion, for simplicity.

 

The Airy function is chosen so as to satisfy the equilibrium equations automatically.  For plane stress or plane strain conditions, the equilibrium equations reduce to

σ 11 x 1 + σ 12 x 2 + ρ 0 b 1 =0 σ 12 x 1 + σ 22 x 2 + ρ 0 b 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaS qaaiaaigdacaaIXaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGa aGymaaqabaaaaOGaey4kaSYaaSaaaeaacqGHciITcqaHdpWCdaWgaa WcbaGaaGymaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaa caaIYaaabeaaaaGccqGHRaWkcqaHbpGCdaWgaaWcbaGaaGimaaqaba GccaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7daWcaaqaaiabgkGi2kabeo8aZnaaBaaaleaacaaIXa GaaGOmaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqa aaaakiabgUcaRmaalaaabaGaeyOaIyRaeq4Wdm3aaSbaaSqaaiaaik dacaaIYaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqa baaaaOGaey4kaSIaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaamOyam aaBaaaleaacaaIYaaabeaakiabg2da9iaaicdaaaa@7EBB@

Substitute for the stresses in terms of  to see that

x 1 ( 2 ϕ x 2 2 Ω )+ x 2 ( 2 ϕ x 1 x 2 )+ ρ 0 b 1 =0 x 1 ( 2 ϕ x 1 x 2 )+ x 2 ( 2 ϕ x 1 2 Ω )+ ρ 0 b 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaaSaaaeaacqGHciITaeaacqGHci ITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaakmaabmaabaWaaSaaaeaa cqGHciITdaahaaWcbeqaaiaaikdaaaGccqaHvpGzaeaacqGHciITca WG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaaakiabgkHiTiabfM6a xbGaayjkaiaawMcaaiabgUcaRmaalaaabaGaeyOaIylabaGaeyOaIy RaamiEamaaBaaaleaacaaIYaaabeaaaaGcdaqadaqaaiabgkHiTmaa laaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeqy1dygabaGaey OaIyRaamiEamaaBaaaleaacaaIXaaabeaakiabgkGi2kaadIhadaWg aaWcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaGaey4kaSIaeqyWdi 3aaSbaaSqaaiaaicdaaeqaaOGaamOyamaaBaaaleaacaaIXaaabeaa kiabg2da9iaaicdaaeaadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadI hadaWgaaWcbaGaaGymaaqabaaaaOWaaeWaaeaacqGHsisldaWcaaqa aiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabew9aMbqaaiabgkGi2k aadIhadaWgaaWcbaGaaGymaaqabaGccqGHciITcaWG4bWaaWbaaSqa beaacaaIYaaaaaaaaOGaayjkaiaawMcaaiabgUcaRmaalaaabaGaey OaIylabaGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaGcdaqa daqaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeqy1dy gabaGaeyOaIyRaamiEamaaDaaaleaacaaIXaaabaGaaGOmaaaaaaGc cqGHsislcqqHPoWvaiaawIcacaGLPaaacqGHRaWkcqaHbpGCdaWgaa WcbaGaaGimaaqabaGccaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaeyyp a0JaaGimaaaaaa@86DF@

so that the equilibrium equations are satisfied automatically for any choice of .  To ensure that the other two equations are satisfied, we first compute the strains using the elastic stress-strain equations.  Recall that

σ 33 =βν( σ 11 + σ 22 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIZaGaaG4maa qabaGccqGH9aqpcqaHYoGycqaH9oGBdaqadaqaaiabeo8aZnaaBaaa leaacaaIXaGaaGymaaqabaGccqGHRaWkcqaHdpWCdaWgaaWcbaGaaG OmaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@4184@

with β=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabek7aIjabg2da9iaaicdaaaa@33C8@  for plane stress and β=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabek7aIjabg2da9iaaigdaaaa@33C9@  for plane strain.  Hence

ε ij = 1+ν E σ ij ν E σ kk δ ij ε 11 = 1+ν E σ 11 ν E ( 1+βν )( σ 11 + σ 22 ) ε 22 = 1+ν E σ 22 ν E ( 1+βν )( σ 11 + σ 22 ) ε 12 = 1+ν E σ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaeqyTdu2aaSbaaSqaaiaadMgaca WGQbaabeaakiabg2da9maalaaabaGaaGymaiabgUcaRiabe27aUbqa aiaadweaaaGaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabgk HiTmaalaaabaGaeqyVd4gabaGaamyraaaacqaHdpWCdaWgaaWcbaGa am4AaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabe aaaOqaaiabgkDiElabew7aLnaaBaaaleaacaaIXaGaaGymaaqabaGc cqGH9aqpdaWcaaqaaiaaigdacqGHRaWkcqaH9oGBaeaacaWGfbaaai abeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaGccqGHsisldaWcaaqa aiabe27aUbqaaiaadweaaaWaaeWaaeaacaaIXaGaey4kaSIaeqOSdi MaeqyVd4gacaGLOaGaayzkaaWaaeWaaeaacqaHdpWCdaWgaaWcbaGa aGymaiaaigdaaeqaaOGaey4kaSIaeq4Wdm3aaSbaaSqaaiaaikdaca aIYaaabeaaaOGaayjkaiaawMcaaaqaaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqyTdu2aaSbaaSqaaiaaik dacaaIYaaabeaakiabg2da9maalaaabaGaaGymaiabgUcaRiabe27a UbqaaiaadweaaaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaaki abgkHiTmaalaaabaGaeqyVd4gabaGaamyraaaadaqadaqaaiaaigda cqGHRaWkcqaHYoGycqaH9oGBaiaawIcacaGLPaaadaqadaqaaiabeo 8aZnaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkcqaHdpWCdaWg aaWcbaGaaGOmaiaaikdaaeqaaaGccaGLOaGaayzkaaaabaGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH1oqz daWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacaaIXa Gaey4kaSIaeqyVd4gabaGaamyraaaacqaHdpWCdaWgaaWcbaGaaGym aiaaikdaaeqaaaaaaa@ADC5@

Next, recall that the strain MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8hfGaaa@3723@ displacement relation is satisfied provided that the strains obey the compatibility conditions

2 ε 11 x 2 2 + 2 ε 22 x 1 2 2 2 ε 12 x 1 x 2 =0 2 ε 11 x 3 2 + 2 ε 33 x 1 2 2 2 ε 13 x 1 x 3 =0 2 ε 22 x 3 2 + 2 ε 33 x 2 2 2 2 ε 23 x 2 x 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaamaalaaabaGaeyOaIy7aaWbaaS qabeaacaaIYaaaaOGaeqyTdu2aaSbaaSqaaiaaigdacaaIXaaabeaa aOqaaiabgkGi2kaadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaaaO Gaey4kaSYaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccqaH 1oqzdaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEam aaDaaaleaacaaIXaaabaGaaGOmaaaaaaGccqGHsislcaaIYaWaaSaa aeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccqaH1oqzdaWgaaWcba GaaGymaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaI XaaabeaakiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaOGaey ypa0JaaGimaaqaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaa aOGaeqyTdu2aaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabgkGi2k aadIhadaqhaaWcbaGaaG4maaqaaiaaikdaaaaaaOGaey4kaSYaaSaa aeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccqaH1oqzdaWgaaWcba GaaG4maiaaiodaaeqaaaGcbaGaeyOaIyRaamiEamaaDaaaleaacaaI XaaabaGaaGOmaaaaaaGccqGHsislcaaIYaWaaSaaaeaacqGHciITda ahaaWcbeqaaiaaikdaaaGccqaH1oqzdaWgaaWcbaGaaGymaiaaioda aeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaakiabgk Gi2kaadIhadaWgaaWcbaGaaG4maaqabaaaaOGaeyypa0JaaGimaaqa amaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeqyTdu2aaS baaSqaaiaaikdacaaIYaaabeaaaOqaaiabgkGi2kaadIhadaqhaaWc baGaaG4maaqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacqGHciITda ahaaWcbeqaaiaaikdaaaGccqaH1oqzdaWgaaWcbaGaaG4maiaaioda aeqaaaGcbaGaeyOaIyRaamiEamaaDaaaleaacaaIYaaabaGaaGOmaa aaaaGccqGHsislcaaIYaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaa ikdaaaGccqaH1oqzdaWgaaWcbaGaaGOmaiaaiodaaeqaaaGcbaGaey OaIyRaamiEamaaBaaaleaacaaIYaaabeaakiabgkGi2kaadIhadaWg aaWcbaGaaG4maaqabaaaaOGaeyypa0JaaGimaaaaaa@9FC6@       2 ε 11 x 2 x 3 x 1 ( ε 23 x 1 + ε 31 x 2 + ε 12 x 3 )=0 2 ε 22 x 3 x 1 x 2 ( ε 31 x 2 + ε 12 x 3 + ε 23 x 1 )=0 2 ε 33 x 1 x 2 x 3 ( ε 12 x 3 + ε 23 x 1 + ε 31 x 2 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaamaalaaabaGaeyOaIy7aaWbaaS qabeaacaaIYaaaaOGaeqyTdu2aaSbaaSqaaiaaigdacaaIXaaabeaa aOqaaiabgkGi2kaadIhadaqhaaWcbaGaaGOmaaqaaaaakiabgkGi2k aadIhadaqhaaWcbaGaaG4maaqaaaaaaaGccqGHsisldaWcaaqaaiab gkGi2kaaykW7caaMc8oabaGaeyOaIyRaamiEamaaBaaaleaacaaIXa aabeaaaaGcdaqadaqaaiabgkHiTmaalaaabaGaeyOaIyRaeqyTdu2a aSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiabgkGi2kaadIhadaqhaa WcbaGaaGymaaqaaaaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kabew7a LnaaBaaaleaacaaIZaGaaGymaaqabaaakeaacqGHciITcaWG4bWaa0 baaSqaaiaaikdaaeaaaaaaaOGaey4kaSYaaSaaaeaacqGHciITcqaH 1oqzdaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEam aaDaaaleaacaaIZaaabaaaaaaaaOGaayjkaiaawMcaaiabg2da9iaa icdaaeaadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabew 7aLnaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacqGHciITcaWG4bWa a0baaSqaaiaaiodaaeaaaaGccqGHciITcaWG4bWaa0baaSqaaiaaig daaeaaaaaaaOGaeyOeI0YaaSaaaeaacqGHciITcaaMc8UaaGPaVdqa aiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaOWaaeWaaeaacq GHsisldaWcaaqaaiabgkGi2kabew7aLnaaBaaaleaacaaIZaGaaGym aaqabaaakeaacqGHciITcaWG4bWaa0baaSqaaiaaikdaaeaaaaaaaO Gaey4kaSYaaSaaaeaacqGHciITcqaH1oqzdaWgaaWcbaGaaGymaiaa ikdaaeqaaaGcbaGaeyOaIyRaamiEamaaDaaaleaacaaIZaaabaaaaa aakiabgUcaRmaalaaabaGaeyOaIyRaeqyTdu2aaSbaaSqaaiaaikda caaIZaaabeaaaOqaaiabgkGi2kaadIhadaqhaaWcbaGaaGymaaqaaa aaaaaakiaawIcacaGLPaaacqGH9aqpcaaIWaaabaWaaSaaaeaacqGH ciITdaahaaWcbeqaaiaaikdaaaGccqaH1oqzdaWgaaWcbaGaaG4mai aaiodaaeqaaaGcbaGaeyOaIyRaamiEamaaDaaaleaacaaIXaaabaaa aOGaeyOaIyRaamiEamaaDaaaleaacaaIYaaabaaaaaaakiabgkHiTm aalaaabaGaeyOaIyRaaGPaVlaaykW7aeaacqGHciITcaWG4bWaaSba aSqaaiaaiodaaeqaaaaakmaabmaabaGaeyOeI0YaaSaaaeaacqGHci ITcqaH1oqzdaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaeyOaIyRa amiEamaaDaaaleaacaaIZaaabaaaaaaakiabgUcaRmaalaaabaGaey OaIyRaeqyTdu2aaSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiabgkGi 2kaadIhadaqhaaWcbaGaaGymaaqaaaaaaaGccqGHRaWkdaWcaaqaai abgkGi2kabew7aLnaaBaaaleaacaaIZaGaaGymaaqabaaakeaacqGH ciITcaWG4bWaa0baaSqaaiaaikdaaeaaaaaaaaGccaGLOaGaayzkaa Gaeyypa0JaaGimaaaaaa@CD8C@

All but the first of these equations are satisfied automatically by any plane strain or plane stress field. Substitute into the first equation in terms of stress to see that

1+ν E ( 2 σ 11 x 2 2 + 2 σ 22 x 1 2 ) ν E ( 1+βν )( 2 x 1 2 + 2 x 2 2 )( σ 11 + σ 22 )2 1+ν E 2 σ 12 x 1 x 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaaGymaiabgUcaRiabe27aUb qaaiaadweaaaWaaeWaaeaadaWcaaqaaiabgkGi2oaaCaaaleqabaGa aGOmaaaakiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaaakeaacq GHciITcaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaaakiabgUca RmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeq4Wdm3aaS baaSqaaiaaikdacaaIYaaabeaaaOqaaiabgkGi2kaadIhadaqhaaWc baGaaGymaaqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaeyOeI0YaaS aaaeaacqaH9oGBaeaacaWGfbaaamaabmaabaGaaGymaiabgUcaRiab ek7aIjabe27aUbGaayjkaiaawMcaamaabmaabaWaaSaaaeaacqGHci ITdaahaaWcbeqaaiaaikdaaaaakeaacqGHciITcaWG4bWaa0baaSqa aiaaigdaaeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaeyOaIy7aaW baaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiEamaaDaaaleaacaaI YaaabaGaaGOmaaaaaaaakiaawIcacaGLPaaadaqadaqaaiabeo8aZn aaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkcqaHdpWCdaWgaaWc baGaaGOmaiaaikdaaeqaaaGccaGLOaGaayzkaaGaeyOeI0IaaGOmam aalaaabaGaaGymaiabgUcaRiabe27aUbqaaiaadweaaaWaaSaaaeaa cqGHciITdaahaaWcbeqaaiaaikdaaaGccqaHdpWCdaWgaaWcbaGaaG ymaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaa beaakiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaOGaeyypa0 JaaGimaaaa@8199@

Finally, substitute into this horrible looking equation for stress in terms of  and rearrange to see that

4 ϕ x 2 4 2 Ω x 2 2 + 4 ϕ x 1 4 2 Ω x 1 2 ν( 1+βν ) 1+ν ( 2 x 1 2 + 2 x 2 2 )( 2 ϕ x 1 2 + 2 ϕ x 2 2 2Ω )+2 4 ϕ x 1 2 x 2 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIy7aaWbaaSqabeaaca aI0aaaaOGaeqy1dygabaGaeyOaIyRaamiEamaaDaaaleaacaaIYaaa baGaaGinaaaaaaGccqGHsisldaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiabfM6axbqaaiabgkGi2kaadIhadaqhaaWcbaGaaGOm aaqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacqGHciITdaahaaWcbe qaaiaaisdaaaGccqaHvpGzaeaacqGHciITcaWG4bWaa0baaSqaaiaa igdaaeaacaaI0aaaaaaakiabgkHiTmaalaaabaGaeyOaIy7aaWbaaS qabeaacaaIYaaaaOGaeuyQdCfabaGaeyOaIyRaamiEamaaDaaaleaa caaIXaaabaGaaGOmaaaaaaGccqGHsisldaWcaaqaaiabe27aUnaabm aabaGaaGymaiabgUcaRiabek7aIjabe27aUbGaayjkaiaawMcaaaqa aiaaigdacqGHRaWkcqaH9oGBaaWaaeWaaeaadaWcaaqaaiabgkGi2o aaCaaaleqabaGaaGOmaaaaaOqaaiabgkGi2kaadIhadaqhaaWcbaGa aGymaaqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacqGHciITdaahaa WcbeqaaiaaikdaaaaakeaacqGHciITcaWG4bWaa0baaSqaaiaaikda aeaacaaIYaaaaaaaaOGaayjkaiaawMcaamaabmaabaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaGccqaHvpGzaeaacqGHciITcaWG 4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaaaakiabgUcaRmaalaaaba GaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeqy1dygabaGaeyOaIyRa amiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaaGccqGHsislcaaIYa GaeuyQdCfacaGLOaGaayzkaaGaey4kaSIaaGOmamaalaaabaGaeyOa Iy7aaWbaaSqabeaacaaI0aaaaOGaeqy1dygabaGaeyOaIyRaamiEam aaDaaaleaacaaIXaaabaGaaGOmaaaakiabgkGi2kaadIhadaqhaaWc baGaaGOmaaqaaiaaikdaaaaaaOGaeyypa0JaaGimaaaa@9585@

A few more weeks of algebra reduces this to

4 ϕ x 1 4 +2 4 ϕ x 1 2 x 2 2 + 4 ϕ x 1 4 = 1β ν 2 1ν2β ν 2 ( 2 Ω x 1 2 + 2 Ω x 2 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIy7aaWbaaSqabeaaca aI0aaaaOGaeqy1dygabaGaeyOaIyRaamiEamaaDaaaleaacaaIXaaa baGaaGinaaaaaaGccqGHRaWkcaaIYaWaaSaaaeaacqGHciITdaahaa WcbeqaaiaaisdaaaGccqaHvpGzaeaacqGHciITcaWG4bWaa0baaSqa aiaaigdaaeaacaaIYaaaaOGaeyOaIyRaamiEamaaDaaaleaacaaIYa aabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiabgkGi2oaaCaaaleqa baGaaGinaaaakiabew9aMbqaaiabgkGi2kaadIhadaqhaaWcbaGaaG ymaaqaaiaaisdaaaaaaOGaeyypa0ZaaSaaaeaacaaIXaGaeyOeI0Ia eqOSdiMaeqyVd42aaWbaaSqabeaacaaIYaaaaaGcbaGaaGymaiabgk HiTiabe27aUjabgkHiTiaaikdacqaHYoGycqaH9oGBdaahaaWcbeqa aiaaikdaaaaaaOWaaeWaaeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiabfM6axbqaaiabgkGi2kaadIhadaqhaaWcbaGaaGym aaqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacqGHciITdaahaaWcbe qaaiaaikdaaaGccqqHPoWvaeaacqGHciITcaWG4bWaa0baaSqaaiaa ikdaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaaaa@72A4@

which is the result we were looking for.

 

This proves that the Airy representation satisfies the governing equations.  A second important question is MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  is it possible to find an Airy function for all 2D plane stress and plane strain problems?  If not, the method would be useless, because you couldn’t tell ahead of time whether ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew9aMbaa@3240@  existed for the problem you were trying to solve.  Fortunately it is possible to prove that all properly posed 2D elasticity problems do have an Airy representation.

 

 

The Airy solution in cylindrical-polar coordinates

Boundary value problems involving cylindrical regions are best solved using Cylindrical-polar coordinates.  It is worth recording the Airy function equations for this coordinate system.

 

In a 2D cylindrical-polar coordinate system, a point in the solid is specified by its radial distance r= x 1 2 + x 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadkhacqGH9aqpdaGcaaqaaiaadIhada qhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRaWkcaWG4bWaa0baaSqa aiaaikdaaeaacaaIYaaaaaqabaaaaa@38A4@  from the origin and the angle θ= tan 1 x 2 / x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeI7aXjabg2da9iGacshacaGGHbGaai OBamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaadIhadaWgaaWcbaGa aGOmaaqabaGccaGGVaGaamiEamaaBaaaleaacaaIXaaabeaaaaa@3C5A@ .  The solution is independent of z.  The Airy function is written as a function of the coordinates as ϕ(r,θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew9aMjaacIcacaWGYbGaaiilaiabeI 7aXjaacMcaaaa@36E6@ .  Vector quantities (displacement, body force) and tensor quantities (strain, stress) are expressed as components in the basis { e r , e θ , e z } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaGadaqaaiaahwgadaWgaaWcbaGaam OCaaqabaGccaGGSaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaaiil aiaahwgadaWgaaWcbaGaamOEaaqabaaakiaawUhacaGL9baaaaa@3D6F@  shown in the picture.

 

The governing equation for the Airy function in this coordinate system is

( 2 r 2 + 1 r r + 1 r 2 2 θ 2 ) 2 ϕ=C( ν )( b r r + 1 r b θ θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa aiaabeqaaiqacaWaaaGcbaWaaeWaaeaadaWcaaqaaiabgkGi2oaaCa aaleqabaGaaGOmaaaaaOqaaiabgkGi2kaadkhadaahaaWcbeqaaiaa ikdaaaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaamOCaaaadaWcaa qaaiabgkGi2cqaaiabgkGi2kaadkhaaaGaey4kaSYaaSaaaeaacaaI XaaabaGaamOCamaaCaaaleqabaGaaGOmaaaaaaGcdaWcaaqaaiabgk Gi2oaaCaaaleqabaGaaGOmaaaaaOqaaiabgkGi2kabeI7aXnaaCaaa leqabaGaaGOmaaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaik daaaGccqaHvpGzcqGH9aqpcaWGdbWaaeWaaeaacqaH9oGBaiaawIca caGLPaaadaqadaqaamaalaaabaGaeyOaIyRaamOyamaaBaaaleaaca WGYbaabeaaaOqaaiabgkGi2kaadkhaaaGaey4kaSYaaSaaaeaacaaI XaaabaGaamOCaaaadaWcaaqaaiabgkGi2kaadkgadaWgaaWcbaGaeq iUdehabeaaaOqaaiabgkGi2kabeI7aXbaaaiaawIcacaGLPaaaaaa@61D9@

C( ν )={ 1ν 12ν (Plane Strain) 1 1ν (Plane Stress) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadoeadaqadaqaaiabe27aUbGaayjkai aawMcaaiabg2da9maaceaaeaqabeaadaWcaaqaaiaaigdacqGHsisl cqaH9oGBaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbaacaaMc8UaaG PaVlaaykW7caaMc8UaaeikaiaabcfacaqGSbGaaeyyaiaab6gacaqG LbGaaeiiaiaabofacaqG0bGaaeOCaiaabggacaqGPbGaaeOBaiaabM caaeaadaWcaaqaaiaabgdaaeaacaqGXaGaeyOeI0IaeqyVd4gaaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaabIcacaqGqbGaaeiBaiaabggacaqGUbGaaeyzaiaabccacaqG tbGaaeiDaiaabkhacaqGLbGaae4CaiaabohacaqGPaaaaiaawUhaai aaykW7aaa@6FE5@

The state of stress is related to the Airy function by

σ rr = 1 r ϕ r + 1 r 2 2 ϕ θ 2 Ω σ θθ = 2 ϕ r 2 Ω σ rθ = r ( 1 r ϕ θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8ku c9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=xfr=xb9adbaqaaeGaciGa aiaabeqaaiqacaWaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYb aabeaakiabg2da9maalaaabaGaaGymaaqaaiaadkhaaaWaaSaaaeaa cqGHciITcqaHvpGzaeaacqGHciITcaWGYbaaaiabgUcaRmaalaaaba GaaGymaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaaaaOWaaSaaaeaa cqGHciITdaahaaWcbeqaaiaaikdaaaGccqaHvpGzaeaacqGHciITcq aH4oqCdaahaaWcbeqaaiaaikdaaaaaaOGaeyOeI0IaeuyQdCLaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4Wdm3aaSbaaSqaai abeI7aXjabeI7aXbqabaGccqGH9aqpdaWcaaqaaiabgkGi2oaaCaaa leqabaGaaGOmaaaakiabew9aMbqaaiabgkGi2kaadkhadaahaaWcbe qaaiaaikdaaaaaaOGaeyOeI0IaeuyQdCLaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7cqaHdpWCdaWgaaWcbaGaamOCaiabeI7aXbqabaGccq GH9aqpcqGHsisldaWcaaqaaiabgkGi2cqaaiabgkGi2kaadkhaaaWa aeWaaeaadaWcaaqaaiaaigdaaeaacaWGYbaaamaalaaabaGaeyOaIy Raeqy1dygabaGaeyOaIyRaeqiUdehaaaGaayjkaiaawMcaaaaa@80DB@

In polar coordinates the strains are related to the stresses by

[ ε rr ε θθ 2 ε rθ ]= (1+ν) E [ 1ν ν 0 ν 1ν 0 0 0 2 ][ σ rr σ θθ σ rθ ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaadmaabaqbaeqabmqaaaqaaiabew7aLn aaBaaaleaacaWGYbGaamOCaaqabaaakeaacqaH1oqzdaWgaaWcbaGa eqiUdeNaeqiUdehabeaaaOqaaiaaikdacqaH1oqzdaWgaaWcbaGaam OCaiabeI7aXbqabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaaSaaaeaa caGGOaGaaGymaiabgUcaRiabe27aUjaacMcaaeaacaWGfbaaamaadm aabaqbaeqabmWaaaqaaiaaigdacqGHsislcqaH9oGBaeaacqGHsisl cqaH9oGBaeaacaaIWaaabaGaeyOeI0IaeqyVd4gabaGaaGymaiabgk HiTiabe27aUbqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaikda aaaacaGLBbGaayzxaaWaamWaaeaafaqabeWabaaabaGaeq4Wdm3aaS baaSqaaiaadkhacaWGYbaabeaaaOqaaiabeo8aZnaaBaaaleaacqaH 4oqCcqaH4oqCaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkhacqaH4o qCaeqaaaaaaOGaay5waiaaw2faaaaa@68FB@

for plane strain, while

[ ε rr ε θθ 2 ε rθ ]= 1 E [ 1 ν 0 ν 1 0 0 0 2(1+ν) ][ σ rr σ θθ σ rθ ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaadmaabaqbaeqabmqaaaqaaiabew7aLn aaBaaaleaacaWGYbGaamOCaaqabaaakeaacqaH1oqzdaWgaaWcbaGa eqiUdeNaeqiUdehabeaaaOqaaiaaikdacqaH1oqzdaWgaaWcbaGaam OCaiabeI7aXbqabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaaSaaaeaa caaIXaaabaGaamyraaaadaWadaqaauaabeqadmaaaeaacaaIXaaaba GaeyOeI0IaeqyVd4gabaGaaGimaaqaaiabgkHiTiabe27aUbqaaiaa igdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIYaGaaiikai aaigdacqGHRaWkcqaH9oGBcaGGPaaaaaGaay5waiaaw2faamaadmaa baqbaeqabmqaaaqaaiabeo8aZnaaBaaaleaacaWGYbGaamOCaaqaba aakeaacqaHdpWCdaWgaaWcbaGaeqiUdeNaeqiUdehabeaaaOqaaiab eo8aZnaaBaaaleaacaWGYbGaeqiUdehabeaaaaaakiaawUfacaGLDb aaaaa@646C@

for plane stress.  The displacements must be determined by integrating these strains following the procedure similar to that outlined in Section 2.1.20.  To this end, let u= u r e r + u θ e θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWH1bGaeyypa0JaamyDamaaBaaale aacaWGYbaabeaakiaahwgadaWgaaWcbaGaamOCaaqabaGccqGHRaWk caWG1bWaaSbaaSqaaiabeI7aXbqabaGccaWHLbWaaSbaaSqaaiabeI 7aXbqabaaaaa@3FA4@  denote the displacement vector.  The strain-displacement relations in polar coordinates are:

ε rr = u r r ε θθ = u r r + 1 r u θ θ ε rθ = 1 2 ( 1 r u r θ + u θ r u θ r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamOCaiaadk haaeqaaOGaeyypa0ZaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaa dkhaaeqaaaGcbaGaeyOaIyRaamOCaaaacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaeqyTdu2aaSbaaSqaaiabeI7aXjab eI7aXbqabaGccqGH9aqpdaWcaaqaaiaadwhadaWgaaWcbaGaamOCaa qabaaakeaacaWGYbaaaiabgUcaRmaalaaabaGaaGymaaqaaiaadkha aaWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiabeI7aXbqabaaake aacqGHciITcqaH4oqCaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabew7aLnaaBaaaleaaca WGYbGaeqiUdehabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikda aaWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGYbaaamaalaaabaGaey OaIyRaamyDamaaBaaaleaacaWGYbaabeaaaOqaaiabgkGi2kabeI7a XbaacqGHRaWkdaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaeqiUde habeaaaOqaaiabgkGi2kaadkhaaaGaeyOeI0YaaSaaaeaacaWG1bWa aSbaaSqaaiabeI7aXbqabaaakeaacaWGYbaaaaGaayjkaiaawMcaaa aa@88F4@

These can be integrated using a procedure analogous to that outlined in Section 2.1.20.  An example is given in Section 5.2.5.

 

In the following sections, we give several examples of Airy function solutions to boundary value problems.

 

 

8.12 Examples of Airy Function Solutions to plane problems in linear elasticity

 

 

Example 1: Airy function solution to the end loaded cantilever

 

Consider a cantilever beam, with length L, height 2a and out-of-plane thickness b, as shown in the figure. The beam is made from an isotropic linear elastic solid with Young’s modulus E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGfbaaaa@3279@  and Poisson ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH9oGBaaa@3367@ . The top and bottom of the beam x 2 =±a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaO Gaeyypa0JaeyySaeRaamyyaaaa@388F@  are traction free, the left hand end is subjected to a resultant force P, and the right hand end is clamped.  Assume that b<<a, so that a state of plane stress is developed in the beam. An approximate solution to the stress in the beam can be calculated from the Airy function

ϕ= 3P 4ab x 1 x 2 + P 4 a 3 b x 1 x 2 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHvpGzcqGH9aqpcqGHsisldaWcaa qaaiaaiodacaWGqbaabaGaaGinaiaadggacaWGIbaaaiaadIhadaWg aaWcbaGaaGymaaqabaGccaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey 4kaSYaaSaaaeaacaWGqbaabaGaaGinaiaadggadaahaaWcbeqaaiaa iodaaaGccaWGIbaaaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4b Waa0baaSqaaiaaikdaaeaacaaIZaaaaaaa@4862@

You can easily show that this function satisfies the governing equation for the Airy function. The stresses follow as

σ 11 = 2 ϕ x 2 2 Ω= 3P 2 a 3 b x 1 x 2 σ 22 = 2 ϕ x 1 2 Ω=0 σ 12 = σ 21 = 2 ϕ x 1 x 2 = 3P 4ab ( 1 x 2 2 a 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIXaGaaGymaa qabaGccqGH9aqpdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaa kiabew9aMbqaaiabgkGi2kaadIhadaqhaaWcbaGaaGOmaaqaaiaaik daaaaaaOGaaGPaVlabgkHiTiabfM6axjabg2da9maalaaabaGaaG4m aiaadcfaaeaacaaIYaGaamyyamaaCaaaleqabaGaaG4maaaakiaadk gaaaGaamiEamaaBaaaleaacaaIXaaabeaakiaadIhadaWgaaWcbaGa aGOmaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlab eo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH9aqpdaWcaaqaai abgkGi2oaaCaaaleqabaGaaGOmaaaakiabew9aMbqaaiabgkGi2kaa dIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaaaaOGaaGPaVlabgkHiTi abfM6axjabg2da9iaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHdp WCdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0Jaeq4Wdm3aaSba aSqaaiaaikdacaaIXaaabeaakiabg2da9iabgkHiTmaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaeqy1dygabaGaeyOaIyRaamiE amaaBaaaleaacaaIXaaabeaakiabgkGi2kaadIhadaWgaaWcbaGaaG OmaaqabaaaaOGaeyypa0ZaaSaaaeaacaaIZaGaamiuaaqaaiaaisda caWGHbGaamOyaaaadaqadaqaaiaaigdacqGHsisldaWcaaqaaiaadI hadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaakeaacaWGHbWaaWbaaSqa beaacaaIYaaaaaaaaOGaayjkaiaawMcaaaaa@A770@

 

To see that this solution satisfies the boundary conditions, note that

1.      The top and bottom surfaces of the beam x 2 =±a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaO Gaeyypa0JaeyySaeRaamyyaaaa@388F@  are traction free ( σ ij n i =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaamOBamaaBaaaleaacaWGPbaabeaakiabg2da9iaaicda aaa@3A73@  ).  Since the normal is in the e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaaikdaaeqaaa aa@34AC@  direction on these surfaces, this requires that σ 22 = σ 21 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGOmaiaaik daaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaikdacaaIXaaabeaa kiabg2da9iaaicdaaaa@3C6D@ .  The stress field clearly satisfies this condition.

2.      The plane stress assumption automatically satisfies boundary conditions on x 3 =±b/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG4bWaaSbaaSqaaiaaiodaaeqaaO Gaeyypa0JaeyySaeRaamOyaiaac+cacaaIYaaaaa@3A00@ .

3.      The traction boundary condition on the left hand end of the beam ( x 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO Gaeyypa0JaaGimaaaa@3674@  ) was not specified in detail: instead, we only required that the resultant of the traction acting on the surface is P e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqGHsislcaWGqbGaaCyzamaaBaaale aacaaIYaaabeaaaaa@365E@ .  The normal to the surface at the left hand end of the beam is in the e 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqGHsislcaWHLbWaaSbaaSqaaiaaig daaeqaaaaa@3588@  direction, so the traction vector is

t i = σ ij n i = σ 12 δ i2 = 3P 4ab ( 1 x 2 2 a 2 ) δ i2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaO Gaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiaad6ga daWgaaWcbaGaamyAaaqabaGccqGH9aqpcqGHsislcqaHdpWCdaWgaa WcbaGaaGymaiaaikdaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaaI Yaaabeaakiabg2da9iabgkHiTmaalaaabaGaaG4maiaadcfaaeaaca aI0aGaamyyaiaadkgaaaWaaeWaaeaacaaIXaGaeyOeI0YaaSaaaeaa caWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaGcbaGaamyyamaaCa aaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaacqaH0oazdaWgaaWc baGaamyAaiaaikdaaeqaaaaa@561F@

The resultant force can be calculated by integrating the traction over the end of the beam:

F i =b a a 3P 4ab ( 1 x 2 2 a 2 ) δ i2 d x 2 =P δ i2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGgbWaaSbaaSqaaiaadMgaaeqaaO Gaeyypa0JaamOyamaapehabaGaeyOeI0YaaSaaaeaacaaIZaGaamiu aaqaaiaaisdacaWGHbGaamOyaaaadaqadaqaaiaaigdacqGHsislda WcaaqaaiaadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaakeaacaWG HbWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaaiabes7aKn aaBaaaleaacaWGPbGaaGOmaaqabaGccaWGKbGaamiEamaaBaaaleaa caaIYaaabeaaaeaacqGHsislcaWGHbaabaGaamyyaaqdcqGHRiI8aO Gaeyypa0JaeyOeI0Iaamiuaiabes7aKnaaBaaaleaacaWGPbGaaGOm aaqabaaaaa@5539@

The stresses thus satisfy the boundary condition.  Note that by Saint-Venant’s principle, other distributions of traction with the same resultant will induce the same stresses sufficiently far ( x 1 >3a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaeyOpa4JaaG4maiaadggaaaa@375F@  ) from the end of the beam.

4.      The boundary conditions on the right hand end of the beam are not satisfied exactly.  The exact solution should satisfy both u 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bWaaSbaaSqaaiaaigdaaeqaaO Gaeyypa0JaaGimaaaa@3671@  and u 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bWaaSbaaSqaaiaaikdaaeqaaO Gaeyypa0JaaGimaaaa@3672@  on x 1 =L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO Gaeyypa0Jaamitaaaa@368B@ .  The displacement field corresponding to the stress distribution was calculated in the example problem in Sect 2.1.20, where we found that

u 1 = 3P 4E a 3 b x 1 2 x 2 P 4E a 3 b (2+ν) x 2 3 + 3P 2E a 3 b (1+ν) a 2 x 2 ω x 2 +c u 2 =ν 3P 4E a 3 b x 1 x 2 2 P 4E a 3 b x 1 3 +ω x 1 +d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaadwhadaWgaaWcbaGaaGymaa qabaGccqGH9aqpdaWcaaqaaiaaiodacaWGqbaabaGaaGinaiaadwea caWGHbWaaWbaaSqabeaacaaIZaaaaOGaamOyaaaacaWG4bWaa0baaS qaaiaaigdaaeaacaaIYaaaaOGaamiEamaaBaaaleaacaaIYaaabeaa kiabgkHiTmaalaaabaGaamiuaaqaaiaaisdacaWGfbGaamyyamaaCa aaleqabaGaaG4maaaakiaadkgaaaGaaiikaiaaikdacqGHRaWkcqaH 9oGBcaGGPaGaamiEamaaDaaaleaacaaIYaaabaGaaG4maaaakiabgU caRmaalaaabaGaaG4maiaadcfaaeaacaaIYaGaamyraiaadggadaah aaWcbeqaaiaaiodaaaGccaWGIbaaaiaacIcacaaIXaGaey4kaSIaeq yVd4MaaiykaiaadggadaahaaWcbeqaaiaaikdaaaGccaWG4bWaaSba aSqaaiaaikdaaeqaaOGaeyOeI0IaeqyYdCNaamiEamaaBaaaleaaca aIYaaabeaakiabgUcaRiaadogaaeaacaaMc8UaamyDamaaBaaaleaa caaIYaaabeaakiabg2da9iabgkHiTiabe27aUnaalaaabaGaaG4mai aadcfaaeaacaaI0aGaamyraiaadggadaahaaWcbeqaaiaaiodaaaGc caWGIbaaaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG4bWaa0baaS qaaiaaikdaaeaacaaIYaaaaOGaeyOeI0YaaSaaaeaacaWGqbaabaGa aGinaiaadweacaWGHbWaaWbaaSqabeaacaaIZaaaaOGaamOyaaaaca WG4bWaa0baaSqaaiaaigdaaeaacaaIZaaaaOGaey4kaSIaeqyYdCNa amiEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadsgaaaaa@8443@

where c,d,ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGJbGaaiilaiaadsgacaGGSaGaeq yYdChaaa@37C4@  are constants that may be selected to satisfy the boundary condition as far as possible.  We can satisfy u 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bWaaSbaaSqaaiaaigdaaeqaaO Gaeyypa0JaaGimaaaa@3681@  and u 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bWaaSbaaSqaaiaaikdaaeqaaO Gaeyypa0JaaGimaaaa@3682@  at some, but not all, points on x 1 =L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO Gaeyypa0Jaamitaaaa@369B@ .  The choice is arbitrary.  Usually the boundary condition is approximated by requiring u 1 = u 2 = u 2 / x 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bWaaSbaaSqaaiaaigdaaeqaaO Gaeyypa0JaamyDamaaBaaaleaacaaIYaaabeaakiabg2da9iabgkGi 2kaadwhadaWgaaWcbaGaaGOmaaqabaGccaGGVaGaeyOaIyRaamiEam aaBaaaleaacaaIXaaabeaakiabg2da9iaaicdaaaa@41C2@  at x 1 =L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO Gaeyypa0Jaamitaaaa@368B@ , x 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaO Gaeyypa0JaaGimaaaa@3675@ .  This gives c=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGJbGaeyypa0JaaGimaaaa@356E@ , d=P L 3 /2E a 3 b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGKbGaeyypa0JaeyOeI0Iaamiuai aadYeadaahaaWcbeqaaiaaiodaaaGccaGGVaGaaGOmaiaadweacaWG HbWaaWbaaSqabeaacaaIZaaaaOGaamOyaaaa@3D36@  and ω=3P L 2 /4E a 3 b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHjpWDcqGH9aqpcaaIZaGaamiuai aadYeadaahaaWcbeqaaiaaikdaaaGccaGGVaGaaGinaiaadweacaWG HbWaaWbaaSqabeaacaaIZaaaaOGaamOyaaaa@3DEB@ .   By Saint-Venant’s principle, applying other boundary conditions (including the exact boundary condition) will not influence the stresses and displacements sufficiently far from the end.

 

 

 

Example 2: 2D Line load acting perpendicular to the surface of an infinite solid

As a second example, the stress fields due to a line load magnitude P per unit out-of-plane length acting on the surface of a homogeneous, isotropic half-space can be generated from the Airy function

ϕ= P π rθsinθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaey ypa0JaeyOeI0YaaSaaaeaacaWGqbaabaGaeqiWdahaaiaadkhacqaH 4oqCciGGZbGaaiyAaiaac6gacqaH4oqCaaa@437E@

The formulas in the preceding section yield

σ rr = 2P π cosθ r σ θθ = σ rθ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadkhacaWGYbaabeaakiabg2da9iabgkHiTmaalaaabaGa aGOmaiaadcfaaeaacqaHapaCaaWaaSaaaeaaciGGJbGaai4Baiaaco hacqaH4oqCaeaacaWGYbaaaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8Uaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI7aXbqabaGccqGH 9aqpcqaHdpWCdaWgaaWcbaGaamOCaiabeI7aXbqabaGccqGH9aqpca aIWaaaaa@6830@

The stresses in the { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGG7bGaaCyzamaaBaaaleaacaaIXa aabeaakiaacYcacaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaaG4maaqabaGccaGG9baaaa@3BC6@  basis are

σ 11 = 2P π x 1 3 ( x 1 2 + x 2 2 ) 2 σ 22 = 2P π x 1 x 2 2 ( x 1 2 + x 2 2 ) 2 σ 12 = 2P π x 1 2 x 2 ( x 1 2 + x 2 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGymaiaaig daaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaIYaGaamiuaaqaaiab ec8aWbaadaWcaaqaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaiodaaa aakeaadaqadaqaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGc cqGHRaWkcaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaGccaGLOa GaayzkaaWaaWbaaSqabeaacaaIYaaaaaaakiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeo8aZnaaBa aaleaacaaIYaGaaGOmaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaa ikdacaWGqbaabaGaeqiWdahaamaalaaabaGaamiEamaaDaaaleaaca aIXaaabaaaaOGaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaOqa amaabmaabaGaamiEamaaDaaaleaacaaIXaaabaGaaGOmaaaakiabgU caRiaadIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaakiaawIcacaGL PaaadaahaaWcbeqaaiaaikdaaaaaaOGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH dpWCdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0JaeyOeI0YaaS aaaeaacaaIYaGaamiuaaqaaiabec8aWbaadaWcaaqaaiaadIhadaqh aaWcbaGaaGymaaqaaiaaikdaaaGccaWG4bWaa0baaSqaaiaaikdaae aaaaaakeaadaqadaqaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaikda aaGccqGHRaWkcaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaGcca GLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaaaa@920C@

 

The method outlined in section 5.2.3 can be used to calculate the displacements: the procedure is described in detail below to provide a representative example.  For plane strain deformation, we find

u r = 2( 1 ν 2 ) πE Pcosθlogr ( 1+ν )( 12ν ) πE Pθsinθ u θ = 2( 1 ν 2 ) πE Psinθlogr+ 1+ν πE Psinθ 2( 12ν )( 1+ν ) πE Pθcosθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG1b WaaSbaaSqaaiaadkhaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaI YaWaaeWaaeaacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYa aaaaGccaGLOaGaayzkaaaabaGaeqiWdaNaamyraaaacaWGqbGaci4y aiaac+gacaGGZbGaeqiUdeNaciiBaiaac+gacaGGNbGaamOCaiabgk HiTmaalaaabaWaaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGLOaGa ayzkaaWaaeWaaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbGaayjkai aawMcaaaqaaiabec8aWjaadweaaaGaamiuaiabeI7aXjGacohacaGG PbGaaiOBaiabeI7aXbqaaiaadwhadaWgaaWcbaGaeqiUdehabeaaki abg2da9maalaaabaGaaGOmamaabmaabaGaaGymaiabgkHiTiabe27a UnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaqaaiabec8aWj aadweaaaGaamiuaiGacohacaGGPbGaaiOBaiabeI7aXjGacYgacaGG VbGaai4zaiaadkhacqGHRaWkdaWcaaqaaiaaigdacqGHRaWkcqaH9o GBaeaacqaHapaCcaWGfbaaaiaadcfaciGGZbGaaiyAaiaac6gacqaH 4oqCcqGHsisldaWcaaqaaiaaikdadaqadaqaaiaaigdacqGHsislca aIYaGaeqyVd4gacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIa eqyVd4gacaGLOaGaayzkaaaabaGaeqiWdaNaamyraaaacaWGqbGaeq iUdeNaci4yaiaac+gacaGGZbGaeqiUdehaaaa@9ADF@

to within an arbitrary rigid motion.  Note that the displacements vary as log(r) so they are unbounded both at the origin and at infinity.  Moreover, the displacements due to any distribution of traction that exerts a nonzero resultant force on the surface will also be unbounded at infinity. 

 

It is easy to see that this solution satisfies all the relevant boundary conditions.  The surface is traction free ( σ 22 = σ 12 =0 x 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGOmaiaaik daaeqaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaaigdacaaIYaaabeaa kiabg2da9iaaicdacaaMc8UaaGPaVlaaykW7caWG4bWaaSbaaSqaai aaigdaaeqaaOGaeyypa0JaaGimaaaa@44BC@  ) except at r=0.  To see that the stresses are consistent with a vertical point force, note that the resultant vertical force exerted by the tractions acting on the dashed curve shown in the picture can be calculated as

F 1 = π/2 π/2 σ rr cosθrdθ = π/2 π/2 2P π cosθ r cosθrdθ =P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAeadaWgaaWcbaGaaGymaaqabaGccq GH9aqpdaWdXbqaaiabeo8aZnaaBaaaleaacaWGYbGaamOCaaqabaGc ciGGJbGaai4BaiaacohacqaH4oqCcaaMc8UaaGPaVlaadkhacaWGKb GaeqiUdehaleaacqGHsislcqaHapaCcaGGVaGaaGOmaaqaaiabec8a Wjaac+cacaaIYaaaniabgUIiYdGccqGH9aqpdaWdXbqaaiabgkHiTm aalaaabaGaaGOmaiaadcfaaeaacqaHapaCaaWaaSaaaeaaciGGJbGa ai4BaiaacohacqaH4oqCaeaacaWGYbaaaiGacogacaGGVbGaai4Cai abeI7aXjaaykW7caaMc8UaamOCaiaadsgacqaH4oqCaSqaaiabgkHi Tiabec8aWjaac+cacaaIYaaabaGaeqiWdaNaai4laiaaikdaa0Gaey 4kIipakiabg2da9iabgkHiTiaadcfaaaa@6E94@

 

The expressions for displacement can be derived as follows.  Substituting the expression for stress into the stress-strain laws and using the strain-displacement relations yields

ε rr = u r r = ( 1+ν ) E [ (1ν) σ rr ν σ θθ ]= 2P( 1 ν 2 ) πE cosθ r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamOCaiaadk haaeqaaOGaeyypa0ZaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaa dkhaaeqaaaGcbaGaeyOaIyRaamOCaaaacqGH9aqpdaWcaaqaamaabm aabaGaaGymaiabgUcaRiabe27aUbGaayjkaiaawMcaaaqaaiaadwea aaWaamWaaeaacaGGOaGaaGymaiabgkHiTiabe27aUjaacMcacqaHdp WCdaWgaaWcbaGaamOCaiaadkhaaeqaaOGaeyOeI0IaeqyVd4Maeq4W dm3aaSbaaSqaaiabeI7aXjabeI7aXbqabaaakiaawUfacaGLDbaacq GH9aqpcqGHsisldaWcaaqaaiaaikdacaWGqbWaaeWaaeaacaaIXaGa eyOeI0IaeqyVd42aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaa aabaGaeqiWdaNaamyraaaadaWcaaqaaiGacogacaGGVbGaai4Caiab eI7aXbqaaiaadkhaaaaaaa@6872@

Integrating

u r = 2P( 1 ν 2 ) πE cosθlog(r)+ f r (θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bWaaSbaaSqaaiaadkhaaeqaaO Gaeyypa0JaeyOeI0YaaSaaaeaacaaIYaGaamiuamaabmaabaGaaGym aiabgkHiTiabe27aUnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawM caaaqaaiabec8aWjaadweaaaGaci4yaiaac+gacaGGZbGaeqiUdeNa ciiBaiaac+gacaGGNbGaaiikaiaadkhacaGGPaGaey4kaSIaamOzam aaBaaaleaacaWGYbaabeaakiaacIcacqaH4oqCcaGGPaaaaa@5096@

where f r (θ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGMbWaaSbaaSqaaiaadkhaaeqaaO GaaiikaiabeI7aXjaacMcaaaa@37ED@  is a function of θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH4oqCaaa@347C@  to be determined.  Similarly, considering the hoop stresses gives

ε θθ = u r r + 1 r u θ θ = ( 1+ν ) E [ (1ν) σ θθ ν σ rr ]= 2Pν(1+ν) πE cosθ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaeqiUdeNaeq iUdehabeaakiabg2da9maalaaabaGaamyDamaaBaaaleaacaWGYbaa beaaaOqaaiaadkhaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOCaa aadaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaeqiUdehabeaaaOqa aiabgkGi2kabeI7aXbaacqGH9aqpdaWcaaqaamaabmaabaGaaGymai abgUcaRiabe27aUbGaayjkaiaawMcaaaqaaiaadweaaaWaamWaaeaa caGGOaGaaGymaiabgkHiTiabe27aUjaacMcacqaHdpWCdaWgaaWcba GaeqiUdeNaeqiUdehabeaakiabgkHiTiabe27aUjabeo8aZnaaBaaa leaacaWGYbGaamOCaaqabaaakiaawUfacaGLDbaacqGH9aqpdaWcaa qaaiaaikdacaWGqbGaeqyVd4MaaiikaiaaigdacqGHRaWkcqaH9oGB caGGPaaabaGaeqiWdaNaamyraaaadaWcaaqaaiGacogacaGGVbGaai 4CaiabeI7aXbqaaiaadkhaaaaaaa@70DC@

Rearrange and integrate with respect to θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH4oqCaaa@348C@

u θ = 2P( 1+ν ) πE sinθ( ν+(1ν)log(r) ) f r (θ)dθ + f θ (r) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWG1bWaaSbaaSqaaiabeI7aXbqaba GccqGH9aqpdaWcaaqaaiaaikdacaWGqbWaaeWaaeaacaaIXaGaey4k aSIaeqyVd4gacaGLOaGaayzkaaaabaGaeqiWdaNaamyraaaaciGGZb GaaiyAaiaac6gacqaH4oqCdaqadaqaaiabe27aUjabgUcaRiaacIca caaIXaGaeyOeI0IaeqyVd4MaaiykaiGacYgacaGGVbGaai4zaiaacI cacaWGYbGaaiykaaGaayjkaiaawMcaaiabgkHiTmaapeaabaGaamOz amaaBaaaleaacaWGYbaabeaakiaacIcacqaH4oqCcaGGPaGaamizai abeI7aXbWcbeqab0Gaey4kIipakiabgUcaRiaadAgadaWgaaWcbaGa eqiUdehabeaakiaacIcacaWGYbGaaiykaaaa@6303@

where f θ (r) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGMbWaaSbaaSqaaiabeI7aXbqaba GccaGGOaGaamOCaiaacMcaaaa@37FD@  is a function of r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGYbaaaa@33CD@  to be determined.  Finally, substituting for stresses into the expression for shear strain shows that

ε rθ = 1 2 ( 1 r u r θ + u θ r u θ r )= ( 1+ν ) E σ rθ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaamOCaiabeI 7aXbqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaa baWaaSaaaeaacaaIXaaabaGaamOCaaaadaWcaaqaaiabgkGi2kaadw hadaWgaaWcbaGaamOCaaqabaaakeaacqGHciITcqaH4oqCaaGaey4k aSYaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiabeI7aXbqabaaake aacqGHciITcaWGYbaaaiabgkHiTmaalaaabaGaamyDamaaBaaaleaa cqaH4oqCaeqaaaGcbaGaamOCaaaaaiaawIcacaGLPaaacqGH9aqpda WcaaqaamaabmaabaGaaGymaiabgUcaRiabe27aUbGaayjkaiaawMca aaqaaiaadweaaaGaeq4Wdm3aaSbaaSqaaiaadkhacqaH4oqCaeqaaO Gaeyypa0JaaGimaaaa@5D79@

Inserting the expressions for displacement and simplifying gives

1 r { f r (θ) θ + f r (θ)dθ+ 2P(1+ν)(12ν) πE sinθ }+{ f θ (r) r f θ (r) r }=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiaaigdaaeaacaWGYbaaam aacmaabaWaaSaaaeaacqGHciITcaWGMbWaaSbaaSqaaiaadkhaaeqa aOGaaiikaiabeI7aXjaacMcaaeaacqGHciITcqaH4oqCaaGaey4kaS Yaa8qaaeaacaWGMbWaaSbaaSqaaiaadkhaaeqaaOGaaiikaiabeI7a XjaacMcacaWGKbGaeqiUdeNaey4kaSYaaSaaaeaacaaIYaGaamiuai aacIcacaaIXaGaey4kaSIaeqyVd4MaaiykaiaacIcacaaIXaGaeyOe I0IaaGOmaiabe27aUjaacMcaaeaacqaHapaCcaWGfbaaaiGacohaca GGPbGaaiOBaiabeI7aXbWcbeqab0Gaey4kIipaaOGaay5Eaiaaw2ha aiabgUcaRmaacmaabaWaaSaaaeaacqGHciITcaWGMbWaaSbaaSqaai abeI7aXbqabaGccaGGOaGaamOCaiaacMcaaeaacqGHciITcaWGYbaa aiabgkHiTmaalaaabaGaamOzamaaBaaaleaacqaH4oqCaeqaaOGaai ikaiaadkhacaGGPaaabaGaamOCaaaaaiaawUhacaGL9baacqGH9aqp caaIWaaaaa@73C2@

The two terms in parentheses are functions of θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH4oqCaaa@348C@  and r, respectively, and so must both be separately equal to zero to satisfy this expression for all possible values of θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8sk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH4oqCaaa@348C@  and r. Therefore

2 f r (θ) θ 2 + f r (θ)= 2P(1+ν)(12ν) πE cosθ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadAgadaWgaaWcbaGaamOCaaqabaGccaGGOaGaeqiU deNaaiykaaqaaiabgkGi2kabeI7aXnaaCaaaleqabaGaaGOmaaaaaa GccqGHRaWkcaWGMbWaaSbaaSqaaiaadkhaaeqaaOGaaiikaiabeI7a XjaacMcacqGH9aqpcqGHsisldaWcaaqaaiaaikdacaWGqbGaaiikai aaigdacqGHRaWkcqaH9oGBcaGGPaGaaiikaiaaigdacqGHsislcaaI YaGaeqyVd4Maaiykaaqaaiabec8aWjaadweaaaGaci4yaiaac+gaca GGZbGaeqiUdehaaa@5935@

This ODE has solution

f r (θ)= P(1+ν)(12ν) πE θsinθ+Asinθ+Bcosθ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGMbWaaSbaaSqaaiaadkhaaeqaaO GaaiikaiabeI7aXjaacMcacqGH9aqpcqGHsisldaWcaaqaaiaadcfa caGGOaGaaGymaiabgUcaRiabe27aUjaacMcacaGGOaGaaGymaiabgk HiTiaaikdacqaH9oGBcaGGPaaabaGaeqiWdaNaamyraaaacqaH4oqC ciGGZbGaaiyAaiaac6gacqaH4oqCcqGHRaWkcaWGbbGaci4CaiaacM gacaGGUbGaeqiUdeNaey4kaSIaamOqaiGacogacaGGVbGaai4Caiab eI7aXbaa@5A1B@

The second equation gives

f θ (r) r f θ (r) r =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaadaWcaaqaaiabgkGi2kaadAgadaWgaa WcbaGaeqiUdehabeaakiaacIcacaWGYbGaaiykaaqaaiabgkGi2kaa dkhaaaGaeyOeI0YaaSaaaeaacaWGMbWaaSbaaSqaaiabeI7aXbqaba GccaGGOaGaamOCaiaacMcaaeaacaWGYbaaaiabg2da9iaaicdaaaa@449B@

which has solution f θ (r)=Cr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGMbWaaSbaaSqaaiabeI7aXbqaba GccaGGOaGaamOCaiaacMcacqGH9aqpcaWGdbGaamOCaaaa@3AB2@ .  The constants A,B,C represent an arbitrary rigid displacement, and can be taken to be zero.  This gives the required answer.

 

 

Example 3: 2D Line load acting parallel to the surface of an infinite solid

 

Similarly, the stress fields due to a line load magnitude P per unit out-of-plane length acting tangent to the surface of a homogeneous, isotropic half-space can be generated from the Airy function

ϕ= P π rθcosθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKe9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaey ypa0JaeyOeI0YaaSaaaeaacaWGqbaabaGaeqiWdahaaiaadkhacqaH 4oqCciGGJbGaai4BaiaacohacqaH4oqCaaa@44B0@

The formulas in the preceding section yield

σ rr = 2P π sinθ r σ θθ = σ rθ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadkhacaWGYbaabeaakiabg2da9iabgkHiTmaalaaabaGa aGOmaiaadcfaaeaacqaHapaCaaWaaSaaaeaaciGGZbGaaiyAaiaac6 gacqaH4oqCaeaacaWGYbaaaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8Uaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI7aXbqabaGccqGH 9aqpcqaHdpWCdaWgaaWcbaGaamOCaiabeI7aXbqabaGccqGH9aqpca aIWaaaaa@6835@

The method outlined in the preceding section can be used to calculate the displacements. The procedure gives

u r = 2( 1 ν 2 ) πE Psinθlogr ( 1+ν )( 12ν ) πE Pθcosθ u θ = 2( 1 ν 2 ) πE Pcosθlogr+ 1+ν πE Pcosθ 2( 12ν )( 1+ν ) πE Pθsinθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG1b WaaSbaaSqaaiaadkhaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaI YaWaaeWaaeaacaaIXaGaeyOeI0IaeqyVd42aaWbaaSqabeaacaaIYa aaaaGccaGLOaGaayzkaaaabaGaeqiWdaNaamyraaaacaWGqbGaci4C aiaacMgacaGGUbGaeqiUdeNaciiBaiaac+gacaGGNbGaamOCaiabgk HiTmaalaaabaWaaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGLOaGa ayzkaaWaaeWaaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbGaayjkai aawMcaaaqaaiabec8aWjaadweaaaGaamiuaiabeI7aXjGacogacaGG VbGaai4CaiabeI7aXbqaaiaadwhadaWgaaWcbaGaeqiUdehabeaaki abg2da9maalaaabaGaaGOmamaabmaabaGaaGymaiabgkHiTiabe27a UnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaqaaiabec8aWj aadweaaaGaamiuaiGacogacaGGVbGaai4CaiabeI7aXjGacYgacaGG VbGaai4zaiaadkhacqGHRaWkdaWcaaqaaiaaigdacqGHRaWkcqaH9o GBaeaacqaHapaCcaWGfbaaaiaadcfaciGGJbGaai4BaiaacohacqaH 4oqCcqGHsisldaWcaaqaaiaaikdadaqadaqaaiaaigdacqGHsislca aIYaGaeqyVd4gacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIa eqyVd4gacaGLOaGaayzkaaaabaGaeqiWdaNaamyraaaacaWGqbGaeq iUdeNaci4CaiaacMgacaGGUbGaeqiUdehaaaa@9ADA@

to within an arbitrary rigid motion. 

 

The stresses and displacements in the { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaGG7bGaaCyzamaaBaaaleaacaaIXa aabeaakiaacYcacaWHLbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaa hwgadaWgaaWcbaGaaG4maaqabaGccaGG9baaaa@3BC6@  basis are

σ 11 = 2P π x 1 2 x 2 ( x 1 2 + x 2 2 ) 2 σ 22 = 2P π x 2 3 ( x 1 2 + x 2 2 ) 2 σ 12 = 2P π x 1 x 2 2 ( x 1 2 + x 2 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaaGymaiaaig daaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaIYaGaamiuaaqaaiab ec8aWbaadaWcaaqaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaa GccaWG4bWaaSbaaSqaaiaaikdaaeqaaaGcbaWaaeWaaeaacaWG4bWa a0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaamiEamaaDaaale aacaaIYaaabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7cqaHdpWCdaWgaaWcbaGaaGOmaiaaikdaaeqa aOGaeyypa0JaeyOeI0YaaSaaaeaacaaIYaGaamiuaaqaaiabec8aWb aadaWcaaqaaiaadIhadaqhaaWcbaGaaGOmaaqaaiaaiodaaaaakeaa daqadaqaaiaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHRa WkcaWG4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaGccaGLOaGaayzk aaWaaWbaaSqabeaacaaIYaaaaaaakiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4W dm3aaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da9iabgkHiTmaala aabaGaaGOmaiaadcfaaeaacqaHapaCaaWaaSaaaeaacaWG4bWaa0ba aSqaaiaaigdaaeaaaaGccaWG4bWaa0baaSqaaiaaikdaaeaacaaIYa aaaaGcbaWaaeWaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaa aOGaey4kaSIaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaOGaay jkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaaaa@920C@

 

 

Example 4: Arbitrary pressure acting on a flat surface

 

The principle of superposition can be used to extend the point force solutions to arbitrary pressures acting on a surface. For example, we can find the (plane strain) solution for a uniform pressure acting on the strip of width 2a on the surface of a half-space by distributing the point force solution appropriately.

 

Distributing point forces with magnitude p(s)ds e 1 +q(s)ds e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadchacaGGOaGaam4CaiaacMcacaWGKb Gaam4CaiaahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGXbGa aiikaiaadohacaGGPaGaamizaiaadohacaWHLbWaaSbaaSqaaiaaik daaeqaaaaa@3F4E@  over the loaded region shows that

σ 11 = 2 π A x 1 2 ( x 1 p(s)+( x 2 s )q(s)) ( x 1 2 + ( x 2 s ) 2 ) 2 ds σ 22 = 2 π A ( x 2 s) 2 ( x 1 p(s)+( x 2 s)q(s) ) ( x 1 2 + ( x 2 s ) 2 ) 2 ds σ 12 = 2 π A x 1 ( x 2 s)( x 1 p(s)+( x 2 s)q(s) ) ( x 1 2 + ( x 2 s ) 2 ) 2 ds MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiabeo8aZnaaBaaaleaacaaIXa GaaGymaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaaikdaaeaacqaH apaCaaWaa8quaeaadaWcaaqaaiaadIhadaqhaaWcbaGaaGymaaqaai aaikdaaaGccaGGOaGaamiEamaaDaaaleaacaaIXaaabaaaaOGaamiC aiaacIcacaWGZbGaaiykaiabgUcaRmaabmaabaGaamiEamaaBaaale aacaaIYaaabeaakiabgkHiTiaadohaaiaawIcacaGLPaaacaWGXbGa aiikaiaadohacaGGPaGaaiykaaqaamaabmaabaGaamiEamaaDaaale aacaaIXaaabaGaaGOmaaaakiabgUcaRmaabmaabaGaamiEamaaBaaa leaacaaIYaaabeaakiabgkHiTiaadohaaiaawIcacaGLPaaadaahaa WcbeqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikda aaaaaaqaaiaadgeaaeqaniabgUIiYdGccaWGKbGaam4CaiaaykW7ae aacaaMc8Uaeq4Wdm3aaSbaaSqaaiaaikdacaaIYaaabeaakiabg2da 9iabgkHiTmaalaaabaGaaGOmaaqaaiabec8aWbaadaWdrbqaamaala aabaGaaiikaiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWG ZbGaaiykamaaCaaaleqabaGaaGOmaaaakmaabmaabaGaamiEamaaDa aaleaacaaIXaaabaaaaOGaamiCaiaacIcacaWGZbGaaiykaiabgUca RiaacIcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaam4Cai aacMcacaWGXbGaaiikaiaadohacaGGPaaacaGLOaGaayzkaaaabaWa aeWaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaS YaaeWaaeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaam4C aaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaaaaaabaGaamyqaaqab0Gaey4kIipa kiaadsgacaWGZbaabaGaaGPaVlabeo8aZnaaBaaaleaacaaIXaGaaG OmaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaaikdaaeaacqaHapaC aaWaa8quaeaadaWcaaqaaiaadIhadaqhaaWcbaGaaGymaaqaaaaaki aacIcacaWG4bWaa0baaSqaaiaaikdaaeaaaaGccqGHsislcaWGZbGa aiykamaabmaabaGaamiEamaaBaaaleaacaaIXaaabeaakiaadchaca GGOaGaam4CaiaacMcacqGHRaWkcaGGOaGaamiEamaaDaaaleaacaaI YaaabaaaaOGaeyOeI0Iaam4CaiaacMcacaWGXbGaaiikaiaadohaca GGPaaacaGLOaGaayzkaaaabaWaaeWaaeaacaWG4bWaa0baaSqaaiaa igdaaeaacaaIYaaaaOGaey4kaSYaaeWaaeaacaWG4bWaaSbaaSqaai aaikdaaeqaaOGaeyOeI0Iaam4CaaGaayjkaiaawMcaamaaCaaaleqa baGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaa GccaWGKbGaam4CaaWcbaGaamyqaaqab0Gaey4kIipaaaaa@C34F@

 

Example 5:  Uniform normal pressure acting on a strip

 

For the particular case of a uniform pressure, the integrals can be evaluated to show that

σ 22 = p 2π ( 2( θ 1 θ 2 )+( sin2 θ 1 sin2 θ 2 ) ) σ 11 = p 2π ( 2( θ 1 θ 2 )( sin2 θ 1 sin2 θ 2 ) ) σ 12 = p 2π ( cos2 θ 1 cos2 θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqaHdp WCdaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaeyypa0JaeyOeI0YaaSaa aeaacaWGWbaabaGaaGOmaiabec8aWbaadaqadaqaaiaaikdadaqada qaaiabeI7aXnaaBaaaleaacaaIXaaabeaakiabgkHiTiabeI7aXnaa BaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgUcaRmaabmaaba Gaci4CaiaacMgacaGGUbGaaGOmaiabeI7aXnaaBaaaleaacaaIXaaa beaakiabgkHiTiGacohacaGGPbGaaiOBaiaaikdacqaH4oqCdaWgaa WcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaa cqaHdpWCdaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyypa0JaeyOeI0 YaaSaaaeaacaWGWbaabaGaaGOmaiabec8aWbaadaqadaqaaiaaikda daqadaqaaiabeI7aXnaaBaaaleaacaaIXaaabeaakiabgkHiTiabeI 7aXnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgkHiTmaa bmaabaGaci4CaiaacMgacaGGUbGaaGOmaiabeI7aXnaaBaaaleaaca aIXaaabeaakiabgkHiTiGacohacaGGPbGaaiOBaiaaikdacqaH4oqC daWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPa aaaeaacqaHdpWCdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0Za aSaaaeaacaWGWbaabaGaaGOmaiabec8aWbaadaqadaqaaiGacogaca GGVbGaai4CaiaaikdacqaH4oqCdaWgaaWcbaGaaGymaaqabaGccqGH sislciGGJbGaai4BaiaacohacaaIYaGaeqiUde3aaSbaaSqaaiaaik daaeqaaaGccaGLOaGaayzkaaaaaaa@935B@

where 0 θ α π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkabeI7aXnaaBaaaleaacqaHXoqyaeqaaOGaeyizImQaeqiWdaha aa@4069@  and θ 1 = tan 1 x 1 /( x 2 a) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaigdaaeqaaOGaeyypa0JaciiDaiaacggacaGGUbWaaWba aSqabeaacqGHsislcaaIXaaaaOGaamiEamaaBaaaleaacaaIXaaabe aakiaac+cacaGGOaGaamiEamaaBaaaleaacaaIYaaabeaakiabgkHi TiaadggacaGGPaaaaa@4716@   θ 2 = tan 1 x 1 /( x 2 +a) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaikdaaeqaaOGaeyypa0JaciiDaiaacggacaGGUbWaaWba aSqabeaacqGHsislcaaIXaaaaOGaamiEamaaBaaaleaacaaIXaaabe aakiaac+cacaGGOaGaamiEamaaBaaaleaacaaIYaaabeaakiabgUca RiaadggacaGGPaaaaa@470C@

 

 

 

Example 6: Stresses near the tip of a crack

 

Consider an infinite solid, which contains a semi-infinite crack on the (x1,x3) plane. Suppose that the solid deforms in plane strain and is subjected to bounded stress at infinity.  The stress field near the tip of the crack can be derived from the Airy function

ϕ= K I 3 2π r 3/2 ( cos3θ/2+3cosθ/2 ) K II 2π r 3/2 ( sin3θ/2+sinθ/2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiabew9aMjabg2da9maalaaaba Gaam4samaaBaaaleaacaWGjbaabeaaaOqaaiaaiodadaGcaaqaaiaa ikdacqaHapaCaSqabaaaaOGaamOCamaaCaaaleqabaGaaG4maiaac+ cacaaIYaaaaOWaaeWaaeaaciGGJbGaai4BaiaacohacaaIZaGaeqiU deNaai4laiaaikdacqGHRaWkcaaIZaGaci4yaiaac+gacaGGZbGaeq iUdeNaai4laiaaikdaaiaawIcacaGLPaaaaeaacaaMc8UaaGPaVlaa ykW7caaMc8UaeyOeI0YaaSaaaeaacaWGlbWaaSbaaSqaaiaadMeaca WGjbaabeaaaOqaamaakaaabaGaaGOmaiabec8aWbWcbeaaaaGccaWG YbWaaWbaaSqabeaacaaIZaGaai4laiaaikdaaaGcdaqadaqaaiGaco hacaGGPbGaaiOBaiaaiodacqaH4oqCcaGGVaGaaGOmaiabgUcaRiGa cohacaGGPbGaaiOBaiabeI7aXjaac+cacaaIYaaacaGLOaGaayzkaa aaaaa@6CED@

Here, K I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGlbWaaSbaaSqaaiaadMeaaeqaaa aa@3490@  and K II MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGlbWaaSbaaSqaaiaadMeacaWGjb aabeaaaaa@355E@  are two constants, known as mode I and mode II stress intensity factors, respectively.  They quantify the magnitudes of the stresses near the crack tip, as shown below. Their role will be discussed in more detail when we discuss fracture mechanics. The stresses can be calculated as

σ rr = K I 2πr ( 5 4 cos θ 2 1 4 cos 3θ 2 )+ K II 2πr ( 5 4 sin θ 2 + 3 4 sin 3θ 2 ) σ θθ = K I 2πr ( 3 4 cos θ 2 + 1 4 cos 3θ 2 ) K II 2πr ( 3 4 sin θ 2 + 3 4 sin 3θ 2 ) σ rθ = K I 2πr ( 1 4 sin θ 2 + 1 4 sin 3θ 2 )+ K II 2πr ( 1 4 cos θ 2 + 3 4 cos 3θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqaHdp WCdaWgaaWcbaGaamOCaiaadkhaaeqaaOGaeyypa0ZaaSaaaeaacaWG lbWaaSbaaSqaaiaadMeaaeqaaaGcbaWaaOaaaeaacaaIYaGaeqiWda NaamOCaaWcbeaaaaGcdaqadaqaamaalaaabaGaaGynaaqaaiaaisda aaGaci4yaiaac+gacaGGZbWaaSaaaeaacqaH4oqCaeaacaaIYaaaai abgkHiTmaalaaabaGaaGymaaqaaiaaisdaaaGaci4yaiaac+gacaGG ZbWaaSaaaeaacaaIZaGaeqiUdehabaGaaGOmaaaaaiaawIcacaGLPa aacqGHRaWkdaWcaaqaaiaadUeadaWgaaWcbaGaamysaiaadMeaaeqa aaGcbaWaaOaaaeaacaaIYaGaeqiWdaNaamOCaaWcbeaaaaGcdaqada qaaiabgkHiTmaalaaabaGaaGynaaqaaiaaisdaaaGaci4CaiaacMga caGGUbWaaSaaaeaacqaH4oqCaeaacaaIYaaaaiabgUcaRmaalaaaba GaaG4maaqaaiaaisdaaaGaci4CaiaacMgacaGGUbWaaSaaaeaacaaI ZaGaeqiUdehabaGaaGOmaaaaaiaawIcacaGLPaaaaeaacqaHdpWCda WgaaWcbaGaeqiUdeNaeqiUdehabeaakiabg2da9maalaaabaGaam4s amaaBaaaleaacaWGjbaabeaaaOqaamaakaaabaGaaGOmaiabec8aWj aadkhaaSqabaaaaOWaaeWaaeaadaWcaaqaaiaaiodaaeaacaaI0aaa aiGacogacaGGVbGaai4CamaalaaabaGaeqiUdehabaGaaGOmaaaacq GHRaWkdaWcaaqaaiaaigdaaeaacaaI0aaaaiGacogacaGGVbGaai4C amaalaaabaGaaG4maiabeI7aXbqaaiaaikdaaaaacaGLOaGaayzkaa GaeyOeI0YaaSaaaeaacaWGlbWaaSbaaSqaaiaadMeacaWGjbaabeaa aOqaamaakaaabaGaaGOmaiabec8aWjaadkhaaSqabaaaaOWaaeWaae aadaWcaaqaaiaaiodaaeaacaaI0aaaaiGacohacaGGPbGaaiOBamaa laaabaGaeqiUdehabaGaaGOmaaaacqGHRaWkdaWcaaqaaiaaiodaae aacaaI0aaaaiGacohacaGGPbGaaiOBamaalaaabaGaaG4maiabeI7a XbqaaiaaikdaaaaacaGLOaGaayzkaaaabaGaeq4Wdm3aaSbaaSqaai aadkhacqaH4oqCaeqaaOGaeyypa0ZaaSaaaeaacaWGlbWaaSbaaSqa aiaadMeaaeqaaaGcbaWaaOaaaeaacaaIYaGaeqiWdaNaamOCaaWcbe aaaaGcdaqadaqaamaalaaabaGaaGymaaqaaiaaisdaaaGaci4Caiaa cMgacaGGUbWaaSaaaeaacqaH4oqCaeaacaaIYaaaaiabgUcaRmaala aabaGaaGymaaqaaiaaisdaaaGaci4CaiaacMgacaGGUbWaaSaaaeaa caaIZaGaeqiUdehabaGaaGOmaaaaaiaawIcacaGLPaaacqGHRaWkda WcaaqaaiaadUeadaWgaaWcbaGaamysaiaadMeaaeqaaaGcbaWaaOaa aeaacaaIYaGaeqiWdaNaamOCaaWcbeaaaaGcdaqadaqaamaalaaaba GaaGymaaqaaiaaisdaaaGaci4yaiaac+gacaGGZbWaaSaaaeaacqaH 4oqCaeaacaaIYaaaaiabgUcaRmaalaaabaGaaG4maaqaaiaaisdaaa Gaci4yaiaac+gacaGGZbWaaSaaaeaacaaIZaGaeqiUdehabaGaaGOm aaaaaiaawIcacaGLPaaaaaaa@D47A@

Equivalent expressions in rectangular coordinates are

σ 11 = K I 2πr cos θ 2 ( 1sin θ 2 sin 3θ 2 ) K II 2πr sin θ 2 ( 2+cos θ 2 cos 3θ 2 ) σ 22 = K I 2πr cos θ 2 ( 1+sin θ 2 sin 3θ 2 )+ K II 2πr cos θ 2 sin θ 2 cos 3θ 2 σ 12 = K I 2πr cos θ 2 sin θ 2 cos 3θ 2 + K II 2πr cos θ 2 ( 1sin θ 2 sin 3θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqaHdp WCdaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacaWG lbWaaSbaaSqaaiaadMeaaeqaaaGcbaWaaOaaaeaacaaIYaGaeqiWda NaamOCaaWcbeaaaaGcciGGJbGaai4BaiaacohadaWcaaqaaiabeI7a XbqaaiaaikdaaaWaaeWaaeaacaaIXaGaeyOeI0Iaci4CaiaacMgaca GGUbWaaSaaaeaacqaH4oqCaeaacaaIYaaaaiGacohacaGGPbGaaiOB amaalaaabaGaaG4maiabeI7aXbqaaiaaikdaaaaacaGLOaGaayzkaa GaeyOeI0YaaSaaaeaacaWGlbWaaSbaaSqaaiaadMeacaWGjbaabeaa aOqaamaakaaabaGaaGOmaiabec8aWjaadkhaaSqabaaaaOGaci4Cai aacMgacaGGUbWaaSaaaeaacqaH4oqCaeaacaaIYaaaamaabmaabaGa aGOmaiabgUcaRiGacogacaGGVbGaai4CamaalaaabaGaeqiUdehaba GaaGOmaaaaciGGJbGaai4BaiaacohadaWcaaqaaiaaiodacqaH4oqC aeaacaaIYaaaaaGaayjkaiaawMcaaaqaaiabeo8aZnaaBaaaleaaca aIYaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaadUeadaWgaaWcbaGa amysaaqabaaakeaadaGcaaqaaiaaikdacqaHapaCcaWGYbaaleqaaa aakiGacogacaGGVbGaai4CamaalaaabaGaeqiUdehabaGaaGOmaaaa daqadaqaaiaaigdacqGHRaWkciGGZbGaaiyAaiaac6gadaWcaaqaai abeI7aXbqaaiaaikdaaaGaci4CaiaacMgacaGGUbWaaSaaaeaacaaI ZaGaeqiUdehabaGaaGOmaaaaaiaawIcacaGLPaaacqGHRaWkdaWcaa qaaiaadUeadaWgaaWcbaGaamysaiaadMeaaeqaaaGcbaWaaOaaaeaa caaIYaGaeqiWdaNaamOCaaWcbeaaaaGcciGGJbGaai4Baiaacohada WcaaqaaiabeI7aXbqaaiaaikdaaaGaci4CaiaacMgacaGGUbWaaSaa aeaacqaH4oqCaeaacaaIYaaaaiGacogacaGGVbGaai4Camaalaaaba GaaG4maiabeI7aXbqaaiaaikdaaaaabaGaeq4Wdm3aaSbaaSqaaiaa igdacaaIYaaabeaakiabg2da9maalaaabaGaam4samaaBaaaleaaca WGjbaabeaaaOqaamaakaaabaGaaGOmaiabec8aWjaadkhaaSqabaaa aOGaci4yaiaac+gacaGGZbWaaSaaaeaacqaH4oqCaeaacaaIYaaaai GacohacaGGPbGaaiOBamaalaaabaGaeqiUdehabaGaaGOmaaaaciGG JbGaai4BaiaacohadaWcaaqaaiaaiodacqaH4oqCaeaacaaIYaaaai abgUcaRmaalaaabaGaam4samaaBaaaleaacaWGjbGaamysaaqabaaa keaadaGcaaqaaiaaikdacqaHapaCcaWGYbaaleqaaaaakiGacogaca GGVbGaai4CamaalaaabaGaeqiUdehabaGaaGOmaaaadaqadaqaaiaa igdacqGHsislciGGZbGaaiyAaiaac6gadaWcaaqaaiabeI7aXbqaai aaikdaaaGaci4CaiaacMgacaGGUbWaaSaaaeaacaaIZaGaeqiUdeha baGaaGOmaaaaaiaawIcacaGLPaaaaaaa@DB9C@

while the displacements can be calculated by integrating the strains, with the result

u 1 = K I μ r 2π [ 12ν+ sin 2 θ 2 ]cos θ 2 + K II μ r 2π [ 22ν+ cos 2 θ 2 ]sin θ 2 u 2 = K I μ r 2π [ 22ν cos 2 θ 2 ]sin θ 2 + K II μ r 2π [ 1+2ν+ sin 2 θ 2 ]cos θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG1b WaaSbaaSqaaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacaWGlbWaaSba aSqaaiaadMeaaeqaaaGcbaGaeqiVd0gaamaakaaabaWaaSaaaeaaca WGYbaabaGaaGOmaiabec8aWbaaaSqabaGcdaWadaqaaiaaigdacqGH sislcaaIYaGaeqyVd4Maey4kaSIaci4CaiaacMgacaGGUbWaaWbaaS qabeaacaaIYaaaaOWaaSaaaeaacqaH4oqCaeaacaaIYaaaaaGaay5w aiaaw2faaiGacogacaGGVbGaai4CamaalaaabaGaeqiUdehabaGaaG OmaaaacqGHRaWkdaWcaaqaaiaadUeadaWgaaWcbaGaamysaiaadMea aeqaaaGcbaGaeqiVd0gaamaakaaabaWaaSaaaeaacaWGYbaabaGaaG Omaiabec8aWbaaaSqabaGcdaWadaqaaiaaikdacqGHsislcaaIYaGa eqyVd4Maey4kaSIaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYa aaaOWaaSaaaeaacqaH4oqCaeaacaaIYaaaaaGaay5waiaaw2faaiGa cohacaGGPbGaaiOBamaalaaabaGaeqiUdehabaGaaGOmaaaaaeaaca WG1bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacaWGlbWa aSbaaSqaaiaadMeaaeqaaaGcbaGaeqiVd0gaamaakaaabaWaaSaaae aacaWGYbaabaGaaGOmaiabec8aWbaaaSqabaGcdaWadaqaaiaaikda cqGHsislcaaIYaGaeqyVd4MaeyOeI0Iaci4yaiaac+gacaGGZbWaaW baaSqabeaacaaIYaaaaOWaaSaaaeaacqaH4oqCaeaacaaIYaaaaaGa ay5waiaaw2faaiGacohacaGGPbGaaiOBamaalaaabaGaeqiUdehaba GaaGOmaaaacqGHRaWkdaWcaaqaaiaadUeadaWgaaWcbaGaamysaiaa dMeaaeqaaaGcbaGaeqiVd0gaamaakaaabaWaaSaaaeaacaWGYbaaba GaaGOmaiabec8aWbaaaSqabaGcdaWadaqaaiabgkHiTiaaigdacqGH RaWkcaaIYaGaeqyVd4Maey4kaSIaci4CaiaacMgacaGGUbWaaWbaaS qabeaacaaIYaaaaOWaaSaaaeaacqaH4oqCaeaacaaIYaaaaaGaay5w aiaaw2faaiGacogacaGGVbGaai4CamaalaaabaGaeqiUdehabaGaaG Omaaaaaaaa@A87A@

Note that this displacement field is valid for plane strain deformation only.

 

Observe that the stress intensity factor has the bizarre units of N m 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaad2 gadaahaaWcbeqaaiabgkHiTiaaiodacaGGVaGaaGOmaaaaaaa@3B01@ .