
 1 

 

Chapter 2 

 

Introduction to Finite Element Analysis in Solid Mechanics 
 

 

 
Most practical design calculations involve components with a complicated three-dimensional geometry, and 

may also need to account for inherently nonlinear phenomena such as contact, large shape changes, or 

nonlinear material behavior.   These problems can only be solved using computer simulations.  The finite 

element method is by far the most widely used and versatile technique for simulating deformable solids.  

This chapter gives a brief overview of the finite element method, with a view to providing the background 

needed to run simple simulations using a commercial finite element program.  More advanced analysis 

requires a deeper understanding of the theory and implementation of finite element codes, which will be 

addressed in the next chapter. 

 

HEALTH WARNING: It is deceptively easy to use commercial finite element software: most programs 

come with a nice user-interface that allows you to define the geometry of the solid, choose a material 

model, generate a finite element mesh and apply loads to the solid with a few mouse clicks.   If all goes 

well, the program will magically turn out animations showing the deformation; contours showing stress 

distributions; and much more besides.  It is all too easy, however, to produce meaningless results, by 

attempting to solve a problem that does not have a well defined solution; by using an inappropriate 

numerical scheme; or simply using incorrect settings for internal tolerances in the code.  In addition, even 

high quality software can contain bugs.  Always treat the results of a finite element computations with 

skepticism! 

 

 
2.1 Introduction 

 
The finite element method (FEM) is a computer technique for solving partial differential equations.  One 

application is to predict the deformation and stress fields within solid bodies subjected to external forces.  

However, FEM can also be used to solve problems involving fluid flow, heat transfer, electromagnetic 

fields, diffusion, and many other phenomena.   

 

The principle objective of the displacement based 

finite element method is to compute the 

displacement field within a solid subjected to 

external forces. 

 

To make this precise, visualize a solid deforming 

under external loads.  Every point in the solid 

moves as the load is applied.  The displacement 

vector u(x) specifies the motion of  the point at 

position x in the undeformed solid.  Our objective is 

to determine u(x).  Once u(x) is known, the strain 

and stress fields in the solid can be deduced. 
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There are two general types of finite element analysis in solid mechancis.  In most cases, we are interested 

in determining the behavior of a solid body that is in static equilibrium.  This means that both external and 

internal forces acting on the solid sum to zero.  In some cases, we may be interested in the dynamic 

behavior of a solid body.  Examples include modeling vibrations in structures, problems involving wave 

propagation, explosive loading and crash analysis.   

 

For Dynamic Problems the finite element method solves the equations of motion for a continuum – 

essentially a more complicated version of mF a .  Naturally, in this case it must  calculate the motion 

of the solid as a function of time. 

 

For Static Problems the finite element method solves the equilibrium equations F 0 .  In this case, it 

may not be necessary to calculate the time variation of motion.  However, some materials are history 

dependent (e.g metals deformed in the plastic regime).  In addition, a static equilibrium problem may have 

more than one solution, depending on the load history.  In this case the time variation of the solution must 

be computed. 

 

For some applications, you may also need to solve additional field equations.  For example, you may be 

interested in calculating the temperature distribution in the solid, or calculating electric or magnetic fields.  

In addition, special finite element procedures are available to calculate buckling loads and their modes, as 

well as natural frequencies of vibration and the corresponding mode shapes for a deformable solid.   

 

To set up a  finite element calculation, you will need to specify 

1. The geometry of the solid.  This is done by generating a finite element mesh for the solid.  The 

mesh can usually be generated automatically from a CAD representation of the solid. 

2. The properties of the material.  This is done by specifying a constitutive law for the solid. 

3. The nature of the loading applied to the solid.  This is done by specifying the boundary 

conditions for the problem.  

4.  If your analysis involves contact between two more more solids, you will need to specify the 

surfaces that are likely to come into contact, and the properties (e.g. friction coefficient) of the 

contact. 

5. For a dynamic analysis, it is necessary to specify initial conditions for the problem.  This is not 

necessary for a static analysis. 

6. For problems involving additional fields, you may need to specify initial values for these field 

variables (e.g. you would need to specify the initial temperature distribution in a thermal 

analysis). 

You will also need to specify some additional aspects of the problem you are solving and the solution 

procedure to be used: 

1. You will need to specify whether the computation should take into account finite changes in the 

geometry of the solid. 

2. For a dynamic analysis,  you will need to specify the time period of the analysis (or the number 

of time increments) 

3.  For a static analysis you will need to decide whether the problem is linear, or nonlinear.   Linear 

problems are very easy to solve.  Nonlinear problems may need special procedures. 

4. For a static analysis with history dependent materials you will need to specify the time period of 

the analysis, and the time step size (or number of steps) 

5. If you are interested in calculating natural frequencies and mode shapes for the system, you must 

specify how many modes to extract. 

 6. Finally, you will need to specify what the finite element method must compute. 

 

The steps in running a finite element computation are discussed in more detail in the following sections. 
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2.2 The Finite Element Mesh for a 2D or 3D component 
 

The finite element mesh is used to specify the geometry of the 

solid, and is also used to describe the displacement field within 

the solid.  A typical mesh (generated in the commercial FEA 

code ABAQUS) is shown in the picture to the right.  

 

A finite element mesh may be three dimensional, like the 

example shown.  Two dimensional finite element meshes are 

also used to model simpler modes of deformation.  There are 

three main types of two dimensional finite element mesh: 

1. Plane stress 

2. Plane strain 

3. Axisymmetric 

 

In addition, special types of finite element can be used to model the 

overall behavior of a 3D solid, without needing to solve for the full 

3D fields inside the solid.  Examples are shell elements; plate 

elements; beam elements and truss elements.  These will be discussed 

in a separate section below. 

 

 

 Plane Stress Finite Element Mesh : A plane stress finite element 

mesh is used to model a plate - like solid which is loaded in its own 

plane.  The solid must have uniform thickness, and the thickness 

must be much less than any representative cross sectional dimension.  

A plane stress finite element mesh for a thin plate containing a hole is 

shown in the figure to the right.  Only on quadrant of the specimen is 

modeled, since symmetry boundary conditions will be enforced 

during the analysis. 

 

 

 Plane Strain finite element mesh : A plane strain finite element 

mesh is used to model a long cylindrical solid that is prevented from 

stretching parallel to its axis.  For example, a plane strain finite 

element mesh for a cylinder which is in contact with a rigid floor is 

shown in the figure.  Away from the ends of the cylinder, we expect it 

to deform so that the out of plane component of displacement 

3 1 2( , ) 0u x x  .  There is no need to solve for 3u , therefore, so a two 

dimensional mesh is sufficient to calculate 1 1 2( , )u x x  and 2 1 2( , )u x x . 

 

As before, only one quadrant of the specimen is meshed: symmetry 

boundary conditions will be enforced during the analysis. 
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 Axisymmetric finite element mesh: An axisymmetric 

mesh is used to model a solids that has rotational symmetry, 

which is subjected to axisymmetric loading.  An example is 

shown on the right. 

 

The picture compares a three dimensional mesh of an 

axisymmetric bushing to an axisymmetric mesh.  Note that 

the half the bushing has been cut away in the 3D view, to 

show the geometry more clearly.  In an axisymmetric 

analysis, the origin for the (x,y) coordinate system is always 

on the axis of  rotational symmetry.  Note also that to run an 

axisymmetric finite element analysis, both the geometry of 

the solid, and also the loading applied to the solid, must have 

rotational symmetry about the y axis. 

 

 

2.2.1 Nodes and Elements in a Mesh 

 

A finite element mesh is defined by a set of nodes together 

with a set of finite elements, as shown in the sketch on the 

right. 

 

 Nodes: The nodes are a set of discrete points within the 

solid body.  Nodes have the following properties: 

 

1. A node number.  Every node is assigned an integer 

number, which is used to identify the node.  Any 

convenient numbering scheme may be selected – the 

nodes do not need to be numbered in order, and 

numbers may be omitted.  For example, one could 

number a set of n nodes as 100, 200, 300… 100n, 

instead of 1,2,3…n. 

 

2. Nodal coordinates.  For a three dimensional finite element analysis, each node is assigned a set of  

1 2 3( , , )x x x  coordinates, which specifies the position of the node in the undeformed solid.  For a two 

dimensional analysis, each node is assigned a pair of  1 2( , )x x  coordinates.  For an axisymmetric 

analysis, the 2x  axis must coincide with the axis of rotational symmetry. 

 

3. Nodal displacements.  When the solid deforms, each node moves to a new position.  For a three 

dimensional finite element analysis, the nodal displacements specify the three components of the 

displacement field u(x) at each node: 1 2 3( , , )u u u .  For a two dimensional analysis, each node has two 

displacement components 1 2( , )u u .  The nodal displacements are unknown at the start of the analysis, 

and are computed by the finite element program. 

 

4. Other nodal degrees of freedom. For more complex analyses, we may wish to calculate a temperature 

distribution in the solid, or a voltage distribution, for example.  In this case, each node is also assigned a 

temperature, voltage, or similar quantity of interest.  There are also some finite element procedures 
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which use more than just displacements to describe shape changes in a solid.  For example, when 

analyzing two dimensional beams, we use the displacements and rotations of the beam at each nodal 

point to describe the deformation.  In this case, each node has a rotation, as well as two displacement 

components.  The collection of all unknown quantities (including displacements) at each node are 

known as degrees of freedom.  A finite element program will compute values for these unknown 

degrees of freedom. 

 

 Elements are used to partition the solid into discrete regions.  Elements have the following properties. 

 

1. An element number.  Every element is 

assigned an integer number, which is used to 

identify the element.  Just as when 

numbering nodes, any convenient scheme 

may be selected to number elements. 

 

2. A geometry.  There are many possible 

shapes for an element.  A few of the more 

common element types are shown in the 

picture.  Nodes attached to the element are 

shown in red.  In two dimensions, elements 

are generally either triangular or rectangular. 

In three dimensions, the elements are 

generally tetrahedra, hexahedra or bricks.  

There are other types of element that are used 

for special purposes: examples include truss 

elements (which are simply axial members), 

beam elements, and shell elements.   

 

3. A set of faces.  These are simply the sides of 

the element. 

 

4. A set of nodes attached to the element.  

The picture on the right shows a typical finite 

element mesh.  Element numbers are shown 

in blue, while node numbers are shown in red 

(some element and node numbers have been 

omitted for clarity). 

 

All the elements are 8 noded quadrilaterals.  

Note that each element is connected to a set of nodes: element 1 has nodes (41, 45, 5, 1, 43, 25, 3, 21), 

element 2 has nodes (45, 49, 9, 5, 47, 29, 7, 25), and so on.  It is conventional to list the nodes the nodes 

in the order given, with corner nodes first in order going counterclockwise around the element, followed 

by the midside nodes.  The set of nodes attached to the element is known as the element connectivity. 

 

5. An element interpolation scheme.  The purpose of a finite element is to 

interpolate the displacement field u(x) between values defined at the nodes.  

This is best illustrated using an example.  Consider the two dimensional, 

rectangular 4 noded element shown in the figure. Let 
( ) ( )

1 2( , )a au u , ( ) ( )
1 2( , )b bu u , ( ) ( )

1 2( , )c cu u , ( ) ( )
1 2( , )d du u  denote the components 

8 noded brick 20 noded brick

4 noded tetrahedron 10 noded tetrahedron
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of displacement at nodes a, b, c, d.  The displacement at an arbitrary point within the element can be 

interpolated between values at the corners, as follows 
( ) ( ) ( ) ( )

1 1 1 1 1

( ) ( ) ( ) ( )
2 2 2 2 2

(1 )(1 ) (1 ) (1 )

(1 )(1 ) (1 ) (1 )

a b c d

a b c d

u u u u u

u u u u u

      

      

       

       
 

where 

1 2/ , /x B x H    

You can verify for yourself that the displacements have the correct values at the corners of the element, 

and the displacements evidently vary linearly with position within the element. 

 

Different types of element interpolation scheme exist.  The simple example described above is known 

as a linear element.  Six noded triangles and 8 noded triangles are examples of quadratic elements: the 

displacement field varies quadratically with position within the element.  In three dimensions, the 4 

noded tetrahedron and the 8 noded brick are linear elements, while the 10 noded tet and 20 noded brick 

are quadratic.   Other special elements, such as beam elements or shell elements, use a more complex 

procedure to interpolate the displacement field. 

 

Some special types of element interpolate both the displacement field and some or all components of 

the stress field within an element separately. (Usually, the displacement interpolation is sufficient to 

determine the stress, since one can compute the strains at any point in the element from the 

displacement, and then use the stress—strain relation for the material to find the stress). This type of 

element is known as a hybrid element.  Hybrid elements are usually used to model incompressible, or 

nearly incompressible, materials. 

 

6. Integration points.  One objective of a finite element analysis is to determine the distribution of stress 

within a solid.  This is done as follows.  First, the displacements at each node are computed (the 

technique used to do this will be discussed in Section 7.2 and Chapter 8.)  Then, the element 

interpolation functions are used to determine the displacement at arbitrary points within each element.  

The displacement field can be differentiated to determine the strains.  Once the strains are known, the 

stress—strain relations for the element are used to compute the stresses. 

 

In principle, this procedure could be used to determine the stress at any 

point within an element.  However, it turns out to work better at some 

points than others.  The special points within an element where stresses 

are computed most accurately are known as integration points.  

(Stresses are sampled at these points in the finite element program to 

evaluate certain volume and area integrals, hence they are known as 

integration points). 

 

For a detailed description of the locations of integration points within 

an element, you should consult an appropriate user manual.  The 

approximate locations of integration points for a few two dimensional 

elements are shown in the figure. 

 

There are some special types of element that use fewer integration points than those shown in the 

picture.  These are known as reduced integration elements. This type of element is usually less 

accurate, but must be used to analyze deformation of incompressible materials (e.g. rubbers or rigid 

plastic metals). 
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7. A stress—strain relation and material properties.  Each element is occupied by solid material.  The 

type of material within each element (steel, concrete, soil, rubber, etc) must be specified, together with 

values for the appropriate material properties (mass density, Young’s modulus, Poisson’s ratio, etc). 

 

 

 

2.2.2 Special Elements – Beams, Plates, Shells and Truss elements 
 

If you need to analyze a solid with a special geometry (e.g. a simple truss, a 

structure made of one or more slender beams, or plates) it is not efficient to 

try to generate a full 3D finite element mesh for each member in the 

structure.   Instead, you can take advantage of the geometry to simplify the 

analysis. 

 

The idea is quite simple.  Instead of trying to calculate the full 3D 

displacement field in each member, the deformation is characterized by a 

reduced set of degrees of freedom.  Specifically: 

1. For a pin jointed truss, we simply calculate the displacement of 

each joint in the structure. The members are assumed to be in a 

state of uniaxial tension or compression, so the full displacement 

field within each member can be calculated in terms of joint 

displacements. 

2. For a beam, we calculate the displacement and rotation of the cross section along the beam.  

These can be used to determine the internal shear forces bending moments, and therefore the 

stresses in the beam. A three dimensional beam has 3 displacement and 3 rotational degrees of 

freedom at each node. 

3. For a plate, or shell, we again calculate the displacement and rotation of the plate section. A three 

dimensional plate or shell has 3 displacement and two rotational degrees of freedom at each node 

(these rotations characterize the rotation of a unit vector normal to the plate).  In some finite 

element codes, nodes on plates and shells have a fictitious third rotational degree of freedom which 

is added for convenience – but you will find that attempting to impose boundary conditions on this 

fictitious degree of freedom has no effect on the deformation of the structure. 

 

In an analysis using truss, beam or plate elements, some 

additional information must be specified to set up the 

problem: 

1. For a truss analysis, each member in the truss is a 

single element.  The area of the member’s cross 

section must be specified. 

2. For a beam analysis, the shape and orientation of 

the cross section must be specified (or, for an 

elastic analysis, you could specify the area 

moments of inertia directly).  There are also 

several versions of beam theory, which account differently for shape changes within the beam.  

Euler-Bernoulli beam theory is the simple version covered in introductory courses.  Timoshenko 

beam theory is a more complex version, which is better for thicker beams. 

3. For plates and shells, the thickness of the plate must be given.  In addition, the deformation of the 

plate can be approximated in various ways – for example, some versions only account for 

transverse deflections, and neglect in-plane shearing and stretching of the plate; more complex 

theories account for this behavior. 
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Calculations using beam and plate theory also differ from full 3D or 2D calculations in that both the 

deflection and rotation of the beam or plate must be calculated.  This means that: 

1. Nodes on beam elements have 6 degrees of freedom  – the three displacement components, together 

with three angles representing rotation of the cross-section about three axes.  Nodes on plate or shell 

elements have 5 (or in some FEA codes 6) degrees of freedom.  The 6 degrees of freedom represent 

3 displacement components, and two angles that characterize rotation of the normal to the plate 

about two axes (if the nodes have 6 degrees of freedom a third, fictitious rotation component has 

been introduced – you will have to read the manual for the code to see what this rotation 

represents). 

2. Boundary conditions may constrain both displacement and rotational degrees of freedom.  For 

example, to model a fully clamped boundary condition at the end of a beam (or the edge of a plate), 

you must set all displacements and all rotations to zero. 

3. You can apply both forces and moments to nodes in an analysis. 

 

Finally, in an analysis involving several beams connected together, you can connect the beams in two ways:  

1. You can connect them with a pin joint, which forces the beams to move together at the connection, 

but allows relative rotation 

2. You can connect them with a clamped joint, which forces the beams to rotate together at the 

connection. 

 

In most FEA codes, you can create the joints by adding constraints, as discussed in Section 1.2.6 below. 

Occasionally, you may also wish to connect beam elements to solid, continuum elements in a model: this 

can also be done with constraints.   

 

 

2.3 Material Behavior 

 

A good finite element code contains a huge library of 

different types of material behavior that may be 

assigned to elements.  A few examples are described 

below. 

 

 Linear Elasticity.  You should alreadly be familiar 

with the idea of a linear elastic material.  It has a 

uniaxial stress—strain response (valid only for small 

strains) as shown in the picture  

 

The stress--strain law for the material may be expressed 

in matrix form as 

11 11

22 22

33 33

12 12

13 13

23 23

1 0 0 0 1

1 0 0 0 1

1 0 0 0 11

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

T
E

  

  

  


 

 

 

       
      

 
      
       

        
      

      
      

            

 

Here, E and v are Young’s modulus and Poisson’s ratio for the material, while   denotes the thermal 

expansion coefficient.  Typical values (for steel) are E=210 GN/m
2
,  v=0.33, 6 -1

5 10 K


  .   
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 Elastic—plastic material behavior is usually used to model metals 

that are subjected to large stresses, but there are also versions of plastic 

stress-strain laws that model soils and concrete. 

 

An elastic-plastic material behaves elastically until a critical stress 

(known as the yield stress) is reached.  If yield is exceeded, the material 

deforms permanently.  The yield stress of the matierial generally 

increases with plastic strain: this behavior is known as strain hardening. 

 

The conditions necessary to initiate yielding under multiaxial loading are 

specified by a yield criterion, such as the Von-Mises or Tresca criteria.  

These yield criteria are built into the finite element code. 

 

The strain hardening behavior of a material is approximated by allowing 

the yield stress to increase with plastic strain.  The variation of yield 

stress with plastic strain for a material is usually specified by 

representing it as a series of straight lines, as shown in the picture. 

 

A typical yield stress for a metal might vary from 80Mpa (for a material like pure aluminum) to 1 GPa (for 

a high-strength steel). 

 

 

 Hyperelasticity is intended to model rubbery materials (or elastomeric foams, like a sponge) which have 

(i) a reversible stress-v-strain relation and (ii) the stress is independent of strain rate or loading history.   

They are intended to model large changes in shape of the material (that’s what the ‘hyper’ refers to).  This 

means that the stress-v-strain relation has to be defined rather carefully, because there are several choices of 

stress and strain measure (e.g. we could use ‘true’ stress or ‘nominal’ stress; similarly we could use 

‘engineering’ strain or ‘true’ strain).    

 

The simplest hyperelastic material model is the so-called ‘neo-Hookean’ material.   This model is intended 

to predict the behavior of rubbers, which resist 

volume changes, but deform very easily when 

subjected to shear stress.   It has two material 

properties: (i) a shear modulus   , and (ii) a 

bulk modulus K.  The bulk modulus is always 

much greater than the shear modulus and 

(especially in hand calculations) is often 

assumed to be infinite (which means the 

material is incompressible).   In uniaxial 

tension, an incompressible neo-Hookean 

material has a uniaxial stress-v-stretch relation 

of the form 
2( )S      

where 0/S F A   is the nominal stress (force per unit undeformed area) in the specimen, and 0/l L   is 

the ratio of deformed length to original length of the specimen.   The curve is shown in the figure. 

 





E
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Yield
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A typical value for the shear modulus of a rubber might be 0.5MPa. 

 

 Linear Viscoelasticity is used to model polymers or biological tissues that are subjected to modest strains 

(less than 0.5%).  A typical application might be to model the energy dissipation during cyclic loading of a 

polymeric vibration damper, or to model human tissue responding to an electric shaver.   

 

Viscoelastic materials have a time-dependent response, which can be measured in two different ways: 

1. Take a specimen that is free of stress at time 0t  , apply a constant shear stress   for 0t   and 

measuring the resulting shear strain   as a function of time.  The results are generally presented by 

plotting the `creep compliance’ ( ) ( ) /J t t    as a function of time. 

2. Take a specimen that is free of stress at time 0t  , apply a constant shear strain   for 0t   and 

measuring the resulting shear stress ( )t  as a function of time. In this case the results are presented 

by plotting the Relaxation Modulus: ( ) ( ) /G t t    

Similar experiments can be done to measure the response of the material to pressure (or volume changes) 

but in many practical applications the time-dependence of the pressure or volume is negligible, and the 

material can be assumed to have a constant bulk modulus. 

 

In finite element simulations the time dependence of shear (and if necessary bulk) modulus is usually 

specified by entering values for the so-called ‘Prony series’ for the material 

/

1

( ) i

N
t t

i

i

G t G G e






   

where G  is the steady-state stiffness (represented by the parallel spring), 

and , 1...i iG t i N  are a set of time constants and stiffnesses.  The 

Prony series can be interpreted as a complicated spring-damper model for 

the material behavior.  For example, the spring-damper system shown in 

the figure is a useful simple viscoelastic mode.   It has a Prony series 

1 /
2 1( )

k t
G t k k e


   

 

2.4 Boundary conditions, Constraints, Interfaces and Contact 
 

Boundary conditions are used to specify the loading applied to a solid.  

There are several ways to apply loads to a finite element mesh: 

 

 Displacement boundary conditions.  The displacements at any node on 

the boundary or within the solid can be specified.  One may prescribe 1u , 

2u , 3u , or all three.  For a two dimensional analysis, it is only necessary to 

prescribe 1u  and/or 2u . 

 

Various symbols are used to denote displacement boundary conditions 

applied to a finite element mesh: a few of these are illustrated in the figure 

on the right.  Some user-interfaces use small conical arrowheads to indicate 

constrained displacement components. 

 

For example, to stretch a 2D block of material vertically, while allowing it to 

expand or contract freely horizontally, we would apply boundary constraints to 

the top and bottom surface as shown in the figure. 

 

Built in 

(or encastre)

u1, u2 prescribed

Roller

u1 prescribed

Roller

u2 prescribed


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Observe that one of the nodes on the bottom of the block has been prevented from moving horizontally, as 

well as vertically.  It is important to do this: the finite element program will be unable to find a unique 

solution for the displacement fields if the solid is free to slide horizontally.   

 

During the analysis, the finite element program will apply forces to the nodes with prescribed 

displacements, so as to cause them to move to their required positions.  If only the 1u  component of 

displacement is prescribed, then the force will act in the 1e  direction.  If  2u  is prescribed, the force acts in 

direction 2e , and so on. Notice that you cannot directly apply a rotation to a node attached to a 2D or 3D 

solid.  Rotations can, however, be applied to the nodes attached to certain special types of element, such as 

beams, plates and shells, as well as rigid surfaces. 

 Symmetry conditions: Most finite element codes can automatically enforce symmetry and anti-

symmetry boundary conditions.   

 Prescribed forces. Any node in a finite element mesh may be subjected to a prescribed force.  The nodal 

force is a vector, and is specified by its three (or two for 2D) components, 1 2 3( , , )F F F .  Notice there is no 

direct way to apply a moment to a 3D solid – you would need to do this by applying two point forces a 

small distance apart, or by applying contact loading, as outlined below.  Moments can be applied to some 

special types of element, such as shells, plates or beams.   

 Distributed loads.  A solid may be subjected to distributed pressure or traction acting on ints boundary.  

Examples include aerodynamic loading, or hydrostatic fluid pressure. Distributed traction is a  vector 

quantity, with physical dimensions of force per unit area in 3D, and force per unit length in 2D.  To model 

this type of loading in a finite element program, distributed loads may be applied to the the face of any 

element.  

 Default boundary condition at boundary nodes.  If no displacements or forces are prescribed at a 

boundary node, and no distributed loads act on any element faces connected to that node, then the node is 

assumed to be free of external force. 

 Body forces.  External body forces may act on the interior of a solid.  Examples of body forces include 

gravitational loading, or electromagnetic forces.  Body force is a vector quantity, with physical dimensions 

of force per unit volume.  To model this type of loading in a finite element program, body forces may be 

applied to the interior of any element.   

 Contact.  Probably the most common way to load a solid is through contact with another solid.   Special 

procedures are available for modeling contact between solids – these will be discussed in a separate section 

below. 

 Load history.  In some cases, one may wish to apply a cycle of load to a solid.  In this case, the 

prescribed loads and displacements must be specified as a function of time. 

 General guidelines concerning boundary conditions.  When performing a static analysis, it is very 

important to make sure that boundary conditions 

are applied properly.  A finite element program 

can only solve a problem if a unique static 

equilibrium solution to the problem exists. 

 

Difficulties arise if the user does not specify 

sufficient boundary constraints to prevent rigid 

body motion of a solid.  This is best illustrated by 

example.  Suppose we wish to model stretching a 

2D solid, as described earlier.  The examples to 

the right show two correct ways to do this. 

 

The examples below show various incorrect ways to apply boundary conditions.  In each case, one or more 

rigid body mode is unconstrained. 


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

Unconstrained horizontal

motion

Unconstrained 

rotation
Unconstrained horizontal

motion

Unconstrained 

vertical motion

Unconstrained 

rotation

 
2.4.1  Constraints 
 

You may sometimes need to use more complicated boundary conditions than simply constraining the 

motion or loads applied to a solid.  Some examples might be 

1. Connecting different element types, e.g. beam elements to solid elements; 

2. Enforcing periodic boundary conditions  

3. Constraining a boundary to remain flat 

4. Approximating the behavior of mechanical components such as welds, bushings, bolted joints, etc. 

 

You can do this by defining constraints in an analysis.   At the most basic level, constraints can simply be 

used to enforce prescribed relationships between the displacements or velocities of individual nodes in the 

mesh.  You can also specify relationships between motion of groups of nodes. 

 

 

2.4.2 Contacting Surfaces and Interfaces 
 

In addition to being subject to forces or prescribed displacements, solid 

objects are often loaded by coming into contact with another solid. 

 

Modern finite element codes contain sophisticated capabilities for 

modeling contact.  Unfortunately, contact can make a computation much 

more difficult, because the region where the two solids come into contact 

is generally not known a priori, and must be determined as part of the 

solution.  This almost always makes the problem nonlinear – even if both contacting solids are linear elastic 

materials.  In addition, if there is friction between the contacting solids, the solution is history dependent. 

 

For this reason, many options are available in finite element packages to control the way contacting surfaces 

behave. 

 

There are three general cases of contact that you may need to deal with: 

1. A deformable solid contacts a stiff, hard solid whose deformation may be neglected.  In this case 

the hard solid is modeled as a rigid surface, as outlined below. 

2. You may need to model contact between two deformable solids 

3. The solid comes into contact with itself during the course of deformation (this is common in 

components made from rubber, for example, and also occurs during some metal forming 

operations). 

 

Whenever you model contact, you will need to  
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1. Specify pairs of surfaces that might come into contact.  One of these must be designated as the 

master surface and the other must be designated as the slave surface. (If a surface contacts itself, it 

is both a master and a slave.  Kinky!) 

2. Define the way the two surfaces interact, e.g. by specifying the coefficient of friction between 

them. 

 

 Modeling a stiff solid as a rigid surface:  In many cases of practical interest one of the two contacting 

solids is much more compliant than the other.  Examples include 

a rubber in contact with metal, or a metal with low yield stress in 

contact with a hard material like a ceramic.  As long as the 

stresses in the stiff or hard solid are not important, its 

deformation can be neglected. 

 

In this case the stiffer of the two solids may be idealized as a 

rigid surface.  Both 2D and 3D rigid surfaces can be created, as 

shown in the figure. 

 

A rigid surface (obviously) can’t change its shape, but it can 

move about and rotate.  Its motion is defined using a reference 

point on the solid, which behaves like a node.  To move the solid 

around during an analyisis, you can define displacement and 

rotational degrees of freedom at this node.  Alternatively, you 

could apply forces and moments to the reference point.   Finally, 

in a dynamic analysis, you can give the rigid solid appropriate inertial properties (so as to create a rigid 

projectile, for example). 

 

 Defining a contact pair – master/slave surfaces: Whenever you set up a finite element calculation that 

involves contact, you need to specify pairs of surfaces that may come into contact during the analysis.  One 

of each pair must be designated the master surface, the other must be designated the slave surface. 

 

This rather obscure finite element terminology refers to the way that 

contact constraints are actually applied during a computation.  The 

geometry of the master surface will be interpolated as a smooth curve 

in some way (usually by interpolating between nodes).  The slave 

surface is not interpolated.  Instead, each individual node on the slave 

surface is constrained so as not to penetrate into the master surface.  

For example, the red nodes on the slave surface shown in the figure 

would be forced to remain outside the red boundary of the master 

surface. 

 

For a sufficiently fine mesh, the results should not be affected by your choice of master and slave surface.  

However, it improves convergence (see below to learn what this means) if you choose the more rigid of the 

two surfaces to be the master surface.  If you don’t know which surface is more rigid, just make a random 

choice.  If you run into convergence problems later, try switching them over. 

 

 

 Contact parameters You can define several parameters that control the behavior of two contacting 

surfaces: 

1. The contact formulation - `finite sliding’ or `small sliding’ – specifies the expected relative 

tangential displacement of the two surfaces.  `Finite sliding’ is the most general, but is 

 

 

Master

surfaceSlave

surface
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computationally more demanding.  `Small sliding’ should be used if the relative tangential 

displacement is likely to be less than the distance between two adjacent nodes. 

2. You can specify the relationship between the contact pressure and separation between the 

contacting surfaces. Alternatively, you can assume the contact is `hard’ – this means the interface 

can’t withstand any tension, and the two contacting surfaces cannot inter-penetrate.   

3. You can specify the tangential behavior of the interface – for example by giving the friction 

coefficient. 

 

 

2.5 Initial Conditions and external fields 
 

For a dynamic analysis, it is necessary to specify the initial velocity and displacement of each node in the 

solid.  The default value is zero velocity and displacement. 

 

In addition, if you are solving a coupled problem – one involving coupled deformation and heat flow, for 

example - you may need to specify initial values for the additional field variables (e.g. the temperature 

distribution) 

 

 

2.6 Solution procedures and time increments 
 

The finite element method calculates the displacement ( )a
u x  at each node in the finite element mesh by 

solving the equations of static equilibrium or the equations of motion.  In this section, we briefly outline 

some of the solution procedures, and the options available to control them. 

 

 Linear or Nonlinear Geometry As you know, you can simplify the calculation of internal forces in a 

structures by neglecting shape changes when solving the equations of equilibrium.  For example, when you 

solve a truss problem, you usually calculate forces in each member based on the undeformed shape of the 

structure.  

 

You can use the same idea to simplify calculations involving deformable solids.  In general, you should do 

so whenever possible.  However, if either 

1. You anticipate that material might stretch by more than 10% or so or 

2. You expect that some part of the solid might rotate by more than about 10 degrees 

3. You wish to calculate buckling loads for your structure 

you should account for finite geometry changes in the computation.  This will automatically make your 

calculation nonlinear (and so more difficult), even if all the materials have linear stress-strain relations. 

 

 Time stepping for dynamic problems:  For a dynamic problem, the nodal displacements ( , )a tu x  must 

be calculated as a function of time.  The displacements are calculated by solving the equations of motion for 

the system, which look something like 
2

2
( )

d
t

dt
 

u
M Ku F  

where M and K are called mass and stiffness matrices.  Both M and K can be functions of u.  There are 2.5 

ways to integrate this equation. 

 

1. The most direct method is called explicit time integration, or explicit dynamics and works 

something like this.  Remember that for a dynamic calculation, the values of u and /d dtv u  are 
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known at t=0.  We can therefore compute M and K at time t=0, and then use them to calculate the 

acceleration 2 2/d dta u  at t=0, as 

 1 ( )t a M F Ku  

The acceleration can then be used to find the velocity ( )tv  and displacement ( )tu  at time t  as 

21
( ) (0) ( ) (0) (0)

2
t t t t t         v v a u u v a  

This procedure can then be applied repeatedly to march the solution through time. 

2. The second procedure is called implicit time integration or implicit dynamics.  The procedure is 

very similar to explicit time integration, except that instead of calculating the mass and stiffness 

matrices at time t=0, and using them to calculate acceleration at t=0, these quantities are calculated 

at time t  instead.  This is a bit more time consuming to do, however, because it involves more 

equation solving.    

3. The 2.5
th
 method is called Modal Dynamics and only works if M and K are constant. In this case 

one can take the Fourier transform of the governing equation and integrate it exactly.  This method 

is used to solve linear vibration problems. 

 

The following guidelines will help you to choose the most appropriate method for your application: 

 

1. For explicit dynamics each time step can be calculated very fast.  However, the method is stable 

only if t  is very small – specifically, the time interval must be smaller than the time taken for an 

elastic wave to propagate from one side of an element to the other.  This gives 

(1 2 ) / 2 (1 )t L        , where   is the mass density of the solid,   is its shear modulus and 

  its Poisson’s ratio.   Explicit dynamics works best for rapid, transient problems like crash 

dynamics or impact.  It is not good for modeling processes that take place over a long time.  If 

elastic wave propagation is not the main focus of your computation, you can sometime speed up the 

calculations by increasing the density   (but you have to be careful to make sure this does not 

affect the results).  This is called mass scaling. 

2. For implicit dynamics the cost of computing each time step is much greater.  The algorithm is 

unconditionally stable, however, and will always converge even for very large t .  This is the 

method of choice for problems where inertial loading is important, but rapid transients are not the 

focus of the analysis.    

3. Modal Dynamics only works for linear elastic problems.  It is used for vibration analysis. 

 

 Nonlinear Solution Procedures for Static Problems: If a problem involves contact, plastically 

deforming materials, or large geometry changes it is nonlinear.  This means that the equations of static 

equilibrium for the finite element mesh have the general form 
( ) ( )( )b a F u 0  

where F() denotes a set of b=1,2…N vector functions of the nodal displacements ( )a
u x , a=1,2…N, and N 

is the number of nodes in the mesh. 

 

The nonlinear equations are solved using the Newton-Raphson method, which works like this.  You first 

guess the solution to the equations – say 
( )a au w .  Of course (unless you are a genius) w won’t satisfy the 

equations, so you try to improve the solution by adding a small correction dw .  Ideally, the correction 

should be chosen so that  
( ) ( )( )b a ad F w w 0  

but of course it’s not possible to do this.  So instead, take a Taylor expansion to get 
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( )
( ) ( ) ( ) ( ) ( )

( )

( )
( ) ( )

b
b a a b a a

a

d
d d

d
   

F u
F w w F w w 0

u
 

The result is a system of linear equations of the form ( ) ( )b ad F K w 0 , where ( ) ( )/b ad dK F u  is a 

constant matrix called the stiffness matrix.  The equations can now be solved for dw ; the guess for w can 

be corrected, and the procedure applied over again.  The iteration is repeated until ( ) ( )( )b a F u , where   

is a small tolerance. 

 

In problems involving hard contact, an additional iterative method is used to decide which nodes on the 

slave surface contact the master surface.  This is just a brute-force method – it starts with some guess for 

contacting nodes; gets a solution, and checks it.  If any nodes are found to penetrate the master surface, 

these are added to the list of nodes in contact.  If any nodes are experiencing forces attracting them to the 

master surface, they are removed from the list of nodes in contact. 

 

The problem with any iterative procedure is that it may not converge – that is, repeated corrections dw  

either take the solution further and further away from the solution, or else just spiral around the solution 

without every reaching it. 

 

The solution is (naturally) more likely to converge if the guess 
( )a

w  is close to the correct solution.  

Consequently, it is best to apply the loads to a nonlinear solid gradually, so that at each load step the 

displacements are small.  The solution to one load increment can then be used as the initial guess for the 

next. 

 

Convergence problems are the curse of FEM analysts.  They are very common and can be exceedingly 

difficult to resolve.  Here are some suggestions for things to try if you run into convergence problems: 

1. Try applying the load in smaller increments.  most commercial codes will do this this automatically 

– but will stop the computation if the increment size falls below a minimum value.  You can try 

reducing the minimum step size.. 

2. Convergence problems are sometimes caused by ill conditioning in the stiffness matrix.  This 

means that the equations 
( ) ( )b ad F K w 0  cannot be solved accurately.  Ill conditioning can arise 

because of (i) severely distorted elements in the mesh; (ii) material behavior is incompressible, or 

nearly incompressible; and (iii) The boundary conditions in the analysis do not properly constrain 

the solid. You can fix (i) by modifying the mesh – some FEM codes contain capabilities to 

automatically remove element distorsion during large deformation. You can avoid problems with 

incompressibility (ii) by using reduced integration elements or hybrid elements.  Problems with 

boundary conditions (iii) can usually be corrected by adding more constraints.  There is one 

common problem where this is hard to do – if the motion of a body in your analysis is constrained 

only by contacts with other solids (e.g. a roller between two surfaces) the stiffness matrix is always 

singular at the start of the analysis.  Some finite element codes contain special procedures to deal 

with this problem. 

3. Try to isolate the source of the problem.  Convergence issues can often be traced to one or more of 

the following: (i) Severe material nonlinearity; (ii) Contact and (iii) Geometric nonlinearity.  Try to 

change your model to remove as many of these as possible – e.g. if you are doing a plasticity 

computation with contact and geometric nonlinearity, try doing an elastic calculation and see if it 

works.  If so, the problems are caused by material nonlinearity.  Similarly, try analyzing the two 

contacting solids separately, without the contact; or try the computation without nonlinear 

geometry.  Once you’ve traced the source of the problem, you might be able to fix it by changing 

the material properties, contact properties or loading conditions. 
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4. Convergence problems are often caused by some kind of mechanical or material failure in the solid, 

which involve a sudden release of energy.  In this case, the shape of the solid may suddenly jump 

from one static equilibrium configuration to another, quite different, equilibrium configuration.  

There is a special type of loading procedure (called the Riks method) that can be used to stabilize 

this kind of problem. 

5. Some boundary value problems have badly behaved governing equations.  For example, the 

equations governing plane strain deformation of a perfectly plastic solid become hyperbolic for 

sufficiently large strains.  Static FEM simply won’t work for these problems.  Your best bet is to try 

an explicit dynamic calculation instead, perhaps using mass scaling to speed up the calculation. 

 

 

 Load steps and increments: When you set up a 

finite element model, you usually apply the load in 

a series of steps.  You can define different 

boundary conditions in each step.  Unless you 

specify otherwise, the loads (or displacements) will 

vary linearly from their values at the start of the 

step to their values at the end of the step, as 

illustrated in the picture. 

 

In a nonlinear analysis, the solution may not 

converge if the load is applied in a single 

increment.  If this is the case, the load must be 

applied gradually, in a series of smaller increments.  Many finite element codes will automatically reduce 

the time step if the solution fails to converge.  

 

 

2.7 Output 
 

The finite element method always calculates the displacement of each node in the mesh – these are the 

unknown variables in the computation.  However, these may not be the quantities you are really interested 

in.  A number of quantities can be computed from the displacement fields, including: 

1. Velocity and acceleration fields 

2. Strain components, principal strains, and strain invariants,or their rates 

3. Elastic and plastic strains or strain rates 

4. Stress components; principal stresses; stress invariants 

5. Forces applied to nodes or boundaries 

6. Contact pressures 

7. Values of material state variables (e.g. yield stresses) 

8. Material failure criteria 

 

All these quantities can be computed as functions of time at selected points in the mesh (either at nodes, or 

at element integration points); as functions of position along paths connecting nodes; or as contour plots. 

 

 

2.8 Units in finite element computations, using dimensional analysis 
 

A finite element code merely solves the equations of motion (or equilibrium), together with any equations 

governing material behavior.  Naturally, equations like F=ma and E   do not contain any units a priori.  

Consequently, when entering geometric dimensions, material data and loads into an FEA code, you can use 

any system of units you like, but the units of all quantities must be consistent.  You have to be very 

time, sec

1 2 3

Load 1

Step 1
Step 2

Step 3

1 2 3 4

increments

1 2 3 4 5 6 7 8

increments

Load 2
Load 3
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careful with this.  When you sketch the part you are modeling, it is often convenient to enter dimensions in 

cm, inches, or mm.  This is fine – but then cm, inches or mm must be used for any other material or load 

data that contain length dimensions.  For example, if you use cm to dimension your part, then you must 

enter data for Young’s modulus and yield stress in 2/N cm , and you must also specify pressures acting on 

the system in  2/N cm .  In this case, the FEA code will report stresses in units of 2/N cm . 

 

 

 Using Dimensional Analysis to simplify FEA analysis. 

 

You may have used dimensional analysis to find relationships between data measured in an experiment 

(especially in fluid mechanics).  The same idea can be used to relate variables you might compute in an 

FEA analysis (e.g. stress), to the material properties of your part (e.g. Young’s modulus) and the applied 

loading. 

 

The basic idea is simple, and is best illustrated by example.  Suppose we 

wish to use FEA to calculate the deflection of the tip of a cantilever with 

length L, Young’s modulus E and area moment of inertia I, which is 

subjected to a force P.  We would set this up as an FEA problem, entering 

data for L, E, I, and P in the code, and computing  .  We could express the 

functional relationship as 

 ( , , , )f E I P L   

If we were asked to calculate the function f numerically, we would have to run simulations where we vary 

E, I, L and P independently. This would be very painful. Fortunately, since the relationship must be 

independent of the system of units, we know we can re-write this expression so that both left and right hand 

side are dimensionless – i.e. as combinations of variables that have no units.  Noting that   and L have 

dimensions of length, I has dimensions of 4length , P has dimensions 2mass length/time  and E has 

dimensions of 2mass/(length time ) , we could put  

4

2
( , )

P L
g

L IEL


  

Now, we only need to calculate the function g.  We could do this by 

keeping L and I fixed, and varying P to see the results of varying the 

first group; we could then keep P and L fixed and vary I to see the 

effect of varying the second group.  The results could be displayed 

graphically as shown in the figure. 

 

If we had done a linear analysis (no nonlinear geometric effects) the 

curves would be straight lines. 

 

There is often more than one choice of dimensionless group, and some are better than others.  For example, 

for the beam problem we could create a new dimensionless group by multiplying together the two groups in 

the function g – this gives 
2 4

( , )
PL L

h
L EI I


  

This turns out to be a much better choice. In fact, if we conducted a 

linear analysis we would find that the function h is independent of 
4 /L I .  In this case the data would collapse onto a single master-curve 

as shown in the figure.   



P

E,I

L

P/EL2

L

Increasing L4/I

PL2/EI

L

Independent of L4/I
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Unfortunately, dimensional analysis alone will not tell you the best dimensionless groups.  You have to use 

your physical intuition to identify them.  For the beam example, you might remember that E and I always 

appear as the product EI in the governing equations – so it makes sense to try to find dimensionless groups 

that combine them in this way.   In other examples, you may see some physical significance of 

combinations of variables (they might look like a kinetic energy, or a pressure, for example) which might 

help you to choose the best set.   

 

The beauty of using dimensional analysis to simplify numerical simulations is that, unlike in experiments, 

you don’t need to guess what variables influence the results.  You know exactly what they are, because you 

typed them into the program!  

 

The following steps (known as the Buckingham Pi theorem) will tell you how many dimensionless groups 

to look for: 

1. List the variable you are computing, and also the variables you entered into the code to define the 

problem.  Count the total number of variables and call it n 

2. List the dimensions, in terms of fundamental units (i.e. mass, length, time, electric current, and 

luminous intensity) of all the variables 

3. Count the number of independent fundamental units that appear in the problem (e.g. if mass, length 

and time appear independently, then there are 3 different units) and call the number k.  Units are 

independent if they don’t always appear in the same combination.  For example, in our beam 

problem mass and time are not independent, because they appear together as 
2mass/time  in both P 

and E.  The beam problem has length, and 
2mass/time  as two independent combinations of 

fundamental units. 

4. A total of n-k independent dimensionless groups must appear in the dimensionless relationship.  

For the beam problem, we had 5 variables , , , ,E I P L , and two independent combinations of fundamental 

units, so we expect to see three dimensionless groups – which is precisely what we got.   

 

 

 Simplifying FEA analysis by scaling the governing equations 
 

An alternative approach to identifying the dimensionless parameters that 

control the solution to a problem is to express the governing equations 

themselves in dimensionless form.  This is a much more powerful technique, 

but is also somewhat more difficult to use. 

 

We can illustrate the procedure using our beam problem again.  Let x 

measure distance along the beam, and let w denote its vertical deflection.  

You may remember that linear Euler-Bernoulli beam theory gives the 

following governing equation for w 
4

4
0

d w
EI

dx
  

(the right hand side vanishes because no forces act on 0<x<L) while the boundary conditions are 

0 (no deflection at wall)

0
0      (no rotation at wall)

w

xdw

dx

 



 



               

2

2

3

3

0 (no moment at free end)

      (Shear force equal to )

d w
EI

dx
x L

d w
EI P P

dx


 





 



 

(If you don’t remember these it doesn’t matter – it’s the scaling discussed below that’s important).   



P

E,I

x

w
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We now re-write the equations so that they are dimensionless.  We aways start by replacing all field 

variables (in this case w and x) with dimensionless quantities.  In this case we could use 

ˆ/ /x L w w L   . Substituting ˆx L w wL   gives 

4

3 4

ˆ
0

EI d w

L d
  

ˆ 0 (no deflection at wall)

0ˆ
0      (no rotation at wall)

Lw

dw

d





 



 



               

2

2

3

2 3

ˆ
0 (no moment at free end)

1
ˆ

      (Shear force equal to )

EI d w

L d

EI d w
P P

L d







 





 



 

We now look and see if we can make further simplifications.  Our objective is to remove as many material 

and geometric parameters from the equations as possible, by defining new dimensionless field variables or 

introducing dimensionless combinations of material or geometric variables.  In this case, we see that if we 

define a new dimensionless displacement W so that 
2 ˆ/( )WPL EI w  

substitute, and cancel as many terms as possible, the governing equations become 
4

4
0

d W

d
  

0 (no deflection at wall)

0
0      (no rotation at wall)

W

dW

d





 



 



               

2

2

3

3

0 (no moment at free end)

1

1      (Shear force equal to )

d W

d

d W
P

d







 





 



 

In this form, the governing equations contain absolutely no material or geometric parameters.  The solution 

for W must therefore be independent of L,E,I or P.  We can solve the equation just once, and then work out 

the tip deflection from the value of W at 1  .  Specifically, 

3

ˆ( ) ( 1) ( 1)
PL

w x L Lw W
EI

         

 

This scaling procedure is the best way to simplify numerical computations.  It is more difficult to apply than 

dimensional analysis, however, and it is possible (although perhaps not a good idea) to run an FEA 

simulation of a problem where you don’t actually know the governing equations! In this case you should 

just use standard dimensional analysis to try to simplify the problem. 

 

 


