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1. To analyze the deformation of a conical membrane, it is 

proposed to use a two-dimensional conical-polar coordinate 

system ( ,s  ) illustrated in the figure.  s  denotes the distance 

of a point on the cone from its apex, and   is the angle 

subtended by a radial line and the i direction. 

 

(a) Find the coordinate transformation from 1 2 3{ , , }x x x  to ,s   

and the inverse 
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[2 POINTS] 

(b) Write down formulas for the three basis vectors 
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in the { , , }i j k  basis. 
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[2 POINTS] 

(c) Hence, determine expressions for  

s n

  

  

  

e e e
 

     in terms of { , , }s ne e e  
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[2 POINTS] 

(d) Let sinsd ds s d   r e e  be an infinitesimal vector that lies in the surface of the cone.   Find 

formulas for ,ds d  in terms of dr and other relevant variables. 

/ ( sin )sds d d d s    r e r e  

[1 POINT] 
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(e) Let ( , )s   be a scalar valued function defined on the surface of the cone.  The surface gradient 

of s  is defined so that  s d d   r  for all infinitesimal vectors that lie in the surface of the 

cone.  Show that the surface gradient operator is 

1

sin
s s

s s
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We have 
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rd ds d d

s s s
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[2 POINTS] 

 

(f) The curvature tensor κ  of a surface is defined so that d d κ r n  gives the difference in normal 

to the surface n at two points on the surface separated by an infinitesimal vector dr .  Use the 

solutions to © and (d) to determine the components of κ  in { , , }s ne e e  

 

We have that 
cos

cos
sin

nd d d
s

  


 


 
     

 
e e e e r .  Hence 
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  κ e e  

[2 POINTS] 

 

2.  To track the deformation in a slowly moving glacier, three 

survey stations are installed in the shape of an equilateral 

triangle, spaced 100m apart, as shown in the picture.  After a 

suitable period of time, the spacing between the three stations 

is measured again, and found to be 90m, 110m and 120m, as 

shown in the figure.  Assuming that the deformation of the 

glacier is homogeneous over the region spanned by the 

survey stations, please compute the components of the 

Lagrange strain tensor associated with this deformation, 

expressing your answer as components in the basis shown. 

 

Recall that the initial and deformed lengths 0,l l  of a material element parallel to a unit vector m  in the 

undeformed configuration are related by 
2 2

0
2
02

ij i j
l l

E m m
l


  

The three unit vectors parallel to the sides of the triangle are (1,0,0) (1/ 2, 3 / 2,0) ( 1/ 2, 3 / 2,0) .   

Multiplying out the vectors for the three sides of the triangle gives 
2 2 2 2

11 22 12
112 2

2 2
11 22 12

2

3 390 100 110 100

4 4 22.100 2.100

3 3120 100

4 4 22.100

E E E
E

E E E

 
   


  

 

These three equations can be solved for the Lagrange strain components, with the result 

11 22 1219 / 200 149 / 600 23 3 / 600E E E     or 11 22 120.095 0.2483 0.0664E E E     

 

[5 POINTS]  
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3. A spherical shell (see the figure) is made from an incompressible 

material.  In its undeformed state, the inner and outer radii of the shell 

are ,A B .  After deformation, the new values are ,a b .  The 

deformation in the shell can be described (in Cartesian components) 

by the equation 

 
1/3

3 3 3i
i k k

x
y r r R a A R x x

R
      

(a) Calculate the components of the deformation gradient 

tensor 
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[2 POINTS] 

 

(b) Verify that the deformation is volume preserving 

 

Since the deformation is radially symmetric, we can compute J along any radial line.  Taking 

1 2 3, 0x R x x   , we see that 

2

11 22 33 11 22 332
det( ) 1

R r
F F F F F F F

Rr
       

[2 POINTS] 

(c) Find the deformed length of an infinitesimal radial line that has initial length 0l , expressed as 

a function of R 

 

Let 0
i

i
x

dx l
R

 .  Then 
2 2

0 02 2 2

i j j i
i ij j ij

x x x xr R r R
dy F dx l l

R R R Rr R r

  
      

  
  

 and 

2

0 2i i
R
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[2 POINTS] 

 

(d) Find the deformed length of an infinitesimal circumferential line that has initial length 0l , 

expressed as a function of R 

 

Since the deformation is volume preserving, 
3

2 3 0
0 0r

r

l r
l l l l l

l R
       

[2 POINTS] 

 

(e) Using the results of (c) and (d), write down the principal stretches for the deformation. 

 

a

e1

e2

e3

b

pa

pb



If im  is a principal stretch direction, the principal stretches i  have the property that 

0i i il lm m  (no sum on i).   The principal stretch directions are radial and circumferential, by 

inspection.   From (c) and (d), it follows that 2 2
1 2 3/ /R r r R     . 

[2 POINTS] 

 

(f) Find the inverse of the deformation gradient, expressed as a function of iy .  You can do this 

by inspection, by inverting (a) (not recommended!), or by working out a formula that enables you 

to calculate ix  in terms of iy  and i ir y y  and differentiating the result.  The first is quickest! 

 

Working by inspection,  
2

1

2 2

i j
ij ij

y yR r R
F

r rR r


 
   

 
 

 

 

Direct inversion is possible but very tedious.  For the third approach, note that 
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1 /ij i jF x y     is then easily computed. 

[2 POINTS] 

 

4. Suppose that the spherical shell described in Problem 3 is continuously expanding (visualize a balloon 

being inflated).  The rate of expansion can be characterized by the velocity /av da dt  of the surface that 

lies at R=A in the undeformed cylinder. 

 

(a) Calculate the velocity field /i iv dy dt  in the sphere as a function of ix  

 

We have that  
1/3

3 3 3i
i k k

x
y r r R a A R x x

R
      

Hence 
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[2 POINTS] 

(b) Calculate the velocity field as a function of iy   
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2
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[1 POINT] 

(c) Calculate the time derivative of the deformation gradient tensor calculated in 2(a) 
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[2 POINTS] 



(d) Calculate the components of the velocity gradient i
ij

j

v
L

y





 by differentiating the result of (b) 
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[2 POINTS] 

 

(e) Calculate the components of the velocity gradient using the results of © and 2(f) 

 

The other approach is to use  

2 3 2
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[2 POINTS] 

 

(f) Calculate the stretch rate tensor ijD .  Verify that the result represents a volume preserving stretch rate 

field. 

 

 The stretch rate is the symmetric part of i

j

v

y




 - but it is symmetric anyway.   So  
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D

r r

 

  
 

 

 

To be volume preserving, 0kkD  .  It is easy to show that this is indeed satisfied. 

[1 POINT] 

 

 

 

 

5.  Repeat Problem 3(a), 3(f) and all of 4(b), 4(d), but this time solve 

the problem using spherical-polar coordinates, using the various 

formulas for vector and tensor operations given in the notes.   In this 

case, you may assume that a point with position RRx e  in the 

undeformed solid has position vector 

 
1/3

3 3 3
RR a A  y e  

after deformation. 
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We need the following results:  the gradient operator is 
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and the derivatives of the basis vectors are  
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Then the deformation gradient is: 
2

2
( )R R R

R r r
R

R Rr
         F e e e e e e e  

[2 POINTS] 

The inverse can be written down by inspection as 
2

2
( )R R R

r R R
R

r rR
         F e e e e e e e  

[2 POINTS] 

The velocity  is 
2

2
a

R
a v

r
v e   . [1 POINT]   The velocity gradient follows as yv  where the 

gradient is taken with respect to deformed coordinates.   The gradient operator is the same, 

however…  So 
2

3
( 2 )a

R R
a v

r
          L D e e e e e e  

[2 POINTS] 

 

 
6. An initially straight beam is bent into a circle with radius R as 

shown in the figure.  Material fibers that are perpendicular to the axis 

of the undeformed beam are assumed to remain perpendicular to the 

axis after deformation, and the beam’s thickness and the length of its 

axis are assumed to be unchanged.   Under these conditions the 

deformation can be described as 

 1 2 1 2 2 1sin( / ) ( )cos( / )y R x x R y R R x x R      

where, as usual x is the position of a material particle in the 

undeformed beam, and y is the position of the same particle after 

deformation. 

(a) Calculate the deformation gradient field in the beam, 

expressing your answer as a function of 1 2,x x , and as 

components in the basis 1 2 3{ , , }e e e  shown. 

 

2 1 1

2 1 1

(1 / )cos( / ) sin( / )

(1 / )sin( / ) cos( / )

x R x R x R

x R x R x R
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[2 POINTS] 

(b) Calculate the Lagrange strain field in the beam. 
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[1 POINT] 

(c) Calculate the infinitesimal strain field in the beam. 

 

 

 
2 1 2 1

2 1 1

(1 / )cos / 1 ( / )sin( / ) / 21
( )

( / )sin( / ) / 2 cos( / ) 12

T x R x R x R x R

x R x R x R

    
     

  
ε u u  

[2 POINTS] 

 

(d) Compare the values of Lagrange strain and infinitesimal strain for two points that lie at 

1 2( 0, )x x h   and 1 2( , 0)x L x  .   Explain briefly the physical origin of the difference  

between the two strain measures at each point.   Recommend maximum allowable values of h/R and 

L/R for use of the infinitesimal strain measure in modeling beam deflections. 

 

At the first point, 
2 2/ 2 0

0 0

h R 
   

  

E ε  

At the second 
1 cos( / ) 0

0 1 cos( / )

L R

L R

 
   

 
E ε  

 

 

The difference between the two measures at the first point is because the Lagrange strain measure 

quantifies the change in squared length: 
2 2

0
2
02

L
l l

l



  

The infinitesimal strain, on the other hand, gives 0

0

l l

l



 .   The two are equal for small strains, but 

the quadratic term becomes important for large strains.   h/R<10 is usually a safe range. 

 

At the second point, the difference is a consequence of the rotation of the beam – the incorrect strain 

predicted by the infinitesimal rotation tensor is the difference between the actual length of the beam 

and its horizontal projection at the end.  / 10R L   is a safe range to avoid this error. 

 

[3 POINTS] 

 

(e) Calculate the deformed length of an infinitesimal material fiber that has length 0l  and 

orientation 1e  in the undeformed beam.  Express your answer as a function of 2x . 

 

From the definition of Lagrange strain, we get 

2 2
0 0 2

2
1 1 (1 / )
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x x
l l l x R
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[1 POINT] 

 



(f) Calculate the change in length of an infinitesimal material fiber that has length 0l  and 

orientation 2e  in the undeformed beam. 

 

The length is unchanged - 0l l  

[1 POINT] 

 

(g) Show that the two material fibers described in (3) and (f)  remain mutually perpendicular after 

deformation.   Is this true for all material fibers that are mutually perpendicular in the undeformed 

solid? 
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The result is not true for arbitrary fibers – for example 
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[2 POINTS] 

 

(h) Find the components in the basis 1 2 3{ , , }e e e  of the Left and Right stretch tensors U  and V  as 

well as the rotation tensor R  for this deformation.  You should be able to write down U  and R by 

inspection, without needing to wade through the laborious general process.  The results can then be 

used to calculate V . 

 

By inspection, the principal stretch directions are parallel to 1 2,e e .   The rotation tensor is the 

mapping of 1 2,e e  to 1 2,m m   Thus 

1 12

1 1

cos( / ) sin( / )(1 / ) 0

sin( / ) cos( / )0 1

x R x Rx R

x R x R

   
    
   

U R  

 

V can then be calculated as  
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(1 / )cos( / ) sin( / ) cos( / ) sin( / )
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( / )sin( / )cos( / ) (1 / )sin
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[3 POINTS] 

 

(i) Find the principal directions of U  as well as the principal stretches.  You should be able to 

write these down without doing any tedious calculations.    

 

This is trivial – the principal directions are just 1 2,e e ; the principal stretches are 2(1 / )x R ,1 

 

[1 POINT] 

 

(j) Let 1 2{ , }m m  be a basis in which 1m  is parallel to the axis of the deformed beam, as shown in 

the figure.   Write down the components of each of the unit vectors im  in the basis 1 2 3{ , , }e e e .  

Hence, compute the transformation matrix ij i jQ  m e  that is used to transform tensor components 

from 1 2{ , }e e  to 1 2{ , }m m . 

 

1 1

1 1

cos( / ) sin( / )

sin( / ) cos( / )

x R x R

x R x R

 
  

 
Q  

[2 POINTS] 

 

(k) Find the components of the deformation gradient tensor, Lagrange strain tensor, as well as U   

V  and R  in the basis 1 2 3{ , , }m m m .  It is best to do these with a symbolic manipulation program. 

 

These calculations can be done quickly with Maple or Mathematica.   We get 

2 1 2 1

1 1

(1 / )cos( / ) (1 / )sin( / )

sin( / ) cos( / )

x R x R x R x R

x R x R

   
  
 

F  

The components of V in 1 2 3{ , , }m m m  are equal to the components of U in 1 2{ , }e e , the 

components of  U in 1 2 3{ , , }m m m are the same as those of V in 1 2{ , }e e  and as you showed in 

HW1 the components of R are the same in both bases.  It is not hard to show that these are 

general properties of these tensors….  

 

[2 POINTS] 

 

(l) Find the principal directions of V  expressed as components in the basis 1 2 3{ , , }m m m .  

Again, you should be able to simply write down this result. 
 

This is trivial – the principal directions are just 1 2,m m ; the principal stretches are 2(1 / )x R ,1 

[1 POINT] 

 
 

7.  A sheet of material is subjected to a two dimensional 

homogeneous deformation of the form 

1 11 1 12 2 2 21 1 22 2y A x A x y A x A x     

where ijA  are constants. Suppose that a circle of unit 

radius is drawn on the undeformed sheet.   This circle is 

distorted to a smooth curve on the deformed sheet.  Show 

that the distorted circle is an ellipse, with semi-axes that 

are parallel to the principal directions of the left stretch tensor V, and that the lengths of the semi-axes 

e1

e2

m1

m2





of the ellipse are equal to the principal stretches for the deformation.  There are many different ways 

to approach this calculation – some are very involved.  The simplest way is probably to assume that 

the principal directions of V subtend an angle 0  to the 1 2{ , }e e  basis as shown in the figure, write 

the polar decomposition  A V R  in terms of principal stretches 1 2,   and 0 , and then show that 

  y V R x  (where x  is on the unit circle) describes an ellipse. 

 

Note that the rotation R does not distort the circle at all.  To see this, let z Rx  and note that 
2a   x x z z  where a is the radius of the circle. 

 

The right stretch tensor can be expressed as 1 1 1 2 2 2    V m m m m .   If we let z Rx  and express 

z as 1 1 2 2z z z m m  then 1 1 1 2 2 2z z  Vz m m .   Therefore 
2 2

2 2 21 2
1 22 2

1 2

y y
z z a

 
    .  This is the 

equation of an ellipse centered at the origin with semiaxes 1 2,a a  . 

 

[5 POINTS] 

 

 

8. The center of mass and the mass moment of inertia tensor in the reference and deformed configurations 

of a solid are (by definition) 

  

  
0 0

0 0 0 0
0 0 0 0

1

1

c c c c
i i ij i i j j

V V

c c c c
i i ij i i j j

V V

r x dV I x r x r dV
M

r y dV I y r y r dV
M

 

 

   

   

 

 

 

where 0 ,   are the mass density of the solid in the reference and deformed configurations, ,x y  are the 

positions of material particles in the reference and deformed configurations, and M is the total mass.   

 

Suppose that a solid is subjected to a homogeneous deformation 

i ik k iy A x c   

where ijA  and ic  are constants.   

 

(a) Find formulas for , C
ic ijr I  in terms of 0c

ir  0c
ijI , ijA  and ic . 
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[2 POINTS] 



(b) Suppose that ijA  is a rigid rotation (this means ik jk ki kj ijA A A A   .   Use the solution to (a) to 

show that the time derivative of ijI  can be expressed as 

c
ij c c

ik kj ik kj

dI
W I I W

dt
   

where  ik
ik jk

dA
W A

dt
  is the spin tensor. 

 

We can write 

 0 0 0

0 0

c
ij jlik

ik kl jl kl jl ik kl

ip jl
qp qk kl jl ik kp qp ql

ip jlc c
qp qj iq qj

c c
iq qj iq ql

dI dAdAd
A I A I A A I

dt dt dt dt

dA dA
A A I A A I A A

dt dt

dA dA
A I I A

dt dt

W I I W

  

 

 

 

 

 

Here, we have used the result that 0
jk jkik

ik jk ij jk ik ik ij

dA dAdA
A A A A A W

dt dt dt
        

 

[2 POINTS] 

 

(c) Suppose that a rigid body rotates with angular velocity k  and therefore has angular momentum 

c
i ij jh I   

Use (b) to show that the time derivative of the angular momentum is 

ji
ij ijk j kl l

ddh
I I

dt dt


    

 

Taking the time derivative gives  

 
c
ij j jc c c ci

j ij iq qj iq qj j ij

dI d ddh
I W I I W I

dt dt dt dt

 
       

Recall also that k  is the dual vector of ikW .    This means that for any vector iu , ji i jki k iW u u  .  

Substituting this into the preceding result, and noting that 0ji iW    (the cross product of a vector with 

itself) gives the required formula.   Note that the solution is the standard formula from 3D rigid body 

dynamics. 

 

[2 POINTS] 
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9. The figure shows a design for a high-speed moving walkway (see http://www.jfe-

steel.co.jp/archives/en/nkk_giho/84/pdf/84_10.pdf for a detailed description of this general type of design, 

or http://www.youtube.com/watch?v=uwHer1RrYg8 for a movie of such a walkway in action).  A 

passenger standing on the walkway passes through five regions:  

(i) between A and B she moves at constant speed 0v ;  

(ii) between B and C she accelerates (with an acceleration to be specified below);  

(iii) between C and D she moves with constant (high) speed 1v ; and  

(iv) between D and E she decelerates  

(v) between E and F she travels at speed 0v again.     

In this problem we will just focus on portion (ii) of the motion – i.e. between B and C. 

(a) Suppose that the walkway is designed so that the velocity varies linearly with distance between B 

and C.   Assume that a person walks with speed w relative to the moving walkway.   Determine 

her acceleration as a function of distance y from B, and also as a function of time after passing the 

point B.   Find a formula for the maximum value of the acceleration, and identify the point where 

it occurs. 

  

The velocity of the walkway is 0 1 0 1( ) /v v v v y l   .    The velocity of the person at a distance y from B 

follows as 

dy
v w

dt
  .   The acceleration is 

2
1 0

0 1 02
1 1

( ) ( )
v vd y dv dy y

v w v v
dy dt l ldt

 
     

 
 

 

To find the acceleration as a function of time we must find y(t), which follows as 

  

 

0 1 0 10 0

1 0 1 0 1 0 1

1 0
0 1 0 1

1

( ) /

( ) / ( ) exp ( ) / 1

( ) ( )exp ( ) /

y t
dy

dt
v w v v y l

v v y l v w v v t l

v v
a t v w v v t l

l


  

     


   

 

 

 

The maximum acceleration occurs at 1y l and has value  1 0
max 1

1

( )
v v

a v w
l


   

[3 POINTS] 

 

(b) Suppose the walkway is designed instead so that a person standing on the track has constant 

acceleration a.   Calculate the required velocity distribution v(y) as a function of distance y from 

B, and determine the acceleration of the person walking along the accelerating walkway as a 

function of y and also a function of t. 

http://www.jfe-steel.co.jp/archives/en/nkk_giho/84/pdf/84_10.pdf
http://www.jfe-steel.co.jp/archives/en/nkk_giho/84/pdf/84_10.pdf
http://www.youtube.com/watch?v=uwHer1RrYg8


 

If the acceleration is constant, then 2
1 2v v ay   (straight line motion formulas) 
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In this case 
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where w=P(z) is the principal root of exp( )z w w  (the ProductLog function in Mathematica) 

 

Hence  
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