Chapter 7

 

Stress-Strain relations for linear elastic materials

 

You are probably familiar with the behavior of a linear elastic material from introductory materials courses.

7.1 Isotropic, linear elastic material behavior

 

If you conduct a uniaxial tensile test on almost any material, and keep the stress levels sufficiently low, you will observe the following behavior:

 The specimen deforms reversibly:  If you remove the loads, the solid returns to its original shape.

 The strain in the specimen depends only on the stress applied to it MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  it doesn’t depend on the rate of loading, or the history of loading.

 For most materials, the stress is a linear function of strain, as shown in the picture above.  Because the strains are small, this is true whatever stress measure is adopted (Cauchy stress or nominal stress), and is true whatever strain measure is adopted (Lagrange strain or infinitesimal strain).

 For most, but not all, materials, the material has no characteristic orientation.  Thus, if you cut a tensile specimen out of a block of material, as shown in the figure, the the stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8hfGaaa@3723@ strain curve will be independent of the orientation of the specimen relative to the block of material.  Such materials are said to be isotropic.

 If you heat a specimen of the material, increasing its temperature uniformly, it will generally change its shape slightly.  If the material is isotropic (no preferred material orientation) and homogeneous, then the specimen will simply increase in size, without shape change.

 

 

7.2 Stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieqajugybabaaa aaaaaapeGaa8hfGaaa@3724@ strain relations for isotropic, linear elastic materials. Young’s Modulus, Poissons ratio and the Thermal Expansion Coefficient.

 

Before writing down stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8hfGaaa@3723@ strain relations, we need to decide what strain and stress measures we want to use.  Because the model only works for small shape changes

 Deformation is characterized using the infinitesimal strain tensor ε ij =( u i / x j + u j / x i )/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpdaqadaqaaiabgkGi2kaadwhadaWgaaWcbaGaamyA aaqabaGccaGGVaGaeyOaIyRaamiEamaaBaaaleaacaWGQbaabeaaki abgUcaRiabgkGi2kaadwhadaWgaaWcbaGaamOAaaqabaGccaGGVaGa eyOaIyRaamiEamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaai aac+cacaaIYaaaaa@4880@  defined in Section 4.6.  This is convenient for calculations, but has the disadvantage that linear elastic constitutive equations can only be used if the solid experiences small rotations, as well as small shape changes. 

 All stress measures are taken to be equal.  We can use the Cauchy stress σ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3434@  as the stress measure.

 

You probably already know the stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8hfGaaa@3723@ strain relations for an isotropic, linear elastic solid.  They are repeated below for convenience.

[ ε 11 ε 22 ε 33 2 ε 23 2 ε 13 2 ε 12 ]= 1 E [ 1 ν ν 0 0 0 ν 1 ν 0 0 0 ν ν 1 0 0 0 0 0 0 2( 1+ν ) 0 0 0 0 0 0 2( 1+ν ) 0 0 0 0 0 0 2( 1+ν ) ][ σ 11 σ 22 σ 33 σ 23 σ 13 σ 12 ]+αΔT[ 1 1 1 0 0 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaadmaabaqbaeqabyqaaaaabaGaeqyTdu 2aaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabew7aLnaaBaaaleaa caaIYaGaaGOmaaqabaaakeaacqaH1oqzdaWgaaWcbaGaaG4maiaaio daaeqaaaGcbaGaaGOmaiabew7aLnaaBaaaleaacaaIYaGaaG4maaqa baaakeaacaaIYaGaeqyTdu2aaSbaaSqaaiaaigdacaaIZaaabeaaaO qaaiaaikdacqaH1oqzdaWgaaWcbaGaaGymaiaaikdaaeqaaaaaaOGa ay5waiaaw2faaiabg2da9maalaaabaGaaGymaaqaaiaadweaaaWaam WaaeaafaqabeGbgaaaaaqaaiaaigdaaeaacqGHsislcqaH9oGBaeaa cqGHsislcqaH9oGBaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacq GHsislcqaH9oGBaeaacaaIXaaabaGaeyOeI0IaeqyVd4gabaGaaGim aaqaaiaaicdaaeaacaaIWaaabaGaeyOeI0IaeqyVd4gabaGaeyOeI0 IaeqyVd4gabaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaikdadaqadaqaaiaaig dacqGHRaWkcqaH9oGBaiaawIcacaGLPaaaaeaacaaIWaaabaGaaGim aaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIYa WaaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaca aIWaaabaGaaGOmamaabmaabaGaaGymaiabgUcaRiabe27aUbGaayjk aiaawMcaaaaaaiaawUfacaGLDbaadaWadaqaauaabeqageaaaaqaai abeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaaakeaacqaHdpWCdaWg aaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaio dacaaIZaaabeaaaOqaaiabeo8aZnaaBaaaleaacaaIYaGaaG4maaqa baaakeaacqaHdpWCdaWgaaWcbaGaaGymaiaaiodaaeqaaaGcbaGaeq 4Wdm3aaSbaaSqaaiaaigdacaaIYaaabeaaaaaakiaawUfacaGLDbaa cqGHRaWkcqaHXoqycqqHuoarcaWGubWaamWaaeaafaqabeGbbaaaae aacaaIXaaabaGaaGymaaqaaiaaigdaaeaacaaIWaaabaGaaGimaaqa aiaaicdaaaaacaGLBbGaayzxaaaaaa@A385@

Here, E and ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUbaa@322F@  are Young’s modulus and Poisson’s ratio, α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg7aHbaa@3216@  is the coefficient of thermal expansion, and ΔT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabfs5aejaadsfaaaa@32A6@  is the increase in temperature of the solid.  The remaining relations can be deduced from the fact that both σ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3433@  and ε ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@3417@  are symmetric. 

 

The inverse relationship can be expressed as

[ σ 11 σ 22 σ 33 σ 23 σ 13 σ 12 ]= E (1+ν)(12ν) [ 1ν ν ν 0 0 0 ν 1ν ν 0 0 0 ν ν 1ν 0 0 0 0 0 0 ( 12ν ) 2 0 0 0 0 0 0 ( 12ν ) 2 0 0 0 0 0 0 ( 12ν ) 2 ][ ε 11 ε 22 ε 33 2 ε 23 2 ε 13 2 ε 12 ] EαΔT 12ν [ 1 1 1 0 0 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaadmaabaqbaeqabyqaaaaabaGaeq4Wdm 3aaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabeo8aZnaaBaaaleaa caaIYaGaaGOmaaqabaaakeaacqaHdpWCdaWgaaWcbaGaaG4maiaaio daaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaikdacaaIZaaabeaaaOqa aiabeo8aZnaaBaaaleaacaaIXaGaaG4maaqabaaakeaacqaHdpWCda WgaaWcbaGaaGymaiaaikdaaeqaaaaaaOGaay5waiaaw2faaiabg2da 9maalaaabaGaamyraaqaaiaacIcacaaIXaGaey4kaSIaeqyVd4Maai ykaiaacIcacaaIXaGaeyOeI0IaaGOmaiabe27aUjaacMcaaaWaamWa aeaafaqabeGbgaaaaaqaaiaaigdacqGHsislcqaH9oGBaeaacqaH9o GBaeaacqaH9oGBaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqaH 9oGBaeaacaaIXaGaeyOeI0IaeqyVd4gabaGaeqyVd4gabaGaaGimaa qaaiaaicdaaeaacaaIWaaabaGaeqyVd4gabaGaeqyVd4gabaGaaGym aiabgkHiTiabe27aUbqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaai aaicdaaeaacaaIWaaabaGaaGimaaqaamaalaaabaWaaeWaaeaacaaI XaGaeyOeI0IaaGOmaiabe27aUbGaayjkaiaawMcaaaqaaiaaikdaaa aabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicda aeaacaaIWaaabaWaaSaaaeaadaqadaqaaiaaigdacqGHsislcaaIYa GaeqyVd4gacaGLOaGaayzkaaaabaGaaGOmaaaaaeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaada WcaaqaamaabmaabaGaaGymaiabgkHiTiaaikdacqaH9oGBaiaawIca caGLPaaaaeaacaaIYaaaaaaaaiaawUfacaGLDbaadaWadaqaauaabe qageaaaaqaaiabew7aLnaaBaaaleaacaaIXaGaaGymaaqabaaakeaa cqaH1oqzdaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaeqyTdu2aaS baaSqaaiaaiodacaaIZaaabeaaaOqaaiaaikdacqaH1oqzdaWgaaWc baGaaGOmaiaaiodaaeqaaaGcbaGaaGOmaiabew7aLnaaBaaaleaaca aIXaGaaG4maaqabaaakeaacaaIYaGaeqyTdu2aaSbaaSqaaiaaigda caaIYaaabeaaaaaakiaawUfacaGLDbaacqGHsisldaWcaaqaaiaadw eacqaHXoqycqqHuoarcaWGubaabaGaaGymaiabgkHiTiaaikdacqaH 9oGBaaWaamWaaeaafaqabeGbbaaaaeaacaaIXaaabaGaaGymaaqaai aaigdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaaaacaGLBbGaayzx aaaaaa@B6D4@

 

HEALTH WARNING: Note the factor of 2 in the strain vector.  Most texts, and most FEM codes use this factor of two, but not all.  In addition, shear strains and stresses are often listed in a different order in the strain and stress vectors.  For isotropic materials this makes no difference, but you need to be careful when listing material constants for anisotropic materials (see below).

 

We can write this expression in a much more convenient form using index notation.  Verify for yourself that the matrix expression above is equivalent to

ε ij = 1+ν E σ ij ν E σ kk δ ij +αΔT δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpdaWcaaqaaiaaigdacqGHRaWkcqaH9oGBaeaacaWG fbaaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccqGHsislda Wcaaqaaiabe27aUbqaaiaadweaaaGaeq4Wdm3aaSbaaSqaaiaadUga caWGRbaabeaakiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaGccq GHRaWkcqaHXoqycqqHuoarcaWGubGaeqiTdq2aaSbaaSqaaiaadMga caWGQbaabeaaaaa@50AA@

 

The inverse relation is

σ ij = E 1+ν { ε ij + ν 12ν ε kk δ ij } EαΔT 12ν δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpdaWcaaqaaiaadweaaeaacaaIXaGaey4kaSIaeqyV d4gaamaacmaabaGaeqyTdu2aaSbaaSqaaiaadMgacaWGQbaabeaaki abgUcaRmaalaaabaGaeqyVd4gabaGaaGymaiabgkHiTiaaikdacqaH 9oGBaaGaeqyTdu2aaSbaaSqaaiaadUgacaWGRbaabeaakiabes7aKn aaBaaaleaacaWGPbGaamOAaaqabaaakiaawUhacaGL9baacqGHsisl daWcaaqaaiaadweacqaHXoqycqqHuoarcaWGubaabaGaaGymaiabgk HiTiaaikdacqaH9oGBaaGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaa beaaaaa@5B07@

 

The stress-strain relations are often expressed using the elastic modulus tensor C ijkl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGdbWaaSbaaSqaaiaadMgacaWGQb Gaam4AaiaadYgaaeqaaaaa@3778@  or the elastic compliance tensor S ijkl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaadMgacaWGQb Gaam4AaiaadYgaaeqaaaaa@3788@  as

σ ij = C ijkl ( ε kl αΔT δ kl ) ε ij = S ijkl σ kl +αΔT δ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaeyypa0Jaam4qamaaBaaaleaacaWGPbGaamOAaiaadUga caWGSbaabeaakmaabmaabaGaeqyTdu2aaSbaaSqaaiaadUgacaWGSb aabeaakiabgkHiTiabeg7aHjabfs5aejaadsfacqaH0oazdaWgaaWc baGaam4AaiaadYgaaeqaaaGccaGLOaGaayzkaaGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaeqyTdu2aaSbaaSqaaiaadMgacaWGQbaabeaakiabg2 da9iaadofadaWgaaWcbaGaamyAaiaadQgacaWGRbGaamiBaaqabaGc cqaHdpWCdaWgaaWcbaGaam4AaiaadYgaaeqaaOGaey4kaSIaeqySde MaeuiLdqKaamivaiabes7aKnaaBaaaleaacaWGPbGaamOAaaqabaaa aa@7284@

In terms of elastic constants, C ijkl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGdbWaaSbaaSqaaiaadMgacaWGQb Gaam4AaiaadYgaaeqaaaaa@3778@  and S ijkl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaadMgacaWGQb Gaam4AaiaadYgaaeqaaaaa@3788@  are

C ijkl = E 2( 1+ν ) ( δ il δ jk + δ ik δ jl )+ Eν ( 1+ν )( 12ν ) δ ij δ kl S ijkl = 1+ν 2E ( δ il δ jk + δ ik δ jl ) ν E δ ij δ kl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakqaabeqaaiaadoeadaWgaaWcbaGaamyAai aadQgacaWGRbGaamiBaaqabaGccqGH9aqpdaWcaaqaaiaadweaaeaa caaIYaWaaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGLOaGaayzkaa aaamaabmaabaGaeqiTdq2aaSbaaSqaaiaadMgacaWGSbaabeaakiab es7aKnaaBaaaleaacaWGQbGaam4AaaqabaGccqGHRaWkcqaH0oazda WgaaWcbaGaamyAaiaadUgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadQga caWGSbaabeaaaOGaayjkaiaawMcaaiabgUcaRmaalaaabaGaamyrai abe27aUbqaamaabmaabaGaaGymaiabgUcaRiabe27aUbGaayjkaiaa wMcaamaabmaabaGaaGymaiabgkHiTiaaikdacqaH9oGBaiaawIcaca GLPaaaaaGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaakiabes7a KnaaBaaaleaacaWGRbGaamiBaaqabaaakeaacaWGtbWaaSbaaSqaai aadMgacaWGQbGaam4AaiaadYgaaeqaaOGaeyypa0ZaaSaaaeaacaaI XaGaey4kaSIaeqyVd4gabaGaaGOmaiaadweaaaWaaeWaaeaacqaH0o azdaWgaaWcbaGaamyAaiaadYgaaeqaaOGaeqiTdq2aaSbaaSqaaiaa dQgacaWGRbaabeaakiabgUcaRiabes7aKnaaBaaaleaacaWGPbGaam 4AaaqabaGccqaH0oazdaWgaaWcbaGaamOAaiaadYgaaeqaaaGccaGL OaGaayzkaaGaeyOeI0YaaSaaaeaacqaH9oGBaeaacaWGfbaaaiabes 7aKnaaBaaaleaacaWGPbGaamOAaaqabaGccqaH0oazdaWgaaWcbaGa am4AaiaadYgaaeqaaaaaaa@8CBA@

 

 

 

7.3 Reduced stress-strain equations for plane deformation of isotropic solids

 

For plane strain or plane stress deformations, some strain or stress components are always zero (by definition) so the stress-strain laws can be simplified. 

 

 

 For a plane strain deformation ε 33 = ε 23 = ε 13 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacaaIZaGaaG4maa qabaGccqGH9aqpcqaH1oqzdaWgaaWcbaGaaGOmaiaaiodaaeqaaOGa eyypa0JaeqyTdu2aaSbaaSqaaiaaigdacaaIZaaabeaakiabg2da9i aaicdaaaa@3E36@ .  The stress strain laws are therefore

[ ε 11 ε 22 2 ε 12 ]= (1+ν) E [ 1ν ν 0 ν 1ν 0 0 0 2 ][ σ 11 σ 22 σ 12 ]+( 1+ν )αΔT[ 1 1 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaadmaabaqbaeqabmqaaaqaaiabew7aLn aaBaaaleaacaaIXaGaaGymaaqabaaakeaacqaH1oqzdaWgaaWcbaGa aGOmaiaaikdaaeqaaaGcbaGaaGOmaiabew7aLnaaBaaaleaacaaIXa GaaGOmaaqabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaaSaaaeaacaGG OaGaaGymaiabgUcaRiabe27aUjaacMcaaeaacaWGfbaaamaadmaaba qbaeqabmWaaaqaaiaaigdacqGHsislcqaH9oGBaeaacqGHsislcqaH 9oGBaeaacaaIWaaabaGaeyOeI0IaeqyVd4gabaGaaGymaiabgkHiTi abe27aUbqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaikdaaaaa caGLBbGaayzxaaWaamWaaeaafaqabeWabaaabaGaeq4Wdm3aaSbaaS qaaiaaigdacaaIXaaabeaaaOqaaiabeo8aZnaaBaaaleaacaaIYaGa aGOmaaqabaaakeaacqaHdpWCdaWgaaWcbaGaaGymaiaaikdaaeqaaa aaaOGaay5waiaaw2faaiabgUcaRmaabmaabaGaaGymaiabgUcaRiab e27aUbGaayjkaiaawMcaaiabeg7aHjabfs5aejaadsfadaWadaqaau aabeqadeaaaeaacaaIXaaabaGaaGymaaqaaiaaicdaaaaacaGLBbGa ayzxaaaaaa@6F86@

[ σ 11 σ 22 σ 12 ]= E (1+ν)(12ν) [ 1ν ν 0 ν 1ν 0 0 0 12ν 2 ][ ε 11 ε 22 2 ε 12 ] EαΔT 12ν [ 1 1 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaadmaabaqbaeqabmqaaaqaaiabeo8aZn aaBaaaleaacaaIXaGaaGymaaqabaaakeaacqaHdpWCdaWgaaWcbaGa aGOmaiaaikdaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIYa aabeaaaaaakiaawUfacaGLDbaacqGH9aqpdaWcaaqaaiaadweaaeaa caGGOaGaaGymaiabgUcaRiabe27aUjaacMcacaGGOaGaaGymaiabgk HiTiaaikdacqaH9oGBcaGGPaaaamaadmaabaqbaeqabmWaaaqaaiaa igdacqGHsislcqaH9oGBaeaacqaH9oGBaeaacaaIWaaabaGaeqyVd4 gabaGaaGymaiabgkHiTiabe27aUbqaaiaaicdaaeaacaaIWaaabaGa aGimaaqaamaalaaabaGaaGymaiabgkHiTiaaikdacqaH9oGBaeaaca aIYaaaaaaaaiaawUfacaGLDbaadaWadaqaauaabeqadeaaaeaacqaH 1oqzdaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaeqyTdu2aaSbaaS qaaiaaikdacaaIYaaabeaaaOqaaiaaikdacqaH1oqzdaWgaaWcbaGa aGymaiaaikdaaeqaaaaaaOGaay5waiaaw2faaiabgkHiTmaalaaaba Gaamyraiabeg7aHjabfs5aejaadsfaaeaacaaIXaGaeyOeI0IaaGOm aiabe27aUbaadaWadaqaauaabeqadeaaaeaacaaIXaaabaGaaGymaa qaaiaaicdaaaaacaGLBbGaayzxaaaaaa@7770@

σ 33 = Eν( ε 11 + ε 22 ) ( 12ν )( 1+ν ) + EαΔT 12ν , σ 13 = σ 23 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIZaGaaG4maa qabaGccqGH9aqpdaWcaaqaaiaadweacqaH9oGBdaqadaqaaiabew7a LnaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkcqaH1oqzdaWgaa WcbaGaaGOmaiaaikdaaeqaaaGccaGLOaGaayzkaaaabaWaaeWaaeaa caaIXaGaeyOeI0IaaGOmaiabe27aUbGaayjkaiaawMcaamaabmaaba GaaGymaiabgUcaRiabe27aUbGaayjkaiaawMcaaaaacqGHRaWkdaWc aaqaaiaadweacqaHXoqycqqHuoarcaWGubaabaGaaGymaiabgkHiTi aaikdacqaH9oGBaaGaaiilaiaaykW7caaMc8Uaeq4Wdm3aaSbaaSqa aiaaigdacaaIZaaabeaakiabg2da9iabeo8aZnaaBaaaleaacaaIYa GaaG4maaqabaGccqGH9aqpcaaIWaaaaa@622E@

In index notation

ε αβ = 1+ν E { σ αβ ν σ γγ δ αβ }+( 1+ν )αΔT δ αβ σ αβ = E 1+ν { ε αβ + ν 12ν ε γγ δ αβ } EαΔT 12ν δ αβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0ZaaSaaaeaacaaIXaGaey4kaSIaeqyVd4gabaGa amyraaaadaGadaqaaiabeo8aZnaaBaaaleaacqaHXoqycqaHYoGyae qaaOGaeyOeI0IaeqyVd4Maeq4Wdm3aaSbaaSqaaiabeo7aNjabeo7a NbqabaGccqaH0oazdaWgaaWcbaGaeqySdeMaeqOSdigabeaaaOGaay 5Eaiaaw2haaiabgUcaRmaabmaabaGaaGymaiabgUcaRiabe27aUbGa ayjkaiaawMcaaiabeg7aHjabfs5aejaadsfacqaH0oazdaWgaaWcba GaeqySdeMaeqOSdigabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeo 8aZnaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaeyypa0ZaaSaaaeaa caWGfbaabaGaaGymaiabgUcaRiabe27aUbaadaGadaqaaiabew7aLn aaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaey4kaSYaaSaaaeaacqaH 9oGBaeaacaaIXaGaeyOeI0IaaGOmaiabe27aUbaacqaH1oqzdaWgaa WcbaGaeq4SdCMaeq4SdCgabeaakiabes7aKnaaBaaaleaacqaHXoqy cqaHYoGyaeqaaaGccaGL7bGaayzFaaGaeyOeI0YaaSaaaeaacaWGfb GaeqySdeMaeuiLdqKaamivaaqaaiaaigdacqGHsislcaaIYaGaeqyV d4gaaiabes7aKnaaBaaaleaacqaHXoqycqaHYoGyaeqaaaaa@A201@

where Greek subscripts α,β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg7aHjaacYcacqaHYoGyaaa@3458@  can have values 1 or 2.

 

 For a plane stress deformation σ 33 = σ 23 = σ 13 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIZaGaaG4maa qabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaaGOmaiaaiodaaeqaaOGa eyypa0Jaeq4Wdm3aaSbaaSqaaiaaigdacaaIZaaabeaakiabg2da9i aaicdaaaa@3E8A@

 

[ ε 11 ε 22 2 ε 12 ]= 1 E [ 1 ν 0 ν 1 0 0 0 2(1+ν) ][ σ 11 σ 22 σ 12 ]+αΔT[ 1 1 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaadmaabaqbaeqabmqaaaqaaiabew7aLn aaBaaaleaacaaIXaGaaGymaaqabaaakeaacqaH1oqzdaWgaaWcbaGa aGOmaiaaikdaaeqaaaGcbaGaaGOmaiabew7aLnaaBaaaleaacaaIXa GaaGOmaaqabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaaSaaaeaacaaI XaaabaGaamyraaaadaWadaqaauaabeqadmaaaeaacaaIXaaabaGaey OeI0IaeqyVd4gabaGaaGimaaqaaiabgkHiTiabe27aUbqaaiaaigda aeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIYaGaaiikaiaaig dacqGHRaWkcqaH9oGBcaGGPaaaaaGaay5waiaaw2faamaadmaabaqb aeqabmqaaaqaaiabeo8aZnaaBaaaleaacaaIXaGaaGymaaqabaaake aacqaHdpWCdaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaeq4Wdm3a aSbaaSqaaiaaigdacaaIYaaabeaaaaaakiaawUfacaGLDbaacqGHRa WkcqaHXoqycqqHuoarcaWGubWaamWaaeaafaqabeWabaaabaGaaGym aaqaaiaaigdaaeaacaaIWaaaaaGaay5waiaaw2faaaaa@6619@

[ σ 11 σ 22 σ 12 ]= E (1 ν 2 ) [ 1 ν 0 ν 1 0 0 0 (1ν)/2 ][ ε 11 ε 22 2 ε 12 ] EαΔT ( 1ν ) [ 1 1 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaadmaabaqbaeqabmqaaaqaaiabeo8aZn aaBaaaleaacaaIXaGaaGymaaqabaaakeaacqaHdpWCdaWgaaWcbaGa aGOmaiaaikdaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIYa aabeaaaaaakiaawUfacaGLDbaacqGH9aqpdaWcaaqaaiaadweaaeaa caGGOaGaaGymaiabgkHiTiabe27aUnaaCaaaleqabaGaaGOmaaaaki aacMcaaaWaamWaaeaafaqabeWadaaabaGaaGymaaqaaiabe27aUbqa aiaaicdaaeaacqaH9oGBaeaacaaIXaaabaGaaGimaaqaaiaaicdaae aacaaIWaaabaGaaiikaiaaigdacqGHsislcqaH9oGBcaGGPaGaai4l aiaaikdaaaaacaGLBbGaayzxaaWaamWaaeaafaqabeWabaaabaGaeq yTdu2aaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabew7aLnaaBaaa leaacaaIYaGaaGOmaaqabaaakeaacaaIYaGaeqyTdu2aaSbaaSqaai aaigdacaaIYaaabeaaaaaakiaawUfacaGLDbaacqGHsisldaWcaaqa aiaadweacqaHXoqycqqHuoarcaWGubaabaWaaeWaaeaacaaIXaGaey OeI0IaeqyVd4gacaGLOaGaayzkaaaaamaadmaabaqbaeqabmqaaaqa aiaaigdaaeaacaaIXaaabaGaaGimaaaaaiaawUfacaGLDbaaaaa@6FBC@

ε 33 = ν E ( σ 11 + σ 22 )+αΔT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacqaH1oqzdaWgaaWcbaGaaG4maiaaio daaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacqaH9oGBaeaacaWGfbaa amaabmaabaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIXaaabeaakiabgU caRiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqabaaakiaawIcacaGL PaaacqGHRaWkcqaHXoqycqqHuoarcaWGubaaaa@48AD@

ε αβ = 1+ν E ( σ αβ ν 1+ν σ γγ δ αβ )+αΔT δ αβ σ αβ = E 1+ν { ε αβ + ν 1ν ε γγ δ αβ } EαΔT 1ν δ αβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacqaHXoqycqaHYo GyaeqaaOGaeyypa0ZaaSaaaeaacaaIXaGaey4kaSIaeqyVd4gabaGa amyraaaadaqadaqaaiabeo8aZnaaBaaaleaacqaHXoqycqaHYoGyae qaaOGaeyOeI0YaaSaaaeaacqaH9oGBaeaacaaIXaGaey4kaSIaeqyV d4gaaiabeo8aZnaaBaaaleaacqaHZoWzcqaHZoWzaeqaaOGaeqiTdq 2aaSbaaSqaaiabeg7aHjabek7aIbqabaaakiaawIcacaGLPaaacqGH RaWkcqaHXoqycqqHuoarcaWGubGaeqiTdq2aaSbaaSqaaiabeg7aHj abek7aIbqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq4Wdm 3aaSbaaSqaaiabeg7aHjabek7aIbqabaGccqGH9aqpdaWcaaqaaiaa dweaaeaacaaIXaGaey4kaSIaeqyVd4gaamaacmaabaGaeqyTdu2aaS baaSqaaiabeg7aHjabek7aIbqabaGccqGHRaWkdaWcaaqaaiabe27a UbqaaiaaigdacqGHsislcqaH9oGBaaGaeqyTdu2aaSbaaSqaaiabeo 7aNjabeo7aNbqabaGccqaH0oazdaWgaaWcbaGaeqySdeMaeqOSdiga beaaaOGaay5Eaiaaw2haaiabgkHiTmaalaaabaGaamyraiabeg7aHj abfs5aejaadsfaaeaacaaIXaGaeyOeI0IaeqyVd4gaaiabes7aKnaa BaaaleaacqaHXoqycqaHYoGyaeqaaaaa@9FF3@

 

 

 

7.4 Representative values for density, and elastic constants of isotropic solids

 

Most of the data in the table below were taken from the excellent introductory text `Engineering Materials,’ by M.F. Ashby and D.R.H. Jones, Pergamon Press.  The remainder are from random web pages…

 

Note the units MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  values of E are given in GN/ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaad6 eacaGGVaGaamyBamaaCaaaleqabaGaaGOmaaaaaaa@3A24@ ; the G stands for Giga, and is short for 10 9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaic dadaahaaWcbeqaaiaaiMdaaaaaaa@385C@ .  The units for density are in Mg m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaadE gacaWGTbWaaWbaaSqabeaacqGHsislcaaIZaaaaaaa@3A7E@  - that’s Mega grams.  One mega gram is 1000 kg.

 

Material

Mass density

ρ/Mg m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG PaVlaaykW7caGGVaGaaGPaVlaaykW7caaMc8UaamytaiaadEgacaWG TbWaaWbaaSqabeaacqGHsislcaaIZaaaaaaa@44A8@

Youngs Modulus

E/GN m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaayk W7caaMc8UaaGPaVlaac+cacaaMc8UaaGPaVlaaykW7caWGhbGaamOt aiaad2gadaahaaWcbeqaaiabgkHiTiaaikdaaaaaaa@451D@

Poisson Ratio
ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4gaaa@37AF@

Expansion coeft K 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadUeadaahaaWcbeqaaiabgkHiTiaaig daaaaaaa@330D@

Tungsten Carbide

14 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  17

450 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@ 650

0.22

5× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaiwdacqGHxdaTcaaIXaGaaGimamaaCa aaleqabaGaeyOeI0IaaGOnaaaaaaa@368D@

Silicon Carbide

2.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  3.2

450

0.22

4× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaisdacqGHxdaTcaaIXaGaaGimamaaCa aaleqabaGaeyOeI0IaaGOnaaaaaaa@368C@

Tungsten

13.4

410

0.30

4× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaisdacqGHxdaTcaaIXaGaaGimamaaCa aaleqabaGaeyOeI0IaaGOnaaaaaaa@368C@

Alumina

3.9

390

0.25

7× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaiEdacqGHxdaTcaaIXaGaaGimamaaCa aaleqabaGaeyOeI0IaaGOnaaaaaaa@368F@

Titanium Carbide

4.9

380

0.19

13× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaigdacaaIZaGaey41aqRaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaiAdaaaaaaa@3746@

Silicon Nitride

3.2

320 - 270

0.22

3× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaiodacqGHxdaTcaaIXaGaaGimamaaCa aaleqabaGaeyOeI0IaaGOnaaaaaaa@368B@

Nickel

8.9

215

0.31

14× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaigdacaaI0aGaey41aqRaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaiAdaaaaaaa@3747@

CFRP

1.5-1.6

70 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  200

0.20

2× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaikdacqGHxdaTcaaIXaGaaGimamaaCa aaleqabaGaeyOeI0IaaGOnaaaaaaa@368A@

Iron

7.9

196

0.30

13× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaigdacaaIZaGaey41aqRaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaiAdaaaaaaa@3746@

Low alloy steels

7.8

200 - 210

0.30

15× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaigdacaaI1aGaey41aqRaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaiAdaaaaaaa@3748@

Stainless steel

7.5-7.7

190 - 200

0.30

11× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaigdacaaIXaGaey41aqRaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaiAdaaaaaaa@3744@

Mild steel

7.8

196

0.30

15× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaigdacaaI1aGaey41aqRaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaiAdaaaaaaa@3748@

Copper

8.9

124

0.34

16× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaigdacaaI2aGaey41aqRaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaiAdaaaaaaa@3749@

Titanium

4.5

116

0.30

9× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaiMdacqGHxdaTcaaIXaGaaGimamaaCa aaleqabaGaeyOeI0IaaGOnaaaaaaa@3691@

Silicon

2.5-3.2

107

0.22

5× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaiwdacqGHxdaTcaaIXaGaaGimamaaCa aaleqabaGaeyOeI0IaaGOnaaaaaaa@368D@

Silica glass

2.6

94

0.16

0.5× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaicdacaGGUaGaaGynaiabgEna0kaaig dacaaIWaWaaWbaaSqabeaacqGHsislcaaI2aaaaaaa@37F9@

Aluminum & alloys

2.6-2.9

69-79

0.35

22× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaikdacaaIYaGaey41aqRaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaiAdaaaaaaa@3746@

Concrete

2.4-2.5

45-50

0.3

10× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaigdacaaIWaGaey41aqRaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaiAdaaaaaaa@3743@

GFRP

1.4-2.2

7-45

 

10× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaigdacaaIWaGaey41aqRaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaiAdaaaaaaa@3743@

Wood, parallel grain

0.4-0.8

9-16

0.2

40× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaisdacaaIWaGaey41aqRaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaiAdaaaaaaa@3746@

Polyimides

1.4

3-5

0.1-0.45

40× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaisdacaaIWaGaey41aqRaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaiAdaaaaaaa@3746@

Nylon

1.1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  1.2

2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  4

0.25

81× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaiIdacaaIXaGaey41aqRaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaiAdaaaaaaa@374B@

PMMA

1.2

3.4

0.35-0.4

50× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaiwdacaaIWaGaey41aqRaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaiAdaaaaaaa@3747@

Polycarbonate

1.2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  1.3

2.6

0.36

65× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaiAdacaaI1aGaey41aqRaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaiAdaaaaaaa@374D@

Natural Rubbers

0.83-0.91

0.01-0.1

0.49

200× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaikdacaaIWaGaaGimaiabgEna0kaaig dacaaIWaWaaWbaaSqabeaacqGHsislcaaI2aaaaaaa@37FE@

PVC

1.3-1.6

0.003-0.01

0.41

70× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaiEdacaaIWaGaey41aqRaaGymaiaaic dadaahaaWcbeqaaiabgkHiTiaaiAdaaaaaaa@3749@

 

 

 

 

 

7.5 Other Elastic Constants MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieqajugybabaaa aaaaaapeGaa83eGaaa@3723@  bulk, shear and Lame modulus.

 

Young’s modulus and Poisson’s ratio are the most common properties used to characterize elastic solids, but other measures are also used.  For example, we define the shear modulusbulk modulus and Lame modulus of an elastic solid as follows:

Bulk Modulus K= E 3( 12ν ) Shear Modulus μ= E 2( 1+ν ) Lame Modulus λ= νE ( 1+ν )( 12ν ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaaeOqaiaabwhacaqGSbGaae4Aai aabccacaqGnbGaae4BaiaabsgacaqG1bGaaeiBaiaabwhacaqGZbGa aeiiaiaadUeacqGH9aqpdaWcaaqaaiaadweaaeaacaaIZaWaaeWaae aacaaIXaGaeyOeI0IaaGOmaiabe27aUbGaayjkaiaawMcaaaaaaeaa caqGtbGaaeiAaiaabwgacaqGHbGaaeOCaiaabccacaqGnbGaae4Bai aabsgacaqG1bGaaeiBaiaabwhacaqGZbGaaeiiaiabeY7aTjaab2da daWcaaqaaiaadweaaeaacaaIYaWaaeWaaeaacaaIXaGaey4kaSIaeq yVd4gacaGLOaGaayzkaaaaaaqaaiaabYeacaqGHbGaaeyBaiaabwga caqGGaGaaeytaiaab+gacaqGKbGaaeyDaiaabYgacaqG1bGaae4Cai aabccacqaH7oaBcqGH9aqpdaWcaaqaaiabe27aUjaadweaaeaadaqa daqaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaadaqadaqaai aaigdacqGHsislcaaIYaGaeqyVd4gacaGLOaGaayzkaaaaaaaaaa@752D@

 

A nice table relating all the possible combinations of moduli to all other possible combinations is given below.  Enjoy!

 

 

Lame

Modulus

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBaaa@3729@

Shear

Modulus

μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBaaa@372B@

Young’s

Modulus

E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbaaaa@363F@

Poisson’s

Ratio

ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBaaa@372D@

Bulk

Modulus

K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbaaaa@3645@

λ,μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBcaGGSa GaeqiVd0gaaa@398F@

 

 

μ(3λ+2μ) λ+μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeqiVd0Maaiikaiaaiodacq aH7oaBcqGHRaWkcaaIYaGaeqiVd0MaaiykaaqaaiabeU7aSjabgUca RiabeY7aTbaaaaa@3D97@

λ 2(λ+μ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeq4UdWgabaGaaGOmaiaacI cacqaH7oaBcqGHRaWkcqaH8oqBcaGGPaaaaaaa@388C@

3λ+2μ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaaG4maiabeU7aSjabgUcaRi aaikdacqaH8oqBaeaacaaIZaaaaaaa@36F9@

λ,E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBcaGGSa Gaamyraaaa@38A3@

 

Irrational

 

Irrational

Irrational

λ,ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBcaGGSa GaeqyVd4gaaa@3991@

 

λ(12ν) 2ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeq4UdWMaaiikaiaaigdacq GHsislcaaIYaGaeqyVd4MaaiykaaqaaiaaikdacqaH9oGBaaaaaa@3A14@

λ(1+ν)(12ν) ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeq4UdWMaaiikaiaaigdacq GHRaWkcqaH9oGBcaGGPaGaaiikaiaaigdacqGHsislcaaIYaGaeqyV d4Maaiykaaqaaiabe27aUbaaaaa@3E06@

 

λ(1+ν) 3ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeq4UdWMaaiikaiaaigdacq GHRaWkcqaH9oGBcaGGPaaabaGaaG4maiabe27aUbaaaaa@394E@

λ,K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBcaGGSa GaaGPaVlaadUeaaaa@3A34@

 

3(Kλ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaaG4maiaacIcacaWGlbGaey OeI0Iaeq4UdWMaaiykaaqaaiaaikdaaaaaaa@36BA@

9K(Kλ) 3Kλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaaGyoaiaadUeacaGGOaGaam 4saiabgkHiTiabeU7aSjaacMcaaeaacaaIZaGaam4saiabgkHiTiab eU7aSbaaaaa@3B02@

λ 3Kλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeq4UdWgabaGaaG4maiaadU eacqGHsislcqaH7oaBaaaaaa@3659@

 

μ,E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcaGGSa GaaGPaVlaaykW7caWGfbaaaa@3BBB@

μ(2μE) E3μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeqiVd0Maaiikaiaaikdacq aH8oqBcqGHsislcaWGfbGaaiykaaqaaiaadweacqGHsislcaaIZaGa eqiVd0gaaaaa@3BD9@

 

 

E2μ 2μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamyraiabgkHiTiaaikdacq aH8oqBaeaacaaIYaGaeqiVd0gaaaaa@3712@

μE 3(3μE) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeqiVd0Maamyraaqaaiaaio dacaGGOaGaaG4maiabeY7aTjabgkHiTiaadweacaGGPaaaaaaa@3937@

μ,ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcaGGSa GaaGPaVlaaykW7cqaH9oGBaaa@3CA9@

2μν 12ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaaGOmaiabeY7aTjabe27aUb qaaiaaigdacqGHsislcaaIYaGaeqyVd4gaaaaa@38BD@

 

2μ(1+ν) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaikdacqaH8oqBcaGGOaGaaGymaiabgU caRiabe27aUjaacMcaaaa@3787@

 

2μ(1+ν) 3(12ν) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaaGOmaiabeY7aTjaacIcaca aIXaGaey4kaSIaeqyVd4MaaiykaaqaaiaaiodacaGGOaGaaGymaiab gkHiTiaaikdacqaH9oGBcaGGPaaaaaaa@3DC9@

μ,K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcaGGSa GaaGPaVlaadUeaaaa@3A36@

3K2μ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaaG4maiaadUeacqGHsislca aIYaGaeqiVd0gabaGaaG4maaaaaaa@3620@

 

9Kμ 3K+μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaaGyoaiaadUeacqaH8oqBae aacaaIZaGaam4saiabgUcaRiabeY7aTbaaaaa@37E5@

3K2μ 2(3K+μ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaaG4maiaadUeacqGHsislca aIYaGaeqiVd0gabaGaaGOmaiaacIcacaaIZaGaam4saiabgUcaRiab eY7aTjaacMcaaaaaaa@3B9D@

 

E,ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbGaaiilai aaykW7caaMc8UaeqyVd4gaaa@3BBD@

νE (1+ν)(12ν) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeqyVd4MaaGPaVlaadweaae aacaGGOaGaaGymaiabgUcaRiabe27aUjaacMcacaGGOaGaaGymaiab gkHiTiaaikdacqaH9oGBcaGGPaaaaaaa@3EA7@

E 2(1+ν) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamyraaqaaiaaikdacaGGOa GaaGymaiabgUcaRiabe27aUjaacMcaaaaaaa@36AB@

 

 

E 3(12ν) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamyraaqaaiaaiodacaGGOa GaaGymaiabgkHiTiaaikdacqaH9oGBcaGGPaaaaaaa@3773@

E,K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbGaaiilai aaykW7caWGlbaaaa@394A@

3K(3KE) 9KE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaaG4maiaadUeacaGGOaGaaG 4maiaadUeacqGHsislcaWGfbGaaiykaaqaaiaaiMdacaWGlbGaeyOe I0Iaamyraaaaaaa@39EB@

3EK 9KE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaaG4maiaadweacaWGlbaaba GaaGyoaiaadUeacqGHsislcaWGfbaaaaaa@3618@

 

3KE 6K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaaG4maiaadUeacqGHsislca WGfbaabaGaaGOnaiaadUeaaaaaaa@354B@

 

ν,K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcaGGSa GaaGPaVlaaykW7caWGlbaaaa@3BC3@

3Kν (1+ν) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaaG4maiaadUeacqaH9oGBae aacaGGOaGaaGymaiabgUcaRiabe27aUjaacMcaaaaaaa@386A@

3K(12ν) 2(1+ν) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaaG4maiaadUeacaGGOaGaaG ymaiabgkHiTiaaikdacqaH9oGBcaGGPaaabaGaaGOmaiaacIcacaaI XaGaey4kaSIaeqyVd4Maaiykaaaaaaa@3CE3@

3K(12ν) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaaiodacaWGlbGaaiikaiaaigdacqGHsi slcaaIYaGaeqyVd4Maaiykaaaa@3769@

 

 

 

 

 

 

 

 

7.6 Physical Interpretation of elastic constants for isotropic solids

 

It is important to have a feel for the physical significance of the two elastic constants E and ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUbaa@322F@ .

 

  Young’s modulus E is the slope of the stress MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8hfGaaa@3723@ strain curve in uniaxial tension.  It has dimensions of stress ( N/ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad6eacaGGVaGaamyBamaaCaaaleqaba GaaGOmaaaaaaa@33C8@  ) and is usually large MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  for steel, E=210× 10 9 N/m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadweacqGH9aqpcaaIYaGaaGymaiaaic dacqGHxdaTcaaIXaGaaGimamaaCaaaleqabaGaaGyoaaaakiaaykW7 caqGobGaae4laiaab2gadaahaaWcbeqaaiaabkdaaaaaaa@3DCE@ . You can think of E as a measure of the stiffness of the solid. The larger the value of E, the stiffer the solid.  For a stable material, E>0.

 

 Poisson’s ratio  is the ratio of lateral to longitudinal strain in uniaxial tensile stress. It is dimensionless and typically ranges from 0.2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa8hfGaaa@3723@ 0.49, and is around 0.3 for most metals.  For a stable material, 1<ν<0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgkHiTiaaigdacqGH8aapcqaH9oGBcq GH8aapcaaIWaGaaiOlaiaaiwdaaaa@37FA@ . It is a measure of the compressibility of the solid.  If ν=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUjabg2da9iaaicdacaGGUaGaaG ynaaaa@3550@ , the solid is incompressible MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  its volume remains constant, no matter how it is deformed.  If ν=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUjabg2da9iaaicdaaaa@33EF@ , then stretching a specimen causes no lateral contraction.  Some bizarre materials have ν<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8skY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUjabgYda8iaaicdaaaa@33ED@  --  if you stretch a round bar of such a material, the bar increases in diameter!!

 

 Thermal expansion coefficient quantifies the change in volume of a material if it is heated in the absence of stress.  It has dimensions of (degrees Kelvin)-1 and is usually very small.  For steel, α610× 10 6 K -1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg7aHjabgIKi7kaaiAdacqGHsislca aIXaGaaGimaiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacqGHsisl caaI2aaaaOGaaGPaVlaabUeadaahaaWcbeqaaiaab2cacaqGXaaaaa aa@4033@

 

 The bulk modulus quantifies the resistance of the solid to volume changes.  It has a large value (usually bigger than E).

 

 The shear modulus quantifies its resistance to volume preserving shear deformations.  Its value is usually somewhat smaller than E

 

 

 

7.7 Strain Energy Density for Isotropic Solids

 

Note the following observations

 If you deform a block of material, you do work on it (or, in some cases, it may do work on you…) 

 In an elastic material, the work done during loading is stored as recoverable strain energy in the solid.  If you unload the material, the specimen does work on you, and when it reaches its initial configuration you come out even.

 The work done to deform a specimen depends only on the state of strain at the end of the test.  It is independent of the history of loading. 

 

Based on these observations, we define the strain energy density of a solid as the work done per unit volume to deform a material from a stress free reference state to a loaded state.

 

To write down an expression for the strain energy density, it is convenient to separate the strain into two parts

ε ij = ε ij e + ε ij T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacaWGPbGaamOAaa qabaGccqGH9aqpcqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWG LbaaaOGaey4kaSIaeqyTdu2aa0baaSqaaiaadMgacaWGQbaabaGaam ivaaaaaaa@3F38@

where, for an isotropic solid,

ε ij T =αΔT δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaDaaaleaacaWGPbGaamOAaa qaaiaadsfaaaGccqGH9aqpcqaHXoqycqqHuoarcaWGubGaeqiTdq2a aSbaaSqaaiaadMgacaWGQbaabeaaaaa@3D8D@

represents the strain due to thermal expansion (known as thermal strain), and

ε ij e = 1+ν E σ ij ν E σ kk δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaDaaaleaacaWGPbGaamOAaa qaaiaadwgaaaGccqGH9aqpdaWcaaqaaiaaigdacqGHRaWkcqaH9oGB aeaacaWGfbaaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccq GHsisldaWcaaqaaiabe27aUbqaaiaadweaaaGaeq4Wdm3aaSbaaSqa aiaadUgacaWGRbaabeaakiabes7aKnaaBaaaleaacaWGPbGaamOAaa qabaaaaa@491D@

is the strain due to mechanical loading (known as elastic strain).

 

Work is done on the specimen only during mechanical loading.  It is straightforward to show that the strain energy density is

U= 1 2 σ ij ε ij e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwfacqGH9aqpdaWcaaqaaiaaigdaae aacaaIYaaaaiabeo8aZnaaBaaaleaacaWGPbGaamOAaaqabaGccqaH 1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWGLbaaaaaa@3C3F@

You can also re-write this as

U= 1+ν 2E σ ij σ ij ν 2E σ kk σ jj U= E 2( 1+ν ) ε ij e ε ij e + Eν 2( 1+ν )( 12ν ) ε jj e ε kk e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaamyvaiabg2da9maalaaabaGaaG ymaiabgUcaRiabe27aUbqaaiaaikdacaWGfbaaaiabeo8aZnaaBaaa leaacaWGPbGaamOAaaqabaGccqaHdpWCdaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaeyOeI0YaaSaaaeaacqaH9oGBaeaacaaIYaGaamyraaaa cqaHdpWCdaWgaaWcbaGaam4AaiaadUgaaeqaaOGaeq4Wdm3aaSbaaS qaaiaadQgacaWGQbaabeaaaOqaaiaadwfacqGH9aqpdaWcaaqaaiaa dweaaeaacaaIYaWaaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGLOa Gaayzkaaaaaiabew7aLnaaDaaaleaacaWGPbGaamOAaaqaaiaadwga aaGccqaH1oqzdaqhaaWcbaGaamyAaiaadQgaaeaacaWGLbaaaOGaey 4kaSYaaSaaaeaacaWGfbGaeqyVd4gabaGaaGOmamaabmaabaGaaGym aiabgUcaRiabe27aUbGaayjkaiaawMcaamaabmaabaGaaGymaiabgk HiTiaaikdacqaH9oGBaiaawIcacaGLPaaaaaGaeqyTdu2aa0baaSqa aiaadQgacaWGQbaabaGaamyzaaaakiabew7aLnaaDaaaleaacaWGRb Gaam4Aaaqaaiaadwgaaaaaaaa@7465@

Observe that

ε ij e = U σ ij σ ij = U ε ij e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaDaaaleaacaWGPbGaamOAaa qaaiaadwgaaaGccqGH9aqpdaWcaaqaaiabgkGi2kaadwfaaeaacqGH ciITcqaHdpWCdaWgaaWcbaGaamyAaiaadQgaaeqaaaaakiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeq 4Wdm3aaSbaaSqaaiaadMgacaWGQbaabeaakiabg2da9maalaaabaGa eyOaIyRaamyvaaqaaiabgkGi2kabew7aLnaaDaaaleaacaWGPbGaam OAaaqaaiaadwgaaaaaaaaa@6506@