Chapter 11

 

Analyzing solids with special shapes

 

 

Calculating the full 3D displacement field, along with all 9 stress and strain components in a solid can be difficult (even with the latest finite element software).  For some solids with special shapes, the analysis can be simplified by making assumptions about how the stress and strain vary in the solid.   This can be particularly helpful to analyze structural elements, such as rods, beams, plates and shells.

 

In this chapter we will discuss how to analyze deformation of straight beams and flat plates, to illustrate the main ideas.   There is a large literature on analysis of structural elements, which is often taught in a sequence of several courses, and cannot be discussed fully here.   Our main goal is to provide enough background in the subject so you can set up and interpret finite element simulations that include some of these structural elements

 

11.1 Analyzing Deformation and Motion of Straight Beams and Strings

 

We start by discussing simplified solid mechanics theories that describe motion of slender rods and beams.   The figure shows the problem to be solved.   To keep the discussion (reasonably) simple here, we will assume

 

* The solid is a straight beam, with a uniform cross-section (in FEA simulations, beams can be curved, and the cross-section can vary along the length of the beam)

 

* We will describe position and motion of the beam using a local Cartesian coordinate system with e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@323F@  parallel to the axis of the beam.  In an ABAQUS simulation you may want to run an analysis with the beam pointing along some strange direction in space MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  in this case it can be helpful to create a local coordinate system with the orientation shown when you create the part. 

 

* Deflections are small (FEA simulations can handle large deformations)

 

* We will neglect twisting of the cross section MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  i.e. in the figure, the cross section does not rotate about the e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@323F@  axis.   (You can include twist in FEA simulations; there are also several analytical methods for analyzing twisting of beams or rods, depending on the shape of the cross-section)

 

 

Characterizing the Geometry of the cross-section

 

In most FEA programs you can specify the geometry of the cross-section by simply entering relevant dimensions for standard cross-sections (circles, rectangles, I-beams, C and L sections and so on).  The software will compute all relevant integrated quantities internally.  

 

When we analyze deformation of straight elastic beams by hand, we start by introducing a convenient coordinate system: e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@323F@  will be an axial unit vector, and  are two convenient directions in the plane of the cross-section (in FEA calculations the cross-sectional geometry is specified in a local coordinate system with e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@323F@  tangent to the beam axis.   The orientation of the directions e 1 , e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaGymaaqabaGcca GGSaGaaCyzamaaBaaaleaacaaIYaaabeaaaaa@34CD@  with respect to the global coordinate system must be specified separately).  We then calculate the following geometrical quantities:

1.      The cross-sectional area A= A dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadgeacqGH9aqpdaWdrbqaaiaadsgaca WGbbaaleaacaWGbbaabeqdcqGHRiI8aaaa@36F3@  

2.      The position of the neutral line in the cross section (this is a fiber in the beam that does not stretch as the beam bends)

r ¯ = x ¯ 1 e 1 + x ¯ 2 e 2 = 1 A A ( x 1 e 1 + x 2 e 2 )dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiqahkhagaqeaiabg2da9iqadIhagaqeam aaBaaaleaacaaIXaaabeaakiaahwgadaWgaaWcbaGaaGymaaqabaGc cqGHRaWkceWG4bGbaebadaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaS baaSqaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaamyq aaaadaWdrbqaamaabmaabaGaamiEamaaBaaaleaacaaIXaaabeaaki aahwgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG4bWaaSbaaSqa aiaaikdaaeqaaOGaaCyzamaaBaaaleaacaaIYaaabeaaaOGaayjkai aawMcaaiaadsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8aaaa@4C8C@

3.      The components of the area moment of inertia tensor for the cross-section

I=[ I 11 I 12 I 12 I 22 ] I 11 = A ( x 2 x ¯ 2 ) 2 dA I 22 = A ( x 1 x ¯ 1 ) 2 dA I 12 = A ( x 1 x ¯ 1 )( x 2 x ¯ 2 )dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaaCysaiabg2da9maadmaabaqbae qabiGaaaqaaiaadMeadaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGa eyOeI0IaamysamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacqGHsi slcaWGjbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaadMeadaWg aaWcbaGaaGOmaiaaikdaaeqaaaaaaOGaay5waiaaw2faaaqaaiaadM eadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyypa0Zaa8quaeaadaqa daqaaiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsislceWG4bGbae badaqhaaWcbaGaaGOmaaqaaaaaaOGaayjkaiaawMcaamaaCaaaleqa baGaaGOmaaaakiaadsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8aO GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadMeadaWgaaWcbaGaaG OmaiaaikdaaeqaaOGaeyypa0Zaa8quaeaadaqadaqaaiaadIhadaWg aaWcbaGaaGymaaqabaGccqGHsislceWG4bGbaebadaqhaaWcbaGaaG ymaaqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaa dsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8aOGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaadMeadaWgaaWcbaGaaGymaiaaikdaaeqaaO Gaeyypa0Zaa8quaeaadaqadaqaaiaadIhadaWgaaWcbaGaaGymaaqa baGccqGHsislceWG4bGbaebadaqhaaWcbaGaaGymaaqaaaaaaOGaay jkaiaawMcaamaabmaabaGaamiEamaaBaaaleaacaaIYaaabeaakiab gkHiTiqadIhagaqeamaaDaaaleaacaaIYaaabaaaaaGccaGLOaGaay zkaaGaamizaiaadgeaaSqaaiaadgeaaeqaniabgUIiYdGccaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8oaaaa@B0B0@

 

The integrals are always a pain to evaluate.   It is usually simplest to do them with a symbolic manipulation program.   As an example, here is a MATLAB live script that calculates the relevant quantities for a symmetric L-shaped cross-section.   To adapt this to different shapes you usually just need to work out how to handle the limits in the area integral MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  the integrands don’t change.

 

The solution is

For small t/a we can use the approximation

Since I is a (2D) tensor, we can use all our secret tensor manipulation superpowers to manipulate it.   For example, the principal values and directions of I are useful (they are the eigenvalues and eigenvectors of I.   The eigenvectors can be visualized as a special basis in which I is diagonal; the corresponding eigenvalues are the values of I 11 , I 22 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadMeadaWgaaWcbaGaaGymaiaaigdaae qaaOGaaiilaiaadMeadaWgaaWcbaGaaGOmaiaaikdaaeqaaaaa@3604@  in this basis.  

For the L-shaped cross section Matlab says the principal axes of inertia (the eig command) are

The columns of V are the eigenvectors, but they are not unit vectors.  This tells us that

  m 1 =( e 1 + e 2 )/ 2 m 2 =( e 1 + e 2 )/ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaaGymaaqabaGccq GH9aqpcaGGOaGaeyOeI0IaaCyzamaaBaaaleaacaaIXaaabeaakiab gUcaRiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGPaGaai4lamaaka aabaGaaGOmaaWcbeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCyBamaaBaaale aacaaIYaaabeaakiabg2da9iaacIcacaWHLbWaaSbaaSqaaiaaigda aeqaaOGaey4kaSIaaCyzamaaBaaaleaacaaIYaaabeaakiaacMcaca GGVaWaaOaaaeaacaaIYaaaleqaaaaa@573B@

The principal moments of area are

For small t/a this is

The top left diagonal is the moment of area about m 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaaGymaaqabaaaaa@3245@  ; the bottom right is the moment of area about m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2gadaWgaaWcbaGaaGOmaaqabaaaaa@3246@ .

 

The table below gives area moments of inertia for some simple shapes.   You can find more tabulated values online.

 

Areas and area moments of inertia for simple cross-sections

A=ab I 11 = b 3 a/12 I 22 = a 3 b/12 I 12 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaamyqaiabg2da9iaadggacaWGIb aabaGaamysamaaBaaaleaacaaIXaGaaGymaaqabaGccqGH9aqpcaWG IbWaaWbaaSqabeaacaaIZaaaaOGaamyyaiaac+cacaaIXaGaaGOmaa qaaiaadMeadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaeyypa0Jaamyy amaaCaaaleqabaGaaG4maaaakiaadkgacaGGVaGaaGymaiaaikdaae aacaWGjbWaaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da9iaaicda aaaa@493D@

A=πab I 11 =π b 3 a/4 I 22 =π a 3 b/4 I 12 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaamyqaiabg2da9iabec8aWjaadg gacaWGIbaabaGaamysamaaBaaaleaacaaIXaGaaGymaaqabaGccqGH 9aqpcqaHapaCcaWGIbWaaWbaaSqabeaacaaIZaaaaOGaamyyaiaac+ cacaaI0aaabaGaamysamaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH 9aqpcqaHapaCcaWGHbWaaWbaaSqabeaacaaIZaaaaOGaamOyaiaac+ cacaaI0aaabaGaamysamaaBaaaleaacaaIXaGaaGOmaaqabaGccqGH 9aqpcaaIWaaaaaa@4D02@

A= a 2 3 /4 I 11 = I 22 = a 4 3 /96 I 12 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaamyqaiabg2da9iaadggadaahaa WcbeqaaiaaikdaaaGcdaGcaaqaaiaaiodaaSqabaGccaGGVaGaaGin aaqaaiaadMeadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyypa0Jaam ysamaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH9aqpcaWGHbWaaWba aSqabeaacaaI0aaaaOWaaOaaaeaacaaIZaaaleqaaOGaai4laiaaiM dacaaI2aaabaGaamysamaaBaaaleaacaaIXaGaaGOmaaqabaGccqGH 9aqpcaaIWaaaaaa@46B8@

 

 

 

 

Approximating the deformation of a beam

 

The deformed shape of a straight beam is described by specifying the displacement u( x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwhacaGGOaGaamiEamaaBaaaleaaca aIZaaabeaakiaacMcaaaa@34AF@  of each point on the neutral line of the cross-section, as a function of position along the length of the beam.  If the beam twists (not discussed here), it is also necessary to calculate the angle of rotation of the cross-section about the e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@323F@  axis.  

 

Two additional geometric variables are used to describe the deformed geometry of a beam.  These are:

1.      The (small) rotation of the cross-section

θ 1 = d u 2 d x 3 θ 2 = d u 1 d x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeI7aXnaaBaaaleaacaaIXaaabeaaki abg2da9iabgkHiTmaalaaabaGaamizaiaadwhadaWgaaWcbaGaaGOm aaqabaaakeaacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaaGcca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlabeI7aXnaaBaaaleaacaaIYaaabeaakiabg2 da9maalaaabaGaamizaiaadwhadaWgaaWcbaGaaGymaaqabaaakeaa caWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaaaaaa@551A@

The sign conventions used to describe rotations is confusing MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  the angles represent small rotations, in radians, about the e 1 , e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaGymaaqabaGcca GGSaGaaCyzamaaBaaaleaacaaIYaaabeaaaaa@34CD@  axes.  The small rotation is a vector, and is related to the displacement by θ= e 3 ×du/d x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahI7acqGH9aqpcaWHLbWaaSbaaSqaai aaiodaaeqaaOGaey41aqRaamizaiaahwhacaGGVaGaamizaiaadIha daWgaaWcbaGaaG4maaqabaaaaa@3C13@ . (If twist is included there is a third rotation angle that specifies the rotation of the cross section about the e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@323F@  axis).

2.      The curvature of the beam

κ 1 = d θ 1 d x 3 = d 2 u 2 d x 3 2 κ 2 = d θ 2 d x 3 = d 2 u 1 d x 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeQ7aRnaaBaaaleaacaaIXaaabeaaki abg2da9maalaaabaGaamizaiabeI7aXnaaBaaaleaacaaIXaaabeaa aOqaaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaakiabg2da9i abgkHiTmaalaaabaGaamizamaaCaaaleqabaGaaGOmaaaakiaadwha daWgaaWcbaGaaGOmaaqabaaakeaacaWGKbGaamiEamaaDaaaleaaca aIZaaabaGaaGOmaaaaaaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeQ7aRnaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaamizaiabeI7aXnaa BaaaleaacaaIYaaabeaaaOqaaiaadsgacaWG4bWaaSbaaSqaaiaaio daaeqaaaaakiabg2da9maalaaabaGaamizamaaCaaaleqabaGaaGOm aaaakiaadwhadaWgaaWcbaGaaGymaaqabaaakeaacaWGKbGaamiEam aaDaaaleaacaaIZaaabaGaaGOmaaaaaaaaaa@6771@

The curvature is also a vector, and is related to the slope and displacement vectors by κ=dθ/d x 3 = e 3 × d 2 u/d x 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahQ7acqGH9aqpcaWGKbGaaCiUdiaac+ cacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaakiabg2da9iaahwga daWgaaWcbaGaaG4maaqabaGccqGHxdaTcaWGKbWaaWbaaSqabeaaca aIYaaaaOGaaCyDaiaac+cacaWGKbGaamiEamaaDaaaleaacaaIZaaa baGaaGOmaaaaaaa@4484@  

 

There are two main flavors of beam theory: the simplest one, called ‘Euler-Bernoulli’ beam theory, assumes that material fibers that are transverse to the neutral line remain transverse after deformation, as shown in the figure above (the solid blue lines are normal to the dashed blue line).  The axial strain distribution in the beam is then

ε 33 = κ 2 ( x 1 x ¯ 1 )+ κ 1 ( x 2 x ¯ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacaaIZaGaaG4maa qabaGccqGH9aqpcqGHsislcqaH6oWAdaWgaaWcbaGaaGOmaaqabaGc caGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiabgkHiTiqadIhaga qeamaaBaaaleaacaaIXaaabeaakiaacMcacqGHRaWkcqaH6oWAdaWg aaWcbaGaaGymaaqabaGccaGGOaGaamiEamaaBaaaleaacaaIYaaabe aakiabgkHiTiqadIhagaqeamaaBaaaleaacaaIYaaabeaakiaacMca aaa@4851@

 

The second version of beam theory (called ‘Timoshenko) beam theory allows material fibers transverse to the neutral line to rotate.   This theory is more complex (because you need to solve for the rotations of the transverse fibers) and won’t be discussed here, but it is available in most FEA packages.   Roughly, Timoshenko theory should be used for beams that are shorter than about 10 times their thickness; Euler-Bernoulli or Timoshenko theory can be used for long, slender beams (and will give the same predictions).

 

 

Describing external loads applied to beams

 

You can load a beam by

1.      Applying a distributed force (load per unit axial length) p( x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahchacaGGOaGaamiEamaaBaaaleaaca aIZaaabeaakiaacMcaaaa@34AA@  along the length of the beam. 

2.      Either prescribing the transverse  displacement  u(0),u(L) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwhacaGGOaGaaGimaiaacMcacaGGSa GaaCyDaiaacIcacaWGmbGaaiykaaaa@3751@  at the end, or applying forces P(0) P(L) at the ends of the beam (the forces can also be zero at a free end).  The forces are related to the tractions acting on the ends of the beam by

P i = A t i dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xq qrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8 fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGa aiaabeqaaiWabaWaaaGcbaGaamiuamaaBaaaleaacaWGPbaabeaaki abg2da9maapefabaGaamiDamaaBaaaleaacaWGPbaabeaakiaadsga caWGbbaaleaacaWGbbaabeqdcqGHRiI8aaaa@3BDD@

3.      Either prescribing the rotation θ 1 , θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeI7aXnaaBaaaleaacaaIXaaabeaaki aacYcacqaH4oqCdaWgaaWcbaGaaGOmaaqabaaaaa@365D@  , or applying a moment Q= Q 1 e 1 + Q 2 e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahgfacqGH9aqpcaWGrbWaaSbaaSqaai aaigdaaeqaaOGaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiaa dgfadaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqaaiaaikdaae qaaaaa@3A6E@  to the end of the beam (in more general theories a twist or twisting moment can also be applied parallel to the beam axis, but we have neglected twisting here to keep things simple). The components are related to the tractions acting on the end of the rod by

Q 1 = A x 2 t 3 dA Q 2 = A x 1 t 3 dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGrbWaaSbaaSqaaiaaigdaaeqaaO Gaeyypa0Zaa8quaeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaamiD amaaBaaaleaacaaIZaaabeaakiaadsgacaWGbbGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGrbWaaSbaaSqa aiaaikdaaeqaaaqaaiaadgeaaeqaniabgUIiYdGccqGH9aqpcqGHsi sldaWdrbqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccaWG0bWaaSba aSqaaiaaiodaaeqaaOGaamizaiaadgeacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVdWcbaGaamyqaaqab0Gaey4k Iipaaaa@6326@

 

 

 

 

 

 

 

 

 

 

Describing internal forces in beams

 

The forces in a beam are quantified by internal force and moment vectors acting on each cross-section.  To make this precise, introduce an imaginary cut perpendicular to the axis of the beam, as shown in the figure.  The stresses acting on an interior face with normal parallel to the e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@323F@  direction exert resultant forces T, and bending moments M (if twisting is neglected M 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaaIWaaaaa@33ED@ , but all three components have been shown to make it clear that M is a 3D vector).  

 

Beam theory calculates these resultant forces and moments directly (by solving the equations of motion or equilibrium in terms of T and M), instead of solving the 3D equations for the internal stresses.   Formally, the theory works by calculating the axial stress in the beam using the stress-strain relations and the strain-curvature relations, and then calculating the bending moments using

M 1 ( x 3 )= A σ 33 ( x 2 x ¯ 2 )dA M 2 ( x 3 )= A σ 33 ( x 1 x ¯ 1 )dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaO GaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaeyypa0Za a8quaeaacqaHdpWCdaWgaaWcbaGaaG4maiaaiodaaeqaaOGaaiikai aadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsislceWG4bGbaebadaWg aaWcbaGaaGOmaaqabaGccaGGPaGaamizaiaadgeaaSqaaiaadgeaae qaniabgUIiYdGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaad2eadaWgaaWcbaGaaG OmaaqabaGccaGGOaGaamiEamaaBaaaleaacaaIZaaabeaakiaacMca cqGH9aqpcqGHsisldaWdrbqaaiabeo8aZnaaBaaaleaacaaIZaGaaG 4maaqabaGccaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiabgkHi TiqadIhagaqeamaaBaaaleaacaaIXaaabeaakiaacMcacaWGKbGaam yqaaWcbaGaamyqaaqab0Gaey4kIipakiaaykW7aaa@6F4A@

The internal forces T in Euler-Bernoulli beam theory are constraint forces, which act to prevent the beam from stretching axially, and to keep transverse fibers perpendicular to the neutral line.  They can’t be calculated directly using the deformation and stress-strain laws, and instead are calculated using the momentum balance equations in the next section.

 

Note that T and M are vectors, and by default ABAQUS will report their components in the global coordinate system by default.

 

 

Moment-Curvature relations for elastic beams

 

In an elastic beam with Youngs modulus E, the bending moment vector is related to the curvature vector by

M=EIκ[ M 1 M 2 ]=E[ I 11 I 12 I 12 I 22 ][ κ 1 κ 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2eacqGH9aqpcaWGfbGaaCysaiaahQ 7acaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7daWadaqaauaabeqaceaaaeaacaWGnbWaaSbaaSqa aiaaigdaaeqaaaGcbaGaamytamaaBaaaleaacaaIYaaabeaaaaaaki aawUfacaGLDbaacqGH9aqpcaWGfbWaamWaaeaafaqabeGacaaabaGa amysamaaBaaaleaacaaIXaGaaGymaaqabaaakeaacqGHsislcaWGjb WaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiabgkHiTiaadMeadaWg aaWcbaGaaGymaiaaikdaaeqaaaGcbaGaamysamaaBaaaleaacaaIYa GaaGOmaaqabaaaaaGccaGLBbGaayzxaaWaamWaaeaafaqabeGabaaa baGaeqOUdS2aaSbaaSqaaiaaigdaaeqaaaGcbaGaeqOUdS2aaSbaaS qaaiaaikdaaeqaaaaaaOGaay5waiaaw2faaaaa@6D4F@

 

It is easy to derive these:

1.      Recall that the axial strain in the beam is ε 33 = κ 2 ( x 1 x ¯ 1 )+ κ 1 ( x 2 x ¯ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacaaIZaGaaG4maa qabaGccqGH9aqpcqGHsislcqaH6oWAdaWgaaWcbaGaaGOmaaqabaGc caGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiabgkHiTiqadIhaga qeamaaBaaaleaacaaIXaaabeaakiaacMcacqGHRaWkcqaH6oWAdaWg aaWcbaGaaGymaaqabaGccaGGOaGaamiEamaaBaaaleaacaaIYaaabe aakiabgkHiTiqadIhagaqeamaaBaaaleaacaaIYaaabeaakiaacMca aaa@4851@

2.      The elastic stress-strain law gives  σ 33 = κ 2 ( x 1 x ¯ 1 )+ κ 1 ( x 2 x ¯ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeo8aZnaaBaaaleaacaaIZaGaaG4maa qabaGccqGH9aqpcqGHsislcqaH6oWAdaWgaaWcbaGaaGOmaaqabaGc caGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiabgkHiTiqadIhaga qeamaaBaaaleaacaaIXaaabeaakiaacMcacqGHRaWkcqaH6oWAdaWg aaWcbaGaaGymaaqabaGccaGGOaGaamiEamaaBaaaleaacaaIYaaabe aakiabgkHiTiqadIhagaqeamaaBaaaleaacaaIYaaabeaakiaacMca aaa@486D@

3.      The bending moments are M 1 ( x 3 )= A σ 33 ( x 2 x ¯ 2 )dA M 2 ( x 3 )= A σ 33 ( x 1 x ¯ 1 )dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9 v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGadeaadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaO GaaiikaiaadIhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaeyypa0Za a8quaeaacqaHdpWCdaWgaaWcbaGaaG4maiaaiodaaeqaaOGaaiikai aadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsislceWG4bGbaebadaWg aaWcbaGaaGOmaaqabaGccaGGPaGaamizaiaadgeaaSqaaiaadgeaae qaniabgUIiYdGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaad2eadaWgaaWcbaGaaG OmaaqabaGccaGGOaGaamiEamaaBaaaleaacaaIZaaabeaakiaacMca cqGH9aqpcqGHsisldaWdrbqaaiabeo8aZnaaBaaaleaacaaIZaGaaG 4maaqabaGccaGGOaGaamiEamaaBaaaleaacaaIXaaabeaakiabgkHi TiqadIhagaqeamaaBaaaleaacaaIXaaabeaakiaacMcacaWGKbGaam yqaaWcbaGaamyqaaqab0Gaey4kIipakiaaykW7aaa@6F4A@

4.      Finally, substitute for the stress and simplify using the definition of the inertia tensor

I=[ I 11 I 12 I 12 I 22 ] I 11 = A ( x 2 x ¯ 2 ) 2 dA I 22 = A ( x 1 x ¯ 1 ) 2 dA I 12 = A ( x 1 x ¯ 1 )( x 2 x ¯ 2 )dA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaaCysaiabg2da9maadmaabaqbae qabiGaaaqaaiaadMeadaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGa eyOeI0IaamysamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacqGHsi slcaWGjbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaadMeadaWg aaWcbaGaaGOmaiaaikdaaeqaaaaaaOGaay5waiaaw2faaaqaaiaadM eadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyypa0Zaa8quaeaadaqa daqaaiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsislceWG4bGbae badaqhaaWcbaGaaGOmaaqaaaaaaOGaayjkaiaawMcaamaaCaaaleqa baGaaGOmaaaakiaadsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8aO GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadMeadaWgaaWcbaGaaG OmaiaaikdaaeqaaOGaeyypa0Zaa8quaeaadaqadaqaaiaadIhadaWg aaWcbaGaaGymaaqabaGccqGHsislceWG4bGbaebadaqhaaWcbaGaaG ymaaqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaa dsgacaWGbbaaleaacaWGbbaabeqdcqGHRiI8aOGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaadMeadaWgaaWcbaGaaGymaiaaikdaaeqaaO Gaeyypa0Zaa8quaeaadaqadaqaaiaadIhadaWgaaWcbaGaaGymaaqa baGccqGHsislceWG4bGbaebadaqhaaWcbaGaaGymaaqaaaaaaOGaay jkaiaawMcaamaabmaabaGaamiEamaaBaaaleaacaaIYaaabeaakiab gkHiTiqadIhagaqeamaaDaaaleaacaaIYaaabaaaaaGccaGLOaGaay zkaaGaamizaiaadgeaaSqaaiaadgeaaeqaniabgUIiYdGccaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8oaaaa@B0B0@

 

 

 

 

 

Equations of motion for small deflections of straight beams subjected to significant axial force

 

Consider a beam with mass density ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg8aYbaa@3228@  , cross-sectional area A , which is subjected to a transverse distributed force per unit length p= p 1 e 1 + p 2 e 2 + p 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahchacqGH9aqpcaWGWbWaaSbaaSqaai aaigdaaeqaaOGaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiaa dchadaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqaaiaaikdaae qaaOGaey4kaSIaamiCamaaBaaaleaacaaIZaaabeaakiaahwgadaWg aaWcbaGaaG4maaqabaaaaa@3F76@ , along with relevant forces or constraints at its ends.  The loading induces an acceleration vector a= a 1 e 1 + a 2 e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahggacqGH9aqpcaWGHbWaaSbaaSqaai aaigdaaeqaaOGaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiaa dggadaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqaaiaaikdaae qaaaaa@3A9E@  and curvature vector κ= κ 1 e 1 + κ 2 e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahQ7acqGH9aqpcqaH6oWAdaWgaaWcba GaaGymaaqabaGccaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa eqOUdS2aaSbaaSqaaiaaikdaaeqaaOGaaCyzamaaBaaaleaacaaIYa aabeaaaaa@3C92@  , along with internal forces T= T 1 e 1 + T 2 e 2 + T 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahsfacqGH9aqpcaWGubWaaSbaaSqaai aaigdaaeqaaOGaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiaa dsfadaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqaaiaaikdaae qaaOGaey4kaSIaamivamaaBaaaleaacaaIZaaabeaakiaahwgadaWg aaWcbaGaaG4maaqabaaaaa@3F06@  and bending moment. M= M 1 e 1 + M 2 e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2eacqGH9aqpcaWGnbWaaSbaaSqaai aaigdaaeqaaOGaaCyzamaaBaaaleaacaaIXaaabeaakiabgUcaRiaa d2eadaWgaaWcbaGaaGOmaaqabaGccaWHLbWaaSbaaSqaaiaaikdaae qaaaaa@3A62@  .  The equations of motion for the beam are

 

  1. Linear momentum balance

d T 1 d x 3 + p 1 ρA a 1 d T 2 d x 3 + p 2 ρA a 2 d T 3 d x 3 + p 3 ρA a 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamizaiaadsfadaWgaaWcba GaaGymaaqabaaakeaacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaa aaGccqGHRaWkcaWGWbWaaSbaaSqaaiaaigdaaeqaaOGaeyisISRaeq yWdiNaamyqaiaadggadaWgaaWcbaGaaGymaaqabaGccaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaam izaiaadsfadaWgaaWcbaGaaGOmaaqabaaakeaacaWGKbGaamiEamaa BaaaleaacaaIZaaabeaaaaGccqGHRaWkcaWGWbWaaSbaaSqaaiaaik daaeqaaOGaeyisISRaeqyWdiNaamyqaiaadggadaWgaaWcbaGaaGOm aaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVpaalaaabaGaamizaiaadsfadaWgaaWcbaGaaG4maaqabaaa keaacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaaGccqGHRaWkca WGWbWaaSbaaSqaaiaaiodaaeqaaOGaeyisISRaeqyWdiNaamyqaiaa dggadaWgaaWcbaGaaG4maaqabaaaaa@748D@

  1. Angular momentum balance

d M 1 d x 3 T 2 θ 1 T 3 0 d M 2 d x 3 + T 1 θ 2 T 3 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamizaiaad2eadaWgaaWcba GaaGymaaqabaaakeaacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaa aaGccqGHsislcaWGubWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaeq iUde3aaSbaaSqaaiaaigdaaeqaaOGaamivamaaBaaaleaacaaIZaaa beaakiabgIKi7kaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7daWcaaqaaiaadsgacaWGnbWaaSbaaSqaaiaaikdaae qaaaGcbaGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaaaOGaey4k aSIaamivamaaBaaaleaacaaIXaaabeaakiabgkHiTiabeI7aXnaaBa aaleaacaaIYaaabeaakiaadsfadaWgaaWcbaGaaG4maaqabaGccqGH ijYUcaaIWaaaaa@67D3@

 

These can also be written in more compact vector form

dT d x 3 +p=ρAa dM d x 3 + e 3 ×Tθ T 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamizaiaahsfaaeaacaWGKb GaamiEamaaBaaaleaacaaIZaaabeaaaaGccqGHRaWkcaWHWbGaeyyp a0JaeqyWdiNaamyqaiaahggacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8+aaSaaaeaacaWGKbGaaCytaaqaaiaads gacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaakiabgUcaRiaahwgadaWg aaWcbaGaaG4maaqabaGccqGHxdaTcaWHubGaeyOeI0IaaCiUdiaads fadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcaWHWaaaaa@6433@

At the ends of the beam, the internal force T and M must satisfy boundary conditions

1.      Where forces are prescribed T=P x 3 =0T=P x 3 =L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahsfacqGH9aqpcqGHsislcaWHqbGaaG PaVlaaykW7caaMc8UaaGPaVlaadIhadaWgaaWcbaGaaG4maaqabaGc cqGH9aqpcaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaahsfacqGH9aqpcaWHqbGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caWG4bWaaSbaaSqaaiaaiodaae qaaOGaeyypa0Jaamitaaaa@5B95@

2.      Where moments are prescribed M=Q( x 3 =0)M=Q( x 3 =L) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2eacqGH9aqpcqGHsislcaWHrbGaaG PaVlaaykW7caaMc8UaaGPaVlaacIcacaWG4bWaaSbaaSqaaiaaioda aeqaaOGaeyypa0JaaGimaiaacMcacaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaah2ea cqGH9aqpcaWHrbGaaGPaVlaaykW7caaMc8UaaGPaVlaacIcacaWG4b WaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaamitaiaacMcaaaa@5E3B@

 

For an elastic beam, the transverse internal forces and curvature can all be eliminated to get two coupled differential equations for the transverse deflections of the beam

E( I 22 d 4 u 1 d x 3 4 + I 12 d 4 u 2 d x 3 4 )+ρA d 2 u 1 d t 2 = d d x 3 ( T 3 d u 1 d x 3 )+ p 1 E( I 12 d 4 u 1 d x 3 4 + I 11 d 4 u 2 d x 3 4 )+ρA d 2 u 2 d t 2 = d d x 3 ( T 3 d u 2 d x 3 )+ p 2 d T 3 d x 3 + p 3 ρA d 2 u 3 d t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaamyramaabmaabaGaamysamaaBa aaleaacaaIYaGaaGOmaaqabaGcdaWcaaqaaiaadsgadaahaaWcbeqa aiaaisdaaaGccaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamizai aadIhadaqhaaWcbaGaaG4maaqaaiaaisdaaaaaaOGaey4kaSIaamys amaaBaaaleaacaaIXaGaaGOmaaqabaGcdaWcaaqaaiaadsgadaahaa WcbeqaaiaaisdaaaGccaWG1bWaaSbaaSqaaiaaikdaaeqaaaGcbaGa amizaiaadIhadaqhaaWcbaGaaG4maaqaaiaaisdaaaaaaaGccaGLOa GaayzkaaGaey4kaSIaeqyWdiNaamyqamaalaaabaGaamizamaaCaaa leqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaGymaaqabaaakeaaca WGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpdaWcaaqa aiaadsgaaeaacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaaGcda qadaqaaiaadsfadaWgaaWcbaGaaG4maaqabaGcdaWcaaqaaiaadsga caWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamizaiaadIhadaWgaa WcbaGaaG4maaqabaaaaaGccaGLOaGaayzkaaGaey4kaSIaamiCamaa BaaaleaacaaIXaaabeaaaOqaaiaaykW7caWGfbWaaeWaaeaacaWGjb WaaSbaaSqaaiaaigdacaaIYaaabeaakmaalaaabaGaamizamaaCaaa leqabaGaaGinaaaakiaadwhadaWgaaWcbaGaaGymaaqabaaakeaaca WGKbGaamiEamaaDaaaleaacaaIZaaabaGaaGinaaaaaaGccqGHRaWk caWGjbWaaSbaaSqaaiaaigdacaaIXaaabeaakmaalaaabaGaamizam aaCaaaleqabaGaaGinaaaakiaadwhadaWgaaWcbaGaaGOmaaqabaaa keaacaWGKbGaamiEamaaDaaaleaacaaIZaaabaGaaGinaaaaaaaaki aawIcacaGLPaaacqGHRaWkcqaHbpGCcaWGbbWaaSaaaeaacaWGKbWa aWbaaSqabeaacaaIYaaaaOGaamyDamaaBaaaleaacaaIYaaabeaaaO qaaiaadsgacaWG0bWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9maa laaabaGaamizaaqaaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaa aakmaabmaabaGaamivamaaBaaaleaacaaIZaaabeaakmaalaaabaGa amizaiaadwhadaWgaaWcbaGaaGOmaaqabaaakeaacaWGKbGaamiEam aaBaaaleaacaaIZaaabeaaaaaakiaawIcacaGLPaaacqGHRaWkcaWG WbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaaiaadsgacaWGubWa aSbaaSqaaiaaiodaaeqaaaGcbaGaamizaiaadIhadaWgaaWcbaGaaG 4maaqabaaaaOGaey4kaSIaamiCamaaBaaaleaacaaIZaaabeaakiab gIKi7kabeg8aYjaadgeadaWcaaqaaiaadsgadaahaaWcbeqaaiaaik daaaGccaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamizaiaadsha daahaaWcbeqaaiaaikdaaaaaaaaaaa@B561@

In terms of displacements, the possible boundary conditions are:

1.      Prescribed displacements u(0)= u * u(L)= u * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwhacaGGOaGaaGimaiaacMcacqGH9a qpcaWH1bWaaWbaaSqabeaacaGGQaaaaOGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca WH1bGaaiikaiaadYeacaGGPaGaeyypa0JaaCyDamaaCaaaleqabaGa aiOkaaaaaaa@4D62@  or

Prescribed forces T=P x 3 =0T=P x 3 =L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahsfacqGH9aqpcqGHsislcaWHqbGaaG PaVlaaykW7caaMc8UaaGPaVlaadIhadaWgaaWcbaGaaG4maaqabaGc cqGH9aqpcaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaahsfacqGH9aqpcaWHqbGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caWG4bWaaSbaaSqaaiaaiodaae qaaOGaeyypa0Jaamitaaaa@5B95@   where the two transverse forces are related to the displacements by

E( I 22 d 3 u 1 d x 3 3 + I 12 d 3 u 2 d x 3 3 )+ d u 1 d x 3 T 3 = T 1 E( I 12 d 3 u 1 d x 3 4 + I 11 d 3 u 2 d x 3 4 )+ d u 2 d x 3 T 3 = T 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaeyOeI0IaamyramaabmaabaGaam ysamaaBaaaleaacaaIYaGaaGOmaaqabaGcdaWcaaqaaiaadsgadaah aaWcbeqaaiaaiodaaaGccaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcba GaamizaiaadIhadaqhaaWcbaGaaG4maaqaaiaaiodaaaaaaOGaey4k aSIaamysamaaBaaaleaacaaIXaGaaGOmaaqabaGcdaWcaaqaaiaads gadaahaaWcbeqaaiaaiodaaaGccaWG1bWaaSbaaSqaaiaaikdaaeqa aaGcbaGaamizaiaadIhadaqhaaWcbaGaaG4maaqaaiaaiodaaaaaaa GccaGLOaGaayzkaaGaey4kaSYaaSaaaeaacaWGKbGaamyDamaaBaaa leaacaaIXaaabeaaaOqaaiaadsgacaWG4bWaa0baaSqaaiaaiodaae aaaaaaaOGaamivamaaBaaaleaacaaIZaaabeaakiabg2da9iaadsfa daWgaaWcbaGaaGymaaqabaaakeaacaaMc8UaeyOeI0Iaamyramaabm aabaGaamysamaaBaaaleaacaaIXaGaaGOmaaqabaGcdaWcaaqaaiaa dsgadaahaaWcbeqaaiaaiodaaaGccaWG1bWaaSbaaSqaaiaaigdaae qaaaGcbaGaamizaiaadIhadaqhaaWcbaGaaG4maaqaaiaaisdaaaaa aOGaey4kaSIaamysamaaBaaaleaacaaIXaGaaGymaaqabaGcdaWcaa qaaiaadsgadaahaaWcbeqaaiaaiodaaaGccaWG1bWaaSbaaSqaaiaa ikdaaeqaaaGcbaGaamizaiaadIhadaqhaaWcbaGaaG4maaqaaiaais daaaaaaaGccaGLOaGaayzkaaGaey4kaSYaaSaaaeaacaWGKbGaamyD amaaBaaaleaacaaIYaaabeaaaOqaaiaadsgacaWG4bWaa0baaSqaai aaiodaaeaaaaaaaOGaamivamaaBaaaleaacaaIZaaabeaakiabg2da 9iaadsfadaWgaaWcbaGaaGOmaaqabaaaaaa@787A@

2.      Prescribed rotations d u 1 /d x 3 = θ 2 * d u 2 /d x 3 = θ 1 * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsgacaWG1bWaaSbaaSqaaiaaigdaae qaaOGaai4laiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaeyyp a0JaeqiUde3aa0baaSqaaiaaikdaaeaacaGGQaaaaOGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqGHsislcaWGKbGaamyDamaaBaaaleaacaaIYaaabeaaki aac+cacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaakiabg2da9iab eI7aXnaaDaaaleaacaaIXaaabaGaaiOkaaaaaaa@57BE@  or

Prescribed moments M=Q( x 3 =0)M=Q( x 3 =L) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2eacqGH9aqpcqGHsislcaWHrbGaaG PaVlaaykW7caaMc8UaaGPaVlaacIcacaWG4bWaaSbaaSqaaiaaioda aeqaaOGaeyypa0JaaGimaiaacMcacaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaah2ea cqGH9aqpcaWHrbGaaGPaVlaaykW7caaMc8UaaGPaVlaacIcacaWG4b WaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaamitaiaacMcaaaa@5E3B@  where the moment is related to the displacement by

M 1 =E( I 11 d 2 u 2 d x 3 2 + I 12 d 2 u 1 d x 3 2 ) M 2 =E( I 12 d 2 u 2 d x 3 2 + I 22 d 2 u 1 d x 3 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaaGymaaqabaGccq GH9aqpcqGHsislcaWGfbWaaeWaaeaacaWGjbWaaSbaaSqaaiaaigda caaIXaaabeaakmaalaaabaGaamizamaaCaaaleqabaGaaGOmaaaaki aadwhadaWgaaWcbaGaaGOmaaqabaaakeaacaWGKbGaamiEamaaDaaa leaacaaIZaaabaGaaGOmaaaaaaGccqGHRaWkcaWGjbWaaSbaaSqaai aaigdacaaIYaaabeaakmaalaaabaGaamizamaaCaaaleqabaGaaGOm aaaakiaadwhadaWgaaWcbaGaaGymaaqabaaakeaacaWGKbGaamiEam aaDaaaleaacaaIZaaabaGaaGOmaaaaaaaakiaawIcacaGLPaaacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaamytamaaBaaaleaacaaIYaaa beaakiabg2da9iaadweadaqadaqaaiaadMeadaWgaaWcbaGaaGymai aaikdaaeqaaOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGa amyDamaaBaaaleaacaaIYaaabeaaaOqaaiaadsgacaWG4bWaa0baaS qaaiaaiodaaeaacaaIYaaaaaaakiabgUcaRiaadMeadaWgaaWcbaGa aGOmaiaaikdaaeqaaOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYa aaaOGaamyDamaaBaaaleaacaaIXaaabeaaaOqaaiaadsgacaWG4bWa a0baaSqaaiaaiodaaeaacaaIYaaaaaaaaOGaayjkaiaawMcaaaaa@7903@

 

Special cases:

 

Two limiting cases of these equations are often used.  

 

1.      Stretched string: If the bending resistance is small compared with the axial force ( EI/( L 2 T 3 )<<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadweacaWGjbGaai4laiaacIcacaWGmb WaaWbaaSqabeaacaaIYaaaaOGaamivamaaBaaaleaacaaIZaaabeaa kiaacMcacqGH8aapcqGH8aapcaaIXaaaaa@3A5F@  ) we get the equation of motion for a stretched string

d d x 3 ( T 3 d u 1 d x 3 )+ p 1 =ρA d 2 u 1 d t 2 d d x 3 ( T 3 d u 2 d x 3 )+ p 2 =ρA d 2 u 2 d t 2 d T 3 d x 3 + p 3 ρA d 2 u 3 d t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaWaaSaaaeaacaWGKbaabaGaamizai aadIhadaWgaaWcbaGaaG4maaqabaaaaOWaaeWaaeaacaWGubWaaSba aSqaaiaaiodaaeqaaOWaaSaaaeaacaWGKbGaamyDamaaBaaaleaaca aIXaaabeaaaOqaaiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaa aOGaayjkaiaawMcaaiabgUcaRiaadchadaWgaaWcbaGaaGymaaqaba GccqGH9aqpcqaHbpGCcaWGbbWaaSaaaeaacaWGKbWaaWbaaSqabeaa caaIYaaaaOGaamyDamaaBaaaleaacaaIXaaabeaaaOqaaiaadsgaca WG0bWaaWbaaSqabeaacaaIYaaaaaaaaOqaamaalaaabaGaamizaaqa aiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaakmaabmaabaGaam ivamaaBaaaleaacaaIZaaabeaakmaalaaabaGaamizaiaadwhadaWg aaWcbaGaaGOmaaqabaaakeaacaWGKbGaamiEamaaBaaaleaacaaIZa aabeaaaaaakiaawIcacaGLPaaacqGHRaWkcaWGWbWaaSbaaSqaaiaa ikdaaeqaaOGaeyypa0JaeqyWdiNaamyqamaalaaabaGaamizamaaCa aaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaGOmaaqabaaakeaa caWGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaaakeaadaWcaaqaai aadsgacaWGubWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamizaiaadIha daWgaaWcbaGaaG4maaqabaaaaOGaey4kaSIaamiCamaaBaaaleaaca aIZaaabeaakiabgIKi7kabeg8aYjaadgeadaWcaaqaaiaadsgadaah aaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcba GaamizaiaadshadaahaaWcbeqaaiaaikdaaaaaaaaaaa@779E@

In this case the equations for motion in the two transverse directions always decouple.  The boundary conditions at the ends of the string are:

(a)    Either: prescribed transverse displacement u 1 = u 1 * , u 2 = u 2 * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaGymaaqabaGccq GH9aqpcaWG1bWaa0baaSqaaiaaigdaaeaacaGGQaaaaOGaaiilaiaa ykW7caaMc8UaaGPaVlaaykW7caWG1bWaaSbaaSqaaiaaikdaaeqaaO Gaeyypa0JaamyDamaaDaaaleaacaaIYaaabaGaaiOkaaaaaaa@4252@  or

prescribed transverse force

(b)   The axial force must satisfy T 3 = P 3 (L) x 3 =L T 3 = P 3 (0) x 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaWGqbWaaSbaaSqaaiaaiodaaeqaaOGaaiikaiaadYeacaGG PaGaaGPaVlaaykW7caaMc8UaaGPaVlaadIhadaWgaaWcbaGaaG4maa qabaGccqGH9aqpcaWGmbGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadsfadaWgaaWcbaGaaG 4maaqabaGccqGH9aqpcqGHsislcaWGqbWaaSbaaSqaaiaaiodaaeqa aOGaaiikaiaaicdacaGGPaGaaGPaVlaaykW7caaMc8UaamiEamaaBa aaleaacaaIZaaabeaakiabg2da9iaaicdaaaa@6078@  

Only displacements and forces can be prescribed at the ends of a string; the moments are always zero

 

2.      Beam with zero axial force.  In many cases the axial forces in the beam can be neglected.   In this case the equations of motion simplify to

E( I 22 d 4 u 1 d x 3 4 + I 12 d 4 u 2 d x 3 4 )+ρA d 2 u 1 d t 2 = p 1 E( I 12 d 4 u 1 d x 3 4 + I 11 d 4 u 2 d x 3 4 )+ρA d 2 u 2 d t 2 = p 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaamyramaabmaabaGaamysamaaBa aaleaacaaIYaGaaGOmaaqabaGcdaWcaaqaaiaadsgadaahaaWcbeqa aiaaisdaaaGccaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamizai aadIhadaqhaaWcbaGaaG4maaqaaiaaisdaaaaaaOGaey4kaSIaamys amaaBaaaleaacaaIXaGaaGOmaaqabaGcdaWcaaqaaiaadsgadaahaa WcbeqaaiaaisdaaaGccaWG1bWaaSbaaSqaaiaaikdaaeqaaaGcbaGa amizaiaadIhadaqhaaWcbaGaaG4maaqaaiaaisdaaaaaaaGccaGLOa GaayzkaaGaey4kaSIaeqyWdiNaamyqamaalaaabaGaamizamaaCaaa leqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaGymaaqabaaakeaaca WGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpcaWGWbWa aSbaaSqaaiaaigdaaeqaaaGcbaGaaGPaVlaadweadaqadaqaaiaadM eadaWgaaWcbaGaaGymaiaaikdaaeqaaOWaaSaaaeaacaWGKbWaaWba aSqabeaacaaI0aaaaOGaamyDamaaBaaaleaacaaIXaaabeaaaOqaai aadsgacaWG4bWaa0baaSqaaiaaiodaaeaacaaI0aaaaaaakiabgUca RiaadMeadaWgaaWcbaGaaGymaiaaigdaaeqaaOWaaSaaaeaacaWGKb WaaWbaaSqabeaacaaI0aaaaOGaamyDamaaBaaaleaacaaIYaaabeaa aOqaaiaadsgacaWG4bWaa0baaSqaaiaaiodaaeaacaaI0aaaaaaaaO GaayjkaiaawMcaaiabgUcaRiabeg8aYjaadgeadaWcaaqaaiaadsga daahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaaikdaaeqaaa GcbaGaamizaiaadshadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0Ja amiCamaaBaaaleaacaaIYaaabeaaaaaa@7A2E@

It is often convenient to choose the e 1 , e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaGymaaqabaGcca GGSaGaaCyzamaaBaaaleaacaaIYaaabeaaaaa@34CD@  directions so that I 12 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadMeadaWgaaWcbaGaaGymaiaaikdaae qaaOGaeyypa0JaaGimaaaa@34A3@  .   The equations for the two transverse deflections then decouple.  

 

We close this section with two remarks:

1.      It is important to remember that these are approximate equations, and only apply to straight beams with small transverse deflections and no twist.  More general equations do exist, of course. 

2.      The linear momentum balance equations given here are in terms of force components in the fixed { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaaigdaae qaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaaCyz amaaBaaaleaacaaIZaaabeaakiaac2haaaa@3968@  basis.  The same equations can be expressed in terms of components of internal and moment in a basis which rotates with the beam. These results look slightly different, but give the same governing equations for the displacement components. 

 

 

 

Example 1: The figure shows a flexible string (i.e. a beam with EI/( L 2 T 3 )<<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadweacaWGjbGaai4laiaacIcacaWGmb WaaWbaaSqabeaacaaIYaaaaOGaamivamaaBaaaleaacaaIZaaabeaa kiaacMcacqGH8aapcqGH8aapcaaIXaaaaa@3A5F@  ) subjected to a uniform transverse load p.    Calculate the transverse deflection.

 

Start by calculating the tension in the string.  The equation for axial force is

d T 3 d x 3 + p 3 ρA a 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamizaiaadsfadaWgaaWcba GaaG4maaqabaaakeaacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaa aaGccqGHRaWkcaWGWbWaaSbaaSqaaiaaiodaaeqaaOGaeyisISRaeq yWdiNaamyqaiaadggadaWgaaWcbaGaaG4maaqabaaaaa@3EF6@

Since there is no axial force or acceleration, the tension is constant.   The boundary conditions at the end show T 3 = T 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaWGubWaaSbaaSqaaiaaicdaaeqaaaaa@34F9@  .

 

We can now use the equation for transverse motion (we only need to worry about the vertical component, and there is no acceleration) which can be simplified to

T 3 d 2 u 1 d x 3 2 + p 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaG4maaqabaGcda WcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqa aiaaigdaaeqaaaGcbaGaamizaiaadIhadaqhaaWcbaGaaG4maaqaai aaikdaaaaaaOGaey4kaSIaamiCamaaBaaaleaacaaIXaaabeaakiab g2da9iaaicdaaaa@3E48@

We don’t even need Matlab to solve this:

u 1 = p 1 x 3 2 2 T 3 +A x 3 +B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaGymaaqabaGccq GH9aqpcqGHsisldaWcaaqaaiaadchadaWgaaWcbaGaaGymaaqabaGc caWG4bWaa0baaSqaaiaaiodaaeaacaaIYaaaaaGcbaGaaGOmaiaads fadaWgaaWcbaGaaG4maaqabaaaaOGaey4kaSIaamyqaiaadIhadaWg aaWcbaGaaG4maaqabaGccqGHRaWkcaWGcbaaaa@40D1@

The transverse deflection is zero at x 3 =0, x 3 =L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaaIWaGaaiilaiaadIhadaWgaaWcbaGaaG4maaqabaGccqGH 9aqpcaWGmbaaaa@388F@  , which shows that B=0,A= p 1 /(2L T 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadkeacqGH9aqpcaaIWaGaaiilaiaadg eacqGH9aqpcaWGWbWaaSbaaSqaaiaaigdaaeqaaOGaai4laiaacIca caaIYaGaamitaiaadsfadaWgaaWcbaGaaG4maaqabaGccaGGPaaaaa@3CB6@  .  The solution is therefore

u 1 = p 1 2 T 3 x 3 (L x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaGymaaqabaGccq GH9aqpdaWcaaqaaiaadchadaWgaaWcbaGaaGymaaqabaaakeaacaaI YaGaamivamaaBaaaleaacaaIZaaabeaaaaGccaWG4bWaaSbaaSqaai aaiodaaeqaaOGaaiikaiaadYeacqGHsislcaWG4bWaaSbaaSqaaiaa iodaaeqaaOGaaiykaaaa@3ECE@

 

 

Example 2:  The figure shows a cantilever beam with an L-shaped cross-section.  Its moment of inertia tensor can be approximate by

I= a 3 t 8 [ 5/3 1 1 5/3 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahMeacqGH9aqpdaWcaaqaaiaadggada ahaaWcbeqaaiaaiodaaaGccaWG0baabaGaaGioaaaadaWadaqaauaa beqaciaaaeaacaaI1aGaai4laiaaiodaaeaacaaIXaaabaGaaGymaa qaaiaaiwdacaGGVaGaaG4maaaaaiaawUfacaGLDbaaaaa@3DBB@

The beam is prevented from displacing or rotating at x 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaaIWaaaaa@3418@  and is subjected to a vertical force P at x 3 =L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaWGmbaaaa@342F@  .   Calculate the deflections u 1 , u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaGymaaqabaGcca GGSaGaamyDamaaBaaaleaacaaIYaaabeaaaaa@34E5@  

 

For a beam in static equilibrium, with no axial load, and with no loads applied along the length of the beam we have that

 

E( I 22 d 4 u 1 d x 3 4 + I 12 d 4 u 2 d x 3 4 )=0E( I 12 d 4 u 1 d x 3 4 + I 11 d 4 u 2 d x 3 4 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadweadaqadaqaaiaadMeadaWgaaWcba GaaGOmaiaaikdaaeqaaOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaI 0aaaaOGaamyDamaaBaaaleaacaaIXaaabeaaaOqaaiaadsgacaWG4b Waa0baaSqaaiaaiodaaeaacaaI0aaaaaaakiabgUcaRiaadMeadaWg aaWcbaGaaGymaiaaikdaaeqaaOWaaSaaaeaacaWGKbWaaWbaaSqabe aacaaI0aaaaOGaamyDamaaBaaaleaacaaIYaaabeaaaOqaaiaadsga caWG4bWaa0baaSqaaiaaiodaaeaacaaI0aaaaaaaaOGaayjkaiaawM caaiabg2da9iaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaadweadaqadaqaaiaadMeadaWgaaWc baGaaGymaiaaikdaaeqaaOWaaSaaaeaacaWGKbWaaWbaaSqabeaaca aI0aaaaOGaamyDamaaBaaaleaacaaIXaaabeaaaOqaaiaadsgacaWG 4bWaa0baaSqaaiaaiodaaeaacaaI0aaaaaaakiabgUcaRiaadMeada WgaaWcbaGaaGymaiaaigdaaeqaaOWaaSaaaeaacaWGKbWaaWbaaSqa beaacaaI0aaaaOGaamyDamaaBaaaleaacaaIYaaabeaaaOqaaiaads gacaWG4bWaa0baaSqaaiaaiodaaeaacaaI0aaaaaaaaOGaayjkaiaa wMcaaiabg2da9iaaicdaaaa@7C5F@

 

The boundary conditions are

1.      Zero displacement and rotation at x 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaaIWaaaaa@3418@ u 1 = u 2 =d u 1 /d x 3 =d u 2 /d x 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaGymaaqabaGccq GH9aqpcaWG1bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0Jaamizaiaa dwhadaWgaaWcbaGaaGymaaqabaGccaGGVaGaamizaiaadIhadaWgaa WcbaGaaG4maaqabaGccqGH9aqpcaWGKbGaamyDamaaBaaaleaacaaI Yaaabeaakiaac+cacaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaki abg2da9iaaicdaaaa@45D2@  

2.      Zero moment at x 3 =L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaWGmbaaaa@342F@

E( I 11 d 2 u 2 d x 3 2 + I 12 d 2 u 1 d x 3 2 )=0E( I 12 d 2 u 2 d x 3 2 + I 22 d 2 u 1 d x 3 2 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgkHiTiaadweadaqadaqaaiaadMeada WgaaWcbaGaaGymaiaaigdaaeqaaOWaaSaaaeaacaWGKbWaaWbaaSqa beaacaaIYaaaaOGaamyDamaaBaaaleaacaaIYaaabeaaaOqaaiaads gacaWG4bWaa0baaSqaaiaaiodaaeaacaaIYaaaaaaakiabgUcaRiaa dMeadaWgaaWcbaGaaGymaiaaikdaaeqaaOWaaSaaaeaacaWGKbWaaW baaSqabeaacaaIYaaaaOGaamyDamaaBaaaleaacaaIXaaabeaaaOqa aiaadsgacaWG4bWaa0baaSqaaiaaiodaaeaacaaIYaaaaaaaaOGaay jkaiaawMcaaiaaykW7cqGH9aqpcaaIWaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaamyramaabmaabaGaamysamaaBaaaleaacaaIXaGaaGOmaaqa baGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG1bWaaS baaSqaaiaaikdaaeqaaaGcbaGaamizaiaadIhadaqhaaWcbaGaaG4m aaqaaiaaikdaaaaaaOGaey4kaSIaamysamaaBaaaleaacaaIYaGaaG OmaaqabaGcdaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG 1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamizaiaadIhadaqhaaWcba GaaG4maaqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaeyypa0JaaGim aaaa@76F0@

3.      Prescribed force at x 3 =L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaWGmbaaaa@342F@

E( I 22 d 3 u 1 d x 3 3 + I 12 d 3 u 2 d x 3 3 )=0 E( I 12 d 3 u 1 d x 3 3 + I 11 d 3 u 2 d x 3 3 )=P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaeyOeI0IaamyramaabmaabaGaam ysamaaBaaaleaacaaIYaGaaGOmaaqabaGcdaWcaaqaaiaadsgadaah aaWcbeqaaiaaiodaaaGccaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcba GaamizaiaadIhadaqhaaWcbaGaaG4maaqaaiaaiodaaaaaaOGaey4k aSIaamysamaaBaaaleaacaaIXaGaaGOmaaqabaGcdaWcaaqaaiaads gadaahaaWcbeqaaiaaiodaaaGccaWG1bWaaSbaaSqaaiaaikdaaeqa aaGcbaGaamizaiaadIhadaqhaaWcbaGaaG4maaqaaiaaiodaaaaaaa GccaGLOaGaayzkaaGaeyypa0JaaGimaaqaaiaaykW7cqGHsislcaWG fbWaaeWaaeaacaWGjbWaaSbaaSqaaiaaigdacaaIYaaabeaakmaala aabaGaamizamaaCaaaleqabaGaaG4maaaakiaadwhadaWgaaWcbaGa aGymaaqabaaakeaacaWGKbGaamiEamaaDaaaleaacaaIZaaabaGaaG 4maaaaaaGccqGHRaWkcaWGjbWaaSbaaSqaaiaaigdacaaIXaaabeaa kmaalaaabaGaamizamaaCaaaleqabaGaaG4maaaakiaadwhadaWgaa WcbaGaaGOmaaqabaaakeaacaWGKbGaamiEamaaDaaaleaacaaIZaaa baGaaG4maaaaaaaakiaawIcacaGLPaaacqGH9aqpcaWGqbaaaaa@65A3@

It is not hard to solve these by hand MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  the general solution for u 1 , u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaGymaaqabaGcca GGSaGaamyDamaaBaaaleaacaaIYaaabeaaaaa@34E5@  are just polynomials with unknown coefficients MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  but it’s terribly boring to do the algebra.   A MATLAB ‘Live script’ is much faster

The MATLAB solution is shown.

Notice that a vertical load causes a horizontal, as well as vertical displacement.   This is because the cross-section is unsymmetric MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  if the beam deflected only vertically, the vertical side of the L would be in compression near its top, which would exert a non-zero moment on the cross-section about the e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaGOmaaqabaaaaa@323E@  axis.

 

 

 

Analyzing beams in ABAQUS

 

We end this section by discussing briefly how to set up an ABAQUS simulation that contains beams.

 

Part module:

1.      To create a beam in the ‘Part’ module, use Part->Create New and then select a 3D deformable object with a ‘Wire’ base feature.   Then draw a line that will define the shape of the beam.

2.      If you create a curved beam, you might find it helpful to create one or more local coordinate systems with axes oriented tangent and perpendicular to the beam.  It is usually easiest to make the x direction of the new system tangent to the beam.   You can do this by selecting Tools > Datum… and clicking the CSYS box.  There are a few different options for creating local coordinate systems.  If you select the ‘3 points’ method, ABAQUS will ask you to select an origin for your coordinate system, and then will ask you to put in coordinates (in the global coordinate system) for an origin, a point that lies on the x axis of the new system, and a second point in the new system that should lie in the current global x-y plane (this is confusing MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  just try it a few times to figure out what it does). 

 

Property module

 

In the ‘Property’ module you will need to define the properties of the beam cross section. 

1.      Define a set of material properties in the usual way (Material, Create New, etc).  

2.      Then create a profile (Profile, Create new); select the shape and then enter the relevant geometric variables. 

3.      Next, create a beam section by going to Section > Create… and select Beam.  You can then select the profile and material you want to use to define your beam section.   The ‘Section integration’ will calculate the moment of inertia tensor for an elastic beam, or for other materials will integrate the stresses on the fly to calculate moments and shear forces.   Selecting ‘During analysis’ is the safest option.

4.      Once the section is created, you can assign it to the relevant section of the beam (Assign > Section).

5.      Finally you need to specify the orientation of the cross section of the beam.   Select Assign > Beam section orientation, then enter the information requested.  The default option makes the ‘1’ direction of the profile parallel to the z global coordinate direction.

 

Assembly module: There is nothing special about the assembly modules for beams. 

 

 

Interaction module

 You often need to analyze a structure consisting of a number of separate beams connected together.  You will need to create each beam as a separate part, and then specify how they are connected in the interaction module.   To do this,

1.      Select Constraint> Create

2.      Select ‘Node Region’ from the menu and then select the end of one of the two beams you want to connect.   Accept the choice (if it is the correct one!) then select the end of the second beam.  If you need to, you can hide members in the assembly by going to the Assembly tab in the model database tree, expand the ‘Instances’ branch, and then right click the part you want to hide.   Annoyingly if you do this at the wrong time it will end the constraint creation.   Usually if you select the first beam with all the parts shown (this will select the beam that was added to the assembly last), then wait until the ‘node region’ button appears for the second beam, you can operate the ‘hide’ and ‘show’ buttons without leaving the constraint definition menu..  

3.      In the constraint menu you can choose whether you want to connect the beams with a welded joint (check the Tie rotational DOF box) or a pin joint (uncheck the tie rotational DOF box).

 

 

Step module

 

You can define a ‘step’ in the usual way.  To get the simple small deflection version of beam theory defined in these notes, make sure the NLGEOM option is not selected.    If you select NLGEOM, ABAQUS will do a large displacement/rotation calculation.   These can be highly nonlinear and if you run a simulation without thinking through the proper magnitudes for loads and section properties, the analysis is likely to fail.

 

If you want ABAQUS to display the internal forces and moments in your beam, you will need to request that they be stored during the analysis.  To do this, select Output > Field Output Requests > Create and make sure the ‘Section Forces and Moments’ box is checked in the ‘Forces/Reactions’ list

 

 

Load Module

 

For the most part, you can define boundary conditions and forces in the Load module in the same way that you would for a 3D solid part.   The differences are:

1.      In beam analysis, the nodes have rotational as well as translational degrees of freedom (because you need to be able to specify slopes/moments acting on the beam).   The rotational degrees of freedom are shown as UR1, UR2, UR3 in the ‘Boundary condition’ definition window.   For small rotations, the three components of the rotation vector θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahI7aaaa@31AC@  defined in these notes (in radians) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  you can select what coordinate system you want to use to define its components.    Large rotation don’t behave like vectors -  in this case ABAQUS uses UR1, UR2, UR3 to be the components in the axis-angle description of the rotation tensor.  The direction is the axis of rotation, and the magnitude is the rotation angle about the axis.

2.      You can apply moments to beams. 

 

 

 

 

Mesh Module

 

You will need to mesh your beams MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  to do this, ‘seed’ them with nodes in the usual way, then mesh the part (or instance, whichever ABAQUS lets you do).   The default element types usually work; but as always with mesh design it is sensible to run the analysis with several different element types and meshes to check mesh sensitivity.   If the choice of element type or mesh makes a difference, you will need to decide which element type and mesh gives the most accurate solution.

 

Job Module MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  set up jobs in the usual way.

 

Visualization Module

 

You can display displacements in the usual way.

 

ABAQUS will also display section forces and moments, and will also plot stresses in your beam.  Interpreting what is shown is tricky.

 

1.   To display internal forces in the beam (the vector T defined in these notes) select Result > Field Output and the select  from the menu.  The sign convention is confusing: SF1 is the axial force in the beam, SF2 and SF3 are the forces in the local (1) and (2) coordinate system for the beam (you defined these in the Property module).   

2.   To display internal moments select .  The variables SM1, SM2 are the bending moments about the local ‘1’ and ‘2’ axes, and SM3 is the twisting moment.

3.   ABAQUS also allows you to display stresses in the beam.   Since the stress varies with position in the cross-section you need to select which point in the cross-section to use: you can select the points using the Section Points… button in the Field Output selection window.

 

 

 

11.2 Analyzing Deformation and Motion of Flat Plates

 

We next consider simplified solid mechanics theories that describe motion of flat plates.   The figure shows the problem to be solved.   To keep the discussion (reasonably) simple here, we will assume

 

* The solid is a flat plate, with a uniform thickness h (in FEA simulations, plates can be curved (then they are called shells), and the thickness can vary)

 

* We will describe position and motion of the beam using a local Cartesian coordinate system with e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@323F@  perpendicular to the plate.  In an ABAQUS simulation you may want to run an analysis with the beam pointing along some strange direction in space MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFKI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaajugybabaaa aaaaaapeGaa83eGaaa@3722@  in this case it can be helpful to create a local coordinate system with the orientation shown when you create the part. 

 

* Deflections are small (FEA simulations can handle large deformations)

 

 

Approximating the deformation of a plate

 

The deformed shape of a flat plate is described by specifying the displacement u( x 1 , x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwhacaGGOaGaamiEamaaBaaaleaaca aIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiyk aaaa@374C@  of each point on the centerline of the a function of position in the plane. 

 

Two additional geometric variables are used to describe the deformed geometry of a beam.  These are:

3.      The (small) rotation of the cross-section

θ 1 = d u 3 d x 2 θ 2 = d u 3 d x 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeI7aXnaaBaaaleaacaaIXaaabeaaki abg2da9maalaaabaGaamizaiaadwhadaWgaaWcbaGaaG4maaqabaaa keaacaWGKbGaamiEamaaBaaaleaacaaIYaaabeaaaaGccaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlabeI7aXnaaBaaaleaacaaIYaaabeaakiabg2da9iabgk HiTmaalaaabaGaamizaiaadwhadaWgaaWcbaGaaG4maaqabaaakeaa caWGKbGaamiEamaaBaaaleaacaaIXaaabeaaaaaaaa@551A@

The angles represent small rotations, in radians, about the e 1 , e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaGymaaqabaGcca GGSaGaaCyzamaaBaaaleaacaaIYaaabeaaaaa@34CD@  axes.  The small rotation is a vector, and is related to the displacement by θ= e 3 ×u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahI7acqGH9aqpcqGHsislcaWHLbWaaS baaSqaaiaaiodaaeqaaOGaey41aqRaey4bIeTaaCyDaaaa@3A1B@ .

4.      The curvature of the plate

κ 11 = d θ 2 d x 1 = 2 u 3 x 1 2 κ 12 = κ 21 = d θ 2 d x 1 = d θ 1 d x 2 = 2 u 3 x 1 x 2 κ 22 = d θ 1 d x 2 = 2 u 3 x 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeQ7aRnaaBaaaleaacaaIXaGaaGymaa qabaGccqGH9aqpdaWcaaqaaiaadsgacqaH4oqCdaWgaaWcbaGaaGOm aaqabaaakeaacaWGKbGaamiEamaaBaaaleaacaaIXaaabeaaaaGccq GH9aqpcqGHsisldaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaa kiaadwhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaa0 baaSqaaiaaigdaaeaacaaIYaaaaaaakiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqOUdS2aaSbaaSqaaiaaig dacaaIYaaabeaakiabg2da9iabeQ7aRnaaBaaaleaacaaIYaGaaGym aaqabaGccqGH9aqpdaWcaaqaaiaadsgacqaH4oqCdaWgaaWcbaGaaG OmaaqabaaakeaacaWGKbGaamiEamaaBaaaleaacaaIXaaabeaaaaGc cqGH9aqpdaWcaaqaaiaadsgacqaH4oqCdaWgaaWcbaGaaGymaaqaba aakeaacaWGKbGaamiEamaaBaaaleaacaaIYaaabeaaaaGccqGH9aqp cqGHsisldaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadw hadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITcaWG4bWaaSbaaSqa aiaaigdaaeqaaOGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabeaaaa GccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqOU dS2aaSbaaSqaaiaaikdacaaIYaaabeaakiabg2da9iabgkHiTmaala aabaGaamizaiabeI7aXnaaBaaaleaacaaIXaaabeaaaOqaaiaadsga caWG4bWaaSbaaSqaaiaaikdaaeqaaaaakiabg2da9iabgkHiTmaala aabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDamaaBaaaleaa caaIZaaabeaaaOqaaiabgkGi2kaadIhadaqhaaWcbaGaaGOmaaqaai aaikdaaaaaaaaa@9691@

The curvature is a (2D) tensor, and is related to the rotation vector by κ=θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahQ7acqGH9aqpcqGHhis0caWH4oaaaa@357E@  

 

There are two main flavors of plate: the simplest one, called ‘Kirchhoff’ theory, assumes that material fibers that are transverse to the plane of the plate remain transverse after deformation, as shown in the figure above (the solid blue lines are normal to the dashed blue line).  The strain distribution in the plate is then

ε 11 = u 1 x 1 + x 3 κ 11 ε 12 = 1 2 ( u 1 x 2 + u 2 x 1 )+ x 3 κ 12 ε 22 = u 2 x 2 + x 3 κ 22 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabew7aLnaaBaaaleaacaaIXaGaaGymaa qabaGccqGH9aqpdaWcaaqaaiabgkGi2kaadwhadaWgaaWcbaGaaGym aaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaaaaki abgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccqaH6oWAdaWgaaWc baGaaGymaiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH1o qzdaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacaaI XaaabaGaaGOmaaaadaqadaqaamaalaaabaGaeyOaIyRaamyDamaaBa aaleaacaaIXaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOm aaqabaaaaOGaey4kaSYaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaai aaikdaaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIXaaabeaa aaaakiaawIcacaGLPaaacqGHRaWkcaWG4bWaaSbaaSqaaiaaiodaae qaaOGaeqOUdS2aaSbaaSqaaiaaigdacaaIYaaabeaakiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabew7aLnaaBaaaleaa caaIYaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiabgkGi2kaadwhada WgaaWcbaGaaGOmaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaa ikdaaeqaaaaakiabgUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccq aH6oWAdaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaaGPaVlaaykW7aaa@A7EA@

 

The second version of beam theory (called ‘Reissner-Mindlin’ beam theory) allows material fibers transverse to the neutral line to rotate.   This theory is more complex (because you need to solve for the rotations of the transverse fibers) and won’t be discussed here, but it is available in most FEA packages.   Roughly, Kirchoff theory should be used for plates that have width less than than about 10 times their thickness; Kirchoff or Reissner theory can be used for wide, thin plates (and will give the same predictions).

 

 

Describing external loads applied to plates

 

To keep things simple, we consider two types of external loading:

1.      A transverse pressure p( x 1 , x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadchacaGGOaGaamiEamaaBaaaleaaca aIXaaabeaakiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiyk aaaa@3743@  acting normal to the surface of the plate, and

2.      A uniform force per unit length P acting normal to the perimeter of the plate.

In more general treatments, it is possible to apply forces acting transverse to the edge of the plate, as well as moments that cause the edge of the plate to rotate.   It is also possible to make P vary around the perimeter.

 

 

 

 

Internal forces in plates

 

The forces in a plate are quantified by internal force and moment tensors acting on each cross-section.  To make this precise, cut a square element from the plate with planes normal to the coordinate axes as shown in the figure.  A set of resultant forces and moments act on the exposed faces:

 

* The moments M ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaamyAaiaadQgaae qaaaaa@3343@  are defined by

M 11 = h/2 h/2 σ 11 x 3 d x 3 M 12 = M 21 = h/2 h/2 σ 12 x 3 d x 3 M 22 = h/2 h/2 σ 22 x 3 d x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaaGymaiaaigdaae qaaOGaeyypa0Zaa8qCaeaacqaHdpWCdaWgaaWcbaGaaGymaiaaigda aeqaaOGaamiEamaaBaaaleaacaaIZaaabeaakiaadsgacaWG4bWaaS baaSqaaiaaiodaaeqaaaqaaiabgkHiTiaadIgacaGGVaGaaGOmaaqa aiaadIgacaGGVaGaaGOmaaqdcqGHRiI8aOGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aad2eadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeyypa0Jaamytamaa BaaaleaacaaIYaGaaGymaaqabaGccqGH9aqpdaWdXbqaaiabeo8aZn aaBaaaleaacaaIXaGaaGOmaaqabaGccaWG4bWaaSbaaSqaaiaaioda aeqaaOGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaabaGaeyOeI0 IaamiAaiaac+cacaaIYaaabaGaamiAaiaac+cacaaIYaaaniabgUIi YdGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaad2 eadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaeyypa0Zaa8qCaeaacqaH dpWCdaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaamiEamaaBaaaleaaca aIZaaabeaakiaadsgacaWG4bWaaSbaaSqaaiaaiodaaeqaaaqaaiab gkHiTiaadIgacaGGVaGaaGOmaaqaaiaadIgacaGGVaGaaGOmaaqdcq GHRiI8aaaa@AFF4@  

The physical significance of the components M ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaamyAaiaadQgaae qaaaaa@3363@  is illustrated in the figure: M 1j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaaGymaiaadQgaae qaaaaa@3330@  characterizes the moment per unit length acting on planes inside the shell that are normal to the e 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaGymaaqabaaaaa@325D@  direction, while M 2j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaaGOmaiaadQgaae qaaaaa@3331@  characterizes the moment per unit length acting on planes that are normal to e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaGOmaaqabaaaaa@325E@ .  Note that M i1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaamyAaiaaigdaae qaaaaa@332F@  represents a moment about the e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaGOmaaqabaaaaa@325E@  axis, while M i2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaamyAaiaaikdaae qaaaaa@3330@  is a moment acting about the e 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabgkHiTiaahwgadaWgaaWcbaGaaGymaa qabaaaaa@334A@  axis. This can be expressed mathematically as M= M αβ e α ( m 3 × e β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah2eacqGH9aqpcaWGnbWaaSbaaSqaai abeg7aHjabek7aIbqabaGccaWHLbWaaSbaaSqaaiabeg7aHbqabaGc cqGHxkcXcaGGOaGaaCyBamaaBaaaleaacaaIZaaabeaakiabgEna0k aahwgadaWgaaWcbaGaeqOSdigabeaakiaacMcaaaa@4396@  where the repeated indices α,β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg7aHjaacYcacqaHYoGyaaa@3458@  are summed over 1 and 2, but this expression is only helpful if you are really good at visualizing dyadic and cross products.

 

* The in-plane forces T ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaamyAaiaadQgaae qaaaaa@334A@  are defined by

T 11 = h/2 h/2 σ 11 d x 3 T 12 = T 21 = h/2 h/2 σ 12 d x 3 T 22 = h/2 h/2 σ 22 d x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaGymaiaaigdaae qaaOGaeyypa0Zaa8qCaeaacqaHdpWCdaWgaaWcbaGaaGymaiaaigda aeqaaOGaamizaiaadIhadaWgaaWcbaGaaG4maaqabaaabaGaeyOeI0 IaamiAaiaac+cacaaIYaaabaGaamiAaiaac+cacaaIYaaaniabgUIi YdGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaamivamaaBaaaleaacaaIXaGaaGOmaaqabaGc cqGH9aqpcaWGubWaaSbaaSqaaiaaikdacaaIXaaabeaakiabg2da9m aapehabaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIYaaabeaakiaadsga caWG4bWaaSbaaSqaaiaaiodaaeqaaaqaaiabgkHiTiaadIgacaGGVa GaaGOmaaqaaiaadIgacaGGVaGaaGOmaaqdcqGHRiI8aOGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaamivamaaBaaaleaacaaIYaGaaGOmaaqabaGc cqGH9aqpdaWdXbqaaiabeo8aZnaaBaaaleaacaaIYaGaaGOmaaqaba GccaWGKbGaamiEamaaBaaaleaacaaIZaaabeaaaeaacqGHsislcaWG ObGaai4laiaaikdaaeaacaWGObGaai4laiaaikdaa0Gaey4kIipaaa a@8B64@

They represent resultant forces exerted by stresses on the internal planes: T 1j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaGymaiaadQgaae qaaaaa@3317@  are the components of force acting on the plane perpendicular to the e 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaGymaaqabaaaaa@325D@  direction, while T 2j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaGOmaiaadQgaae qaaaaa@3318@  are those acting on the plane perpendicular to the e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaGOmaaqabaaaaa@325E@  direction.  In general, all three components of resultant force can be different.  But here, we consider only the simple case of uniform transverse loading applied to the perimeter of the plate.  Under these conditions the internal forces satisfy T 11 = T 22 = T 0 T 12 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaGymaiaaigdaae qaaOGaeyypa0JaamivamaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH 9aqpcaWGubWaaSbaaSqaaiaaicdaaeqaaOGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaamivamaaBaaaleaacaaIXaGaaGOmaaqabaGccqGH9aqpca aIWaaaaa@5013@  , where T 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaGimaaqabaaaaa@3227@  is the magnitude of the transverse force.

  

* The transverse forces V 1 , V 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAfadaWgaaWcbaGaaGymaaqabaGcca GGSaGaamOvamaaBaaaleaacaaIYaaabeaaaaa@34A7@  represent forces acting in the e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@323F@  direction on planes perpendicular to the e 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaGymaaqabaaaaa@325D@  and e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaGOmaaqabaaaaa@325E@  direction, respectively.

 

 

Moment-Curvature and force-strain relations for elastic plates

 

The internal forces are related to the curvatures and strains by

[ T 11 T 22 T 12 ]= Eh (1 ν 2 ) [ 1 ν 0 ν 1 0 0 0 (1ν) ][ u 1 / x 1 u 2 / x 2 ( u 1 / x 2 + u 2 / x 1 )/2 ][ M 11 M 22 M 12 ]= E h 3 12(1 ν 2 ) [ 1 ν 0 ν 1 0 0 0 (1ν) ][ κ 11 κ 22 κ 12 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaadmaabaqbaeqabmqaaaqaaiaadsfada WgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaamivamaaBaaaleaacaaI YaGaaGOmaaqabaaakeaacaWGubWaaSbaaSqaaiaaigdacaaIYaaabe aaaaaakiaawUfacaGLDbaacqGH9aqpdaWcaaqaaiaadweacaWGObaa baGaaiikaiaaigdacqGHsislcqaH9oGBdaahaaWcbeqaaiaaikdaaa GccaGGPaaaamaadmaabaqbaeqabmWaaaqaaiaaigdaaeaacqaH9oGB aeaacaaIWaaabaGaeqyVd4gabaGaaGymaaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiaacIcacaaIXaGaeyOeI0IaeqyVd4Maaiykaaaa aiaawUfacaGLDbaadaWadaqaauaabeqadeaaaeaacqGHciITcaWG1b WaaSbaaSqaaiaaigdaaeqaaOGaai4laiabgkGi2kaadIhadaWgaaWc baGaaGymaaqabaaakeaacqGHciITcaWG1bWaaSbaaSqaaiaaikdaae qaaOGaai4laiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaakeaa caGGOaGaeyOaIyRaamyDamaaBaaaleaacaaIXaaabeaakiaac+cacq GHciITcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeyOaIyRa amyDamaaBaaaleaacaaIYaaabeaakiaac+cacqGHciITcaWG4bWaaS baaSqaaiaaigdaaeqaaOGaaiykaiaac+cacaaIYaaaaaGaay5waiaa w2faaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7daWadaqaauaabeqadeaaaeaacaWGnbWaaSba aSqaaiaaigdacaaIXaaabeaaaOqaaiaad2eadaWgaaWcbaGaaGOmai aaikdaaeqaaaGcbaGaamytamaaBaaaleaacaaIXaGaaGOmaaqabaaa aaGccaGLBbGaayzxaaGaeyypa0ZaaSaaaeaacaWGfbGaamiAamaaCa aaleqabaGaaG4maaaaaOqaaiaaigdacaaIYaGaaiikaiaaigdacqGH sislcqaH9oGBdaahaaWcbeqaaiaaikdaaaGccaGGPaaaamaadmaaba qbaeqabmWaaaqaaiaaigdaaeaacqaH9oGBaeaacaaIWaaabaGaeqyV d4gabaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaacI cacaaIXaGaeyOeI0IaeqyVd4MaaiykaaaaaiaawUfacaGLDbaadaWa daqaauaabeqadeaaaeaacqaH6oWAdaWgaaWcbaGaaGymaiaaigdaae qaaaGcbaGaeqOUdS2aaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiab eQ7aRnaaBaaaleaacaaIXaGaaGOmaaqabaaaaaGccaGLBbGaayzxaa aaaa@B291@

 

It is easy to derive these: the plate is in a state of plane stress: the stresses are therefore related to the strains by

[ σ 11 σ 22 σ 12 ]= E (1 ν 2 ) [ 1 ν 0 ν 1 0 0 0 (1ν) ][ ε 11 ε 22 ε 12 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaadmaabaqbaeqabmqaaaqaaiabeo8aZn aaBaaaleaacaaIXaGaaGymaaqabaaakeaacqaHdpWCdaWgaaWcbaGa aGOmaiaaikdaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaaigdacaaIYa aabeaaaaaakiaawUfacaGLDbaacqGH9aqpdaWcaaqaaiaadweaaeaa caGGOaGaaGymaiabgkHiTiabe27aUnaaCaaaleqabaGaaGOmaaaaki aacMcaaaWaamWaaeaafaqabeWadaaabaGaaGymaaqaaiabe27aUbqa aiaaicdaaeaacqaH9oGBaeaacaaIXaaabaGaaGimaaqaaiaaicdaae aacaaIWaaabaGaaiikaiaaigdacqGHsislcqaH9oGBcaGGPaaaaaGa ay5waiaaw2faamaadmaabaqbaeqabmqaaaqaaiabew7aLnaaBaaale aacaaIXaGaaGymaaqabaaakeaacqaH1oqzdaWgaaWcbaGaaGOmaiaa ikdaaeqaaaGcbaGaeqyTdu2aaSbaaSqaaiaaigdacaaIYaaabeaaaa aakiaawUfacaGLDbaaaaa@5ED2@

Substituting for the strains in terms of displacements and curvatures, and evaluating the integrals, gives the results stated.

 

The transverse forces V 1 , V 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadAfadaWgaaWcbaGaaGymaaqabaGcca GGSaGaamOvamaaBaaaleaacaaIYaaabeaaaaa@34A7@  cannot be determined directly from the curvatures or motion of the plate.  They represent constraint forces, which act to ensure that lines perpendicular to the mid-plane of the plate remain perpendicular after the plate deforms.   They can be calculated from the linear and angular momentum balance equations given in the next section.

 

 

Equations of motion for small deflections of flat plates subjected to significant in-plane force

 

Consider a plate with mass density ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeg8aYbaa@3228@  , thickness h , which is subjected to a transverse distributed force per unit area p= p 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahchacqGH9aqpcaWGWbWaaSbaaSqaai aaiodaaeqaaOGaaCyzamaaBaaaleaacaaIZaaabeaaaaa@3626@ , along with relevant forces or constraints at its edges.  The loading induces a transverse displacement u 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaG4maaqabaaaaa@324B@   acceleration vector a= a 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahggacqGH9aqpcaWGHbWaaSbaaSqaai aaiodaaeqaaOGaaCyzamaaBaaaleaacaaIZaaabeaaaaa@3608@  and curvature tensor components κ 11 , κ 12 , κ 22 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeQ7aRnaaBaaaleaacaaIXaGaaGymaa qabaGccaGGSaGaeqOUdS2aaSbaaSqaaiaaigdacaaIYaaabeaakiaa cYcacqaH6oWAdaWgaaWcbaGaaGOmaiaaikdaaeqaaaaa@3BDB@   , along with internal forces T 11 = T 22 = T 0 , T 12 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaGymaiaaigdaae qaaOGaeyypa0JaamivamaaBaaaleaacaaIYaGaaGOmaaqabaGccqGH 9aqpcaWGubWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaamivamaaBaaaleaacaaIXaGaaGOmaaqabaGccqGH9aqpca aIWaaaaa@4F38@  and bending moments M 11 , M 22 , M 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaaGymaiaaigdaae qaaOGaaiilaiaad2eadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaaiil aiaad2eadaWgaaWcbaGaaGymaiaaikdaaeqaaaaa@393B@  .  The equations of motion for the plate are

 

1.      Linear momentum: (transverse motion)

V 1 x 1 + V 2 x 2 + p 3 =ρh 2 u 3 d t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaamOvamaaBaaale aacaaIXaaabeaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqa baaaaOGaey4kaSYaaSaaaeaacqGHciITcaWGwbWaaSbaaSqaaiaaik daaeqaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaGc cqGHRaWkcaWGWbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeqyWdi NaamiAamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyD amaaBaaaleaacaaIZaaabeaaaOqaaiaadsgacaWG0bWaaWbaaSqabe aacaaIYaaaaaaakiaaykW7aaa@4DCA@

2.      Angular momentum

    M 11 x 1 + M 12 x 2 T 0 θ 2 V 1 0 M 21 x 1 + M 22 x 2 + T 0 θ 1 V 2 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaamytamaaBaaale aacaaIXaGaaGymaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaa igdaaeqaaaaakiabgUcaRmaalaaabaGaeyOaIyRaamytamaaBaaale aacaaIXaGaaGOmaaqabaaakeaacqGHciITcaWG4bWaaSbaaSqaaiaa ikdaaeqaaaaakiabgkHiTiaadsfadaWgaaWcbaGaaGimaaqabaGccq aH4oqCdaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGwbWaaSbaaSqa aiaaigdaaeqaaOGaeyisISRaaGimaiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 +aaSaaaeaacqGHciITcaWGnbWaaSbaaSqaaiaaikdacaaIXaaabeaa aOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGymaaqabaaaaOGaey4kaS YaaSaaaeaacqGHciITcaWGnbWaaSbaaSqaaiaaikdacaaIYaaabeaa aOqaaiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqabaaaaOGaey4kaS IaamivamaaBaaaleaacaaIWaaabeaakiabeI7aXnaaBaaaleaacaaI XaaabeaakiabgkHiTiaadAfadaWgaaWcbaGaaGOmaaqabaGccqGHij YUcaaIWaaaaa@8347@

 

 

These equations can be combined to eliminate V

2 M 11 x 1 2 +2 2 M 12 x 1 x 2 + 2 M 22 x 2 2 T 0 ( κ 11 + κ 22 )+ p 3 =ρh 2 u 3 d t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaeyOaIy7aaWbaaSqabeaaca aIYaaaaOGaamytamaaBaaaleaacaaIXaGaaGymaaqabaaakeaacqGH ciITcaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaaaakiabgUcaRi aaikdadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaad2ea daWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaeyOaIyRaamiEamaaBa aaleaacaaIXaaabeaakiabgkGi2kaadIhadaWgaaWcbaGaaGOmaaqa baaaaOGaey4kaSYaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaa GccaWGnbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiabgkGi2kaa dIhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaaaOGaeyOeI0Iaamivam aaBaaaleaacaaIWaaabeaakiaacIcacqaH6oWAdaWgaaWcbaGaaGym aiaaigdaaeqaaOGaey4kaSIaeqOUdS2aaSbaaSqaaiaaikdacaaIYa aabeaakiaacMcacqGHRaWkcaWGWbWaaSbaaSqaaiaaiodaaeqaaOGa eyypa0JaeqyWdiNaamiAamaalaaabaGaeyOaIy7aaWbaaSqabeaaca aIYaaaaOGaamyDamaaBaaaleaacaaIZaaabeaaaOqaaiaadsgacaWG 0bWaaWbaaSqabeaacaaIYaaaaaaaaaa@69D8@

This result can also be expressed in terms of displacement as

E h 3 12(1 ν 2 ) ( 4 u 3 x 1 4 +2 4 u 3 x 1 2 x 2 2 + 4 u 3 x 2 4 ) T 0 ( 2 u 3 x 1 2 + 2 u 3 x 2 2 )+ρh 2 u 3 d t 2 = p 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamyraiaadIgadaahaaWcbe qaaiaaiodaaaaakeaacaaIXaGaaGOmaiaacIcacaaIXaGaeyOeI0Ia eqyVd42aaWbaaSqabeaacaaIYaaaaOGaaiykaaaadaqadaqaamaala aabaGaeyOaIy7aaWbaaSqabeaacaaI0aaaaOGaamyDamaaBaaaleaa caaIZaaabeaaaOqaaiabgkGi2kaadIhadaqhaaWcbaGaaGymaaqaai aaisdaaaaaaOGaey4kaSIaaGOmamaalaaabaGaeyOaIy7aaWbaaSqa beaacaaI0aaaaOGaamyDamaaBaaaleaacaaIZaaabeaaaOqaaiabgk Gi2kaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHciITcaWG 4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaaakiabgUcaRmaalaaaba GaeyOaIy7aaWbaaSqabeaacaaI0aaaaOGaamyDamaaBaaaleaacaaI ZaaabeaaaOqaaiabgkGi2kaadIhadaqhaaWcbaGaaGOmaaqaaiaais daaaaaaaGccaGLOaGaayzkaaGaeyOeI0IaamivamaaBaaaleaacaaI WaaabeaakmaabmaabaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaik daaaGccaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamiE amaaDaaaleaacaaIXaaabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaai abgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaG4m aaqabaaakeaacqGHciITcaWG4bWaa0baaSqaaiaaikdaaeaacaaIYa aaaaaaaOGaayjkaiaawMcaaiabgUcaRiabeg8aYjaadIgadaWcaaqa aiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaG 4maaqabaaakeaacaWGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGc cqGH9aqpcaaMc8UaamiCamaaBaaaleaacaaIZaaabeaakiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8oaaa@8D3C@

 

The equation can also be written in polar coordinates as

E h 3 12(1 ν 2 ) ( 2 r 2 + 1 r r + 1 r 2 2 θ 2 ) 2 u 3 T 0 ( 2 r 2 + 1 r r + 1 r 2 2 θ 2 ) u 3 +ρh 2 u 3 d t 2 = p 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamyraiaadIgadaahaaWcbe qaaiaaiodaaaaakeaacaaIXaGaaGOmaiaacIcacaaIXaGaeyOeI0Ia eqyVd42aaWbaaSqabeaacaaIYaaaaOGaaiykaaaadaqadaqaamaala aabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamOC amaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaaigdaae aacaWGYbaaamaalaaabaGaeyOaIylabaGaeyOaIyRaamOCaaaacqGH RaWkdaWcaaqaaiaaigdaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaa aakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOa IyRaeqiUde3aaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaG4maaqabaGc cqGHsislcaWGubWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaadaWcaa qaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaaOqaaiabgkGi2kaadkha daahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaIXaaaba GaamOCaaaadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadkhaaaGaey4k aSYaaSaaaeaacaaIXaaabaGaamOCamaaCaaaleqabaGaaGOmaaaaaa GcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaaOqaaiabgkGi 2kabeI7aXnaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaaca WG1bWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaeqyWdiNaamiAamaa laaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDamaaBaaale aacaaIZaaabeaaaOqaaiaadsgacaWG0bWaaWbaaSqabeaacaaIYaaa aaaakiabg2da9iaaykW7caWGWbWaaSbaaSqaaiaaiodaaeqaaaaa@80A1@

 

 

Edge boundary conditions.  The edge of the plate is characterized by a curve C that lies in the mid-plane of the shell, encircling e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaaG4maaqabaaaaa@325F@  in a counterclockwise sense.   We let s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadohaaaa@3180@  denote arc-length measured around C from some convenient origin, and use τ= τ α e α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahs8acqGH9aqpcqaHepaDdaWgaaWcba GaeqySdegabeaakiaahwgadaWgaaWcbaGaeqySdegabeaaaaa@3931@  and n= e 3 ×τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaah6gacqGH9aqpcaWHLbWaaSbaaSqaai aaiodaaeqaaOGaey41aqRaaCiXdaaa@37CD@  denote unit vectors tangent and normal to C.  Elementary plate theory offers the following choices of boundary condition for each point on C:

  1. Part of the boundary of the plate C 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadoeadaWgaaWcbaGaaGymaaqabaaaaa@3237@  may be clamped, i.e. rotations and displacement of the boundary are completely prevented. The transverse displacement must then satisfy

u 3 = n 1 u 3 x 1 + n 2 u 3 x 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaWGUbWaaSbaaSqaaiaaigdaaeqaaOWaaSaaaeaacqGHciIT caWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaeyOaIyRaamiEamaaBa aaleaacaaIXaaabeaaaaGccqGHRaWkcaWGUbWaaSbaaSqaaiaaikda aeqaaOWaaSaaaeaacqGHciITcaWG1bWaaSbaaSqaaiaaiodaaeqaaa GcbaGaeyOaIyRaamiEamaaBaaaleaacaaIYaaabeaaaaGccqGH9aqp caaIWaaaaa@4755@  on C 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadoeadaWgaaWcbaGaaGymaaqabaaaaa@3237@ .

  1. Part of the boundary C 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadoeadaWgaaWcbaGaaGOmaaqabaaaaa@3238@  may be simply supported, i.e. the boundary of the plate is prevented from moving, but is permitted to rotate freely about the tangent vector τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahs8aaaa@31D8@ .  In this case the transverse displacement and internal moment must satisfy

u 3 =0 M 11 n 1 2 +2 M 12 n 1 n 2 + M 22 n 2 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamytamaaBaaale aacaaIXaGaaGymaaqabaGccaWGUbWaa0baaSqaaiaaigdaaeaacaaI YaaaaOGaey4kaSIaaGOmaiaad2eadaWgaaWcbaGaaGymaiaaikdaae qaaOGaamOBamaaBaaaleaacaaIXaaabeaakiaad6gadaWgaaWcbaGa aGOmaaqabaGccqGHRaWkcaWGnbWaaSbaaSqaaiaaikdacaaIYaaabe aakiaad6gadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGH9aqpcaaI Waaaaa@5B81@

  1. Part of the boundary C 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadoeadaWgaaWcbaGaaG4maaqabaaaaa@3239@  may be free, i.e. the boundary is free to both translate and rotate.  In this case the transverse shear force and internal moment must satisfy

n 1 V 1 + n 2 V 2 + s [ M 11 n 1 τ 1 +2 M 12 n 1 τ 2 + M 22 n 2 τ 2 ]=0 M 11 n 1 2 +2 M 12 n 1 n 2 + M 22 n 2 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad6gadaWgaaWcbaGaaGymaaqabaGcca WGwbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamOBamaaBaaaleaa caaIYaaabeaakiaadAfadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkda WcaaqaaiabgkGi2cqaaiabgkGi2kaadohaaaWaamWaaeaacaWGnbWa aSbaaSqaaiaaigdacaaIXaaabeaakiaad6gadaWgaaWcbaGaaGymaa qabaGccqaHepaDdaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaaIYaGa amytamaaBaaaleaacaaIXaGaaGOmaaqabaGccaWGUbWaaSbaaSqaai aaigdaaeqaaOGaeqiXdq3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIa amytamaaBaaaleaacaaIYaGaaGOmaaqabaGccaWGUbWaaSbaaSqaai aaikdaaeqaaOGaeqiXdq3aaSbaaSqaaiaaikdaaeqaaaGccaGLBbGa ayzxaaGaeyypa0JaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaamytamaaBaaaleaacaaIXaGaaG ymaaqabaGccaWGUbWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4k aSIaaGOmaiaad2eadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaamOBam aaBaaaleaacaaIXaaabeaakiaad6gadaWgaaWcbaGaaGOmaaqabaGc cqGHRaWkcaWGnbWaaSbaaSqaaiaaikdacaaIYaaabeaakiaad6gada qhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGH9aqpcaaIWaaaaa@8805@

 

 

Special Cases

 

There are two special cases of these equations

1.      Stretched Membrane If the bending resistance is small compared with the in plane tension E h 3 / L 2 T 0 <<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadweacaWGObWaaWbaaSqabeaacaaIZa aaaOGaai4laiaadYeadaahaaWcbeqaaiaaikdaaaGccaWGubWaaSba aSqaaiaaicdaaeqaaOGaeyipaWJaeyipaWJaaGymaaaa@3A35@  we get the equation of motion for a biaxially stretched membrane

T 0 ( 2 u 3 x 1 2 + 2 u 3 x 2 2 )+ p 3 =ρh 2 u 3 d t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaGimaaqabaGcda qadaqaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyD amaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadIhadaqhaaWcba GaaGymaaqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacqGHciITdaah aaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcba GaeyOaIyRaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaaaakiaa wIcacaGLPaaacqGHRaWkcaWGWbWaaSbaaSqaaiaaiodaaeqaaOGaey ypa0JaeqyWdiNaamiAamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI YaaaaOGaamyDamaaBaaaleaacaaIZaaabeaaaOqaaiaadsgacaWG0b WaaWbaaSqabeaacaaIYaaaaaaakiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdaa@6116@

or in polar coordinates

T 0 ( 2 r 2 + 1 r r + 1 r 2 2 θ 2 ) u 3 + p 3 =ρh 2 u 3 d t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaGimaaqabaGcda qadaqaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGa eyOaIyRaamOCamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaa qaaiaaigdaaeaacaWGYbaaamaalaaabaGaeyOaIylabaGaeyOaIyRa amOCaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGYbWaaWbaaSqabe aacaaIYaaaaaaakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaa aaGcbaGaeyOaIyRaeqiUde3aaWbaaSqabeaacaaIYaaaaaaaaOGaay jkaiaawMcaaiaadwhadaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaWG WbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaaGPaVlabeg8aYjaadI gadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhadaWg aaWcbaGaaG4maaqabaaakeaacaWGKbGaamiDamaaCaaaleqabaGaaG Omaaaaaaaaaa@5B2E@

The possible boundary conditions for a biaxially stretched membrane are:

(a)    Either prescribed transverse displacements at the edge of the membrane   u 3 = u * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaWG1bWaaWbaaSqabeaacaGGQaaaaaaa@3530@  or

Prescribed transverse force at the membrane edge T 0 ( n 1 d u 3 /d x 1 + n 2 d u 3 /d x 2 )= P 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaGimaaqabaGcca GGOaGaamOBamaaBaaaleaacaaIXaaabeaakiaadsgacaWG1bWaaSba aSqaaiaaiodaaeqaaOGaai4laiaadsgacaWG4bWaaSbaaSqaaiaaig daaeqaaOGaey4kaSIaamOBamaaBaaaleaacaaIYaaabeaakiaadsga caWG1bWaaSbaaSqaaiaaiodaaeqaaOGaai4laiaadsgacaWG4bWaaS baaSqaaiaaikdaaeqaaOGaaiykaiabg2da9iaadcfadaqhaaWcbaGa aG4maaqaaaaaaaa@47BB@  

(b)   The membrane tension T 0 =Pn MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaGimaaqabaGccq GH9aqpcaWHqbGaeyyXICTaaCOBaaaa@3751@  is prescribed at the perimeter.

2.      Plate with no in-plane external loading  In the limit E h 3 / L 2 T 0 >>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadweacaWGObWaaWbaaSqabeaacaaIZa aaaOGaai4laiaadYeadaahaaWcbeqaaiaaikdaaaGccaWGubWaaSba aSqaaiaaicdaaeqaaOGaeyOpa4JaeyOpa4JaaGymaaaa@3A3D@  the in-plane tension can be neglected.   In this limit we get the simplified plate bending equations

E h 3 12(1 ν 2 ) ( 4 u 3 x 1 4 +2 4 u 3 x 1 2 x 2 2 + 4 u 3 x 2 4 )+ρh 2 u 3 d t 2 = p 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamyraiaadIgadaahaaWcbe qaaiaaiodaaaaakeaacaaIXaGaaGOmaiaacIcacaaIXaGaeyOeI0Ia eqyVd42aaWbaaSqabeaacaaIYaaaaOGaaiykaaaadaqadaqaamaala aabaGaeyOaIy7aaWbaaSqabeaacaaI0aaaaOGaamyDamaaBaaaleaa caaIZaaabeaaaOqaaiabgkGi2kaadIhadaqhaaWcbaGaaGymaaqaai aaisdaaaaaaOGaey4kaSIaaGOmamaalaaabaGaeyOaIy7aaWbaaSqa beaacaaI0aaaaOGaamyDamaaBaaaleaacaaIZaaabeaaaOqaaiabgk Gi2kaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccqGHciITcaWG 4bWaa0baaSqaaiaaikdaaeaacaaIYaaaaaaakiabgUcaRmaalaaaba GaeyOaIy7aaWbaaSqabeaacaaI0aaaaOGaamyDamaaBaaaleaacaaI ZaaabeaaaOqaaiabgkGi2kaadIhadaqhaaWcbaGaaGOmaaqaaiaais daaaaaaaGccaGLOaGaayzkaaGaey4kaSIaeqyWdiNaamiAamaalaaa baGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDamaaBaaaleaaca aIZaaabeaaaOqaaiaadsgacaWG0bWaaWbaaSqabeaacaaIYaaaaaaa kiabg2da9iaaykW7caWGWbWaaSbaaSqaaiaaiodaaeqaaOGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7aaa@774C@

The equation can also be written in polar coordinates as

E h 3 12(1 ν 2 ) ( 2 r 2 + 1 r r + 1 r 2 2 θ 2 ) 2 u 3 +ρh 2 u 3 d t 2 = p 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamyraiaadIgadaahaaWcbe qaaiaaiodaaaaakeaacaaIXaGaaGOmaiaacIcacaaIXaGaeyOeI0Ia eqyVd42aaWbaaSqabeaacaaIYaaaaOGaaiykaaaadaqadaqaamaala aabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamOC amaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaaigdaae aacaWGYbaaamaalaaabaGaeyOaIylabaGaeyOaIyRaamOCaaaacqGH RaWkdaWcaaqaaiaaigdaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaa aakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOa IyRaeqiUde3aaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaG4maaqabaGc cqGHRaWkcqaHbpGCcaWGObWaaSaaaeaacqGHciITdaahaaWcbeqaai aaikdaaaGccaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamizaiaa dshadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0JaaGPaVlaadchada WgaaWcbaGaaG4maaqabaaaaa@6436@

The boundary conditions are identical to those for a general plate.

 

 

 

 Examples

 

 

Square membrane under sinusoidal pressure A square membrane with dimensions axa is stretched by edge tension T 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaGimaaqabaaaaa@3227@  and prevented from displacing transverse to its own plane at its edges.  It is subjected to a pressure

p= p 0 { sin(π x 1 /a)sin(π x 2 /a) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadchacqGH9aqpcaWGWbWaaSbaaSqaai aaicdaaeqaaOWaaiWaaeaaciGGZbGaaiyAaiaac6gacaGGOaGaeqiW daNaamiEamaaBaaaleaacaaIXaaabeaakiaac+cacaWGHbGaaiykai aacohacaGGPbGaaiOBaiaacIcacqaHapaCcaWG4bWaaSbaaSqaaiaa ikdaaeqaaOGaai4laiaadggacaGGPaaacaGL7bGaayzFaaaaaa@4962@

Calculate its deflection.

 

We need to solve

T 0 ( 2 u 3 x 1 2 + 2 u 3 x 2 2 )= p 0 { sin(π x 1 /a)sin(π x 2 /a) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadsfadaWgaaWcbaGaaGimaaqabaGcda qadaqaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyD amaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadIhadaqhaaWcba GaaGymaaqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacqGHciITdaah aaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaaiodaaeqaaaGcba GaeyOaIyRaamiEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaaaakiaa wIcacaGLPaaacqGH9aqpcqGHsislcaWGWbWaaSbaaSqaaiaaicdaae qaaOWaaiWaaeaaciGGZbGaaiyAaiaac6gacaGGOaGaeqiWdaNaamiE amaaBaaaleaacaaIXaaabeaakiaac+cacaWGHbGaaiykaiaacohaca GGPbGaaiOBaiaacIcacqaHapaCcaWG4bWaaSbaaSqaaiaaikdaaeqa aOGaai4laiaadggacaGGPaaacaGL7bGaayzFaaGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVdaa@694A@

with boundary condition u 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaaIWaaaaa@3415@  on x 1 =0, x 1 =a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccq GH9aqpcaaIWaGaaiilaiaadIhadaWgaaWcbaGaaGymaaqabaGccqGH 9aqpcaWGHbaaaa@38A0@  and x 2 =0, x 2 =a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadIhadaWgaaWcbaGaaGOmaaqabaGccq GH9aqpcaaIWaGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGH 9aqpcaWGHbaaaa@38A2@

 

This equation can be solved by just guessing the solution and substituting into the governing equation.   Assume that u 3 =Csin(π x 1 /a)sin(π x 2 /a) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaWGdbGaci4CaiaacMgacaGGUbGaaiikaiabec8aWjaadIha daWgaaWcbaGaaGymaaqabaGccaGGVaGaamyyaiaacMcacaGGZbGaai yAaiaac6gacaGGOaGaeqiWdaNaamiEamaaBaaaleaacaaIYaaabeaa kiaac+cacaWGHbGaaiykaaaa@472C@ .  This satisfies the boundary condition.  We can find C from the governing equation

T 0 C π 2 a 2 sin(π x 1 /a)sin(π x 2 /a)= p 0 { sin(π x 1 /a)sin(π x 2 /a) } C= p 0 a 2 / π 2 T 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOabaeqabaGaeyOeI0IaamivamaaBaaaleaaca aIWaaabeaakiaadoeadaWcaaqaaiabec8aWnaaCaaaleqabaGaaGOm aaaaaOqaaiaadggadaahaaWcbeqaaiaaikdaaaaaaOGaci4CaiaacM gacaGGUbGaaiikaiabec8aWjaadIhadaWgaaWcbaGaaGymaaqabaGc caGGVaGaamyyaiaacMcacaGGZbGaaiyAaiaac6gacaGGOaGaeqiWda NaamiEamaaBaaaleaacaaIYaaabeaakiaac+cacaWGHbGaaiykaiab g2da9iabgkHiTiaadchadaWgaaWcbaGaaGimaaqabaGcdaGadaqaai GacohacaGGPbGaaiOBaiaacIcacqaHapaCcaWG4bWaaSbaaSqaaiaa igdaaeqaaOGaai4laiaadggacaGGPaGaai4CaiaacMgacaGGUbGaai ikaiabec8aWjaadIhadaWgaaWcbaGaaGOmaaqabaGccaGGVaGaamyy aiaacMcaaiaawUhacaGL9baacaaMc8UaaGPaVdqaaiabgkDiElaado eacqGH9aqpcaWGWbWaaSbaaSqaaiaaicdaaeqaaOGaamyyamaaCaaa leqabaGaaGOmaaaakiaac+cacqaHapaCdaahaaWcbeqaaiaaikdaaa GccaWGubWaaSbaaSqaaiaaicdaaeqaaOGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7aaaa@7C63@

The solution is therefore

u 3 = p 0 a 2 π 2 T 0 sin(π x 1 /a)sin(π x 2 /a) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpdaWcaaqaaiaadchadaWgaaWcbaGaaGimaaqabaGccaWGHbWa aWbaaSqabeaacaaIYaaaaaGcbaGaeqiWda3aaWbaaSqabeaacaaIYa aaaOGaamivamaaBaaaleaacaaIWaaabeaaaaGcciGGZbGaaiyAaiaa c6gacaGGOaGaeqiWdaNaamiEamaaBaaaleaacaaIXaaabeaakiaac+ cacaWGHbGaaiykaiaacohacaGGPbGaaiOBaiaacIcacqaHapaCcaWG 4bWaaSbaaSqaaiaaikdaaeqaaOGaai4laiaadggacaGGPaaaaa@4EAB@

 

 

 

Thin circular plate bent by pressure applied to one face

 

A thin circular plate, with radius R and thickness h is made from a linear elastic solid with Young’s modulus E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadweaaaa@3152@  and Poisson’s ratio ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabe27aUbaa@3240@ , as shown in the figure.  It is subjected to a pressure p= p 3 e 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaahchacqGH9aqpcaWGWbWaaSbaaSqaai aaiodaaeqaaOGaaCyzamaaBaaaleaacaaIZaaabeaaaaa@3646@  acting perpendicular to the plate, and is simply supported at its edge.  Show that the deflection of the plate is

u 3 = 3(1 ν 2 )p 16E(1+ν) h 3 ( R 2 r 2 )( (5+ν) R 2 (1+ν) r 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpdaWcaaqaaiaaiodacaGGOaGaaGymaiabgkHiTiabe27aUnaa CaaaleqabaGaaGOmaaaakiaacMcacaWGWbaabaGaaGymaiaaiAdaca WGfbGaaiikaiaaigdacqGHRaWkcqaH9oGBcaGGPaGaamiAamaaCaaa leqabaGaaG4maaaaaaGcdaqadaqaaiaadkfadaahaaWcbeqaaiaaik daaaGccqGHsislcaWGYbWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGa ayzkaaWaaeWaaeaacaGGOaGaaGynaiabgUcaRiabe27aUjaacMcaca WGsbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaiikaiaaigdacqGH RaWkcqaH9oGBcaGGPaGaamOCamaaCaaaleqabaGaaGOmaaaaaOGaay jkaiaawMcaaaaa@5971@

The solution should depend only on r (and not θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeI7aXbaa@321E@  ) so we the differential equation for the deflection is

E h 3 12(1 ν 2 ) ( 2 r 2 + 1 r r ) 2 u 3 = p 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamyraiaadIgadaahaaWcbe qaaiaaiodaaaaakeaacaaIXaGaaGOmaiaacIcacaaIXaGaeyOeI0Ia eqyVd42aaWbaaSqabeaacaaIYaaaaOGaaiykaaaadaqadaqaamaala aabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamOC amaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaaigdaae aacaWGYbaaamaalaaabaGaeyOaIylabaGaeyOaIyRaamOCaaaaaiaa wIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaWG1bWaaSbaaSqaai aaiodaaeqaaOGaeyypa0JaaGPaVlaadchadaWgaaWcbaGaaG4maaqa baaaaa@4F6D@

It is tempting to solve this with MATLAB, but interestingly MATLAB returns an incorrect solution to this particular ODE at the time of writing these notes (July 2018).  So we have to do it by hand instead.  Expand out the derivatives and rearrange to get

E h 3 12(1 ν 2 ) ( d 4 u 3 d r 4 + 2 r d 3 u 3 d r 3 1 r 2 d 2 u 3 d r 2 + 1 r 3 d u 3 dr )= E h 3 12(1 ν 2 ) 1 r d dr ( r d dr ( 1 r d dr ( r d u 3 dr ) ) )=p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaamaalaaabaGaamyraiaadIgadaahaaWcbe qaaiaaiodaaaaakeaacaaIXaGaaGOmaiaacIcacaaIXaGaeyOeI0Ia eqyVd42aaWbaaSqabeaacaaIYaaaaOGaaiykaaaadaqadaqaamaala aabaGaamizamaaCaaaleqabaGaaGinaaaakiaadwhadaWgaaWcbaGa aG4maaqabaaakeaacaWGKbGaamOCamaaCaaaleqabaGaaGinaaaaaa GccqGHRaWkdaWcaaqaaiaaikdaaeaacaWGYbaaamaalaaabaGaamiz amaaCaaaleqabaGaaG4maaaakiaadwhadaWgaaWcbaGaaG4maaqaba aakeaacaWGKbGaamOCamaaCaaaleqabaGaaG4maaaaaaGccqGHsisl daWcaaqaaiaaigdaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaakm aalaaabaGaamizamaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWc baGaaG4maaqabaaakeaacaWGKbGaamOCamaaCaaaleqabaGaaGOmaa aaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaWGYbWaaWbaaSqabeaa caaIZaaaaaaakmaalaaabaGaamizaiaadwhadaWgaaWcbaGaaG4maa qabaaakeaacaWGKbGaamOCaaaaaiaawIcacaGLPaaacqGH9aqpdaWc aaqaaiaadweacaWGObWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGymai aaikdacaGGOaGaaGymaiabgkHiTiabe27aUnaaCaaaleqabaGaaGOm aaaakiaacMcaaaWaaSaaaeaacaaIXaaabaGaamOCaaaadaWcaaqaai aadsgaaeaacaWGKbGaamOCaaaadaqadaqaaiaadkhadaWcaaqaaiaa dsgaaeaacaWGKbGaamOCaaaadaqadaqaamaalaaabaGaaGymaaqaai aadkhaaaWaaSaaaeaacaWGKbaabaGaamizaiaadkhaaaWaaeWaaeaa caWGYbWaaSaaaeaacaWGKbGaamyDamaaBaaaleaacaaIZaaabeaaaO qaaiaadsgacaWGYbaaaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaGa ayjkaiaawMcaaiabg2da9iaaykW7caWGWbGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7aaa@8C1D@

We can now just integrate

u 3 = 1 ν 2 E h 3 ( 3 16 p r 4 +A r 2 logr+Blogr+C r 2 +D ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpdaWcaaqaaiaaigdacqGHsislcqaH9oGBdaahaaWcbeqaaiaa ikdaaaaakeaacaWGfbGaamiAamaaCaaaleqabaGaaG4maaaaaaGcda qadaqaamaalaaabaGaaG4maaqaaiaaigdacaaI2aaaaiaadchacaWG YbWaaWbaaSqabeaacaaI0aaaaOGaey4kaSIaamyqaiaadkhadaahaa WcbeqaaiaaikdaaaGcciGGSbGaai4BaiaacEgacaWGYbGaey4kaSIa amOqaiGacYgacaGGVbGaai4zaiaadkhacqGHRaWkcaWGdbGaamOCam aaCaaaleqabaGaaGOmaaaakiabgUcaRiaadseaaiaawIcacaGLPaaa aaa@5343@

The four constants must be determined from the boundary conditions.   Note that:

  1. Note that log(r) is infinite (and negative) at r=0.  But the displacement can’t be infinite!  This means B=0 .
  2. Now let’s find the curvature of the plate.   We can safely use MATLAB to do this.  Recall that

κ 11 = 2 u 3 x 1 2 κ 12 = κ 21 = 2 u 3 x 1 x 2 κ 22 = 2 u 3 x 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeQ7aRnaaBaaaleaacaaIXaGaaGymaa qabaGccqGH9aqpcqGHsisldaWcaaqaaiabgkGi2oaaCaaaleqabaGa aGOmaaaakiaadwhadaWgaaWcbaGaaG4maaqabaaakeaacqGHciITca WG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaaaakiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqOUdS2aaSbaaS qaaiaaigdacaaIYaaabeaakiabg2da9iabeQ7aRnaaBaaaleaacaaI YaGaaGymaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiabgkGi2oaaCa aaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaaG4maaqabaaakeaa cqGHciITcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOaIyRaamiEam aaBaaaleaacaaIYaaabeaaaaGccaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaeqOUdS2aaSbaaSqaaiaaikdacaaIYaaabe aakiabg2da9iabgkHiTmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI YaaaaOGaamyDamaaBaaaleaacaaIZaaabeaaaOqaaiabgkGi2kaadI hadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaaaaaa@77AC@

For example here’s the calculation of κ 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiabeQ7aRnaaBaaaleaacaaIXaGaaGymaa qabaaaaa@33BC@  

 

Notice that there’s a term Alog(r) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadgeaciGGSbGaai4BaiaacEgacaGGOa GaamOCaiaacMcaaaa@364E@   in the solution.   Since the curvature can’t be infinite, we see that A=0.

  1. The last two boundary conditions are zero displacement u 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaadwhadaWgaaWcbaGaaG4maaqabaGccq GH9aqpcaaIWaaaaa@3415@  and zero moment about the circumference of the plate M 11 n 1 2 +2 M 12 n 1 n 2 + M 22 n 2 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=xi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad2eadaWgaaWcbaGaaGymaiaaigdaae qaaOGaamOBamaaDaaaleaacaaIXaaabaGaaGOmaaaakiabgUcaRiaa ikdacaWGnbWaaSbaaSqaaiaaigdacaaIYaaabeaakiaad6gadaWgaa WcbaGaaGymaaqabaGccaWGUbWaaSbaaSqaaiaaikdaaeqaaOGaey4k aSIaamytamaaBaaaleaacaaIYaGaaGOmaaqabaGccaWGUbWaa0baaS qaaiaaikdaaeaacaaIYaaaaOGaeyypa0JaaGimaaaa@4550@  at r=R, where n 1 = x 1 /R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad6gadaWgaaWcbaGaaGymaaqabaGccq GH9aqpcaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaai4laiaadkfaaaa@36CA@  and n 2 = x 2 /R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vi pgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFH e9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaa caqabeaacmqaamaaaOqaaiaad6gadaWgaaWcbaGaaGOmaaqabaGccq GH9aqpcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaai4laiaadkfaaaa@36CC@  are components of a unit vector perpendicular to the edge of the plate.   This gives two equations for the remaining unknown constants C and D.   MATLAB can solve the equations:

 

This clearly reduces to the required answer.   Note that the MATLAB script will also tell you the internal moments in the plate, if you care…