

EN2210: Continuum Mechanics

Homework 6: Constitutive Equations, Fluid Mechanics Due November 9, 2016

1. Show that a fluid with constitutive equation of the form

$$\sigma_{ij} = -\pi_{eq}(\rho,\theta)\delta_{ij} + \tau_{ij}^0 + 2\mu D_{ij}$$

with τ^0_{ij} a nonzero constant, violates the second law of thermodynamics.

2. Suppose that the internal energy of a continuum is expressed as a function of density and entropy, as $\varepsilon(\rho, s)$. Show that the dissipation inequality requires that

$$\sigma_{ij}D_{ij} - \frac{1}{\theta}q_i\frac{\partial\theta}{\partial y_i} - \rho\left(\frac{\partial\varepsilon}{\partial t} - \theta\frac{\partial s}{\partial t}\right) \ge 0$$

3. Consider an inviscid van der Waals fluid with specific heat capacity $c_v(\theta)$ an arbitrary function of temperature (but independent of density), and pressure related to temperature and density by

$$\hat{\pi}_{eq} = \frac{\rho R\theta}{1 - b\rho} - a\rho^2$$

(here *a* is just a constant)

3.1 Show that the dissipation inequality (use problem 2, and the approach used in class to obtain constitutive equations for a fluid) requires that

$$\hat{\pi}_{eq} = \rho^2 \frac{\partial \varepsilon}{\partial \rho} \qquad \theta = \frac{\partial \varepsilon}{\partial s}$$
$$\pi_{eq} \frac{\dot{\rho}}{\rho} - \rho \frac{\partial \varepsilon}{\partial \rho} \dot{\rho} - \rho \frac{\partial \varepsilon}{\partial s} \dot{s} - \theta \rho \frac{\partial s}{\partial t} = 0$$
$$\frac{d\varepsilon}{dt} = \hat{\pi}_{eq} \frac{1}{\rho^2} \frac{d\rho}{dt} + \theta \frac{ds}{dt}$$

3.2 Hence conclude that

$$\frac{d\left(\varepsilon+a\rho\right)}{dt} = \theta \frac{d}{dt} \left(R\log\frac{\rho}{1-b\rho} + s \right)$$

for all $\dot{\rho}, \dot{\theta}$

and hence

3.3 Hence show that

$$s = \int \frac{c_v(\theta)}{\theta} d\theta - R \log \frac{\rho}{1 - b\rho} + const$$
$$\varepsilon = \int c_v(\theta) d\theta - a\rho + const$$

3. The deformation of a viscoelastic material is modeled by representing the deformation gradient **F** of a material element as a sequence of an irreversible deformation \mathbf{F}^{p} , followed by a reversible (elastic) deformation \mathbf{F}^{e} , so that $\mathbf{F} = \mathbf{F}^{e}\mathbf{F}^{p}$. The Helmholtz free energy $\psi(\mathbf{F}^{e}, \theta)$ of the material is assumed to be a function of \mathbf{F}^{e} and temperature θ only.

3.1 Show that the velocity gradient L can be decomposed into elastic and plastic parts as

$$\mathbf{L} = \mathbf{L}^{e} + \mathbf{L}^{p} \qquad \mathbf{L}^{e} = \frac{d\mathbf{F}^{e}}{dt}\mathbf{F}^{e-1} \qquad \mathbf{L}^{p} = \mathbf{F}^{e}\frac{d\mathbf{F}^{p}}{dt}\mathbf{F}^{p-1}\mathbf{F}^{e-1}$$

3.2 Show that the dissipation inequality

$$\sigma_{ij}D_{ij} - \frac{1}{\theta}q_i\frac{\partial\theta}{\partial y_i} - \rho\left(\frac{\partial\psi}{\partial t} + s\frac{\partial\theta}{\partial t}\right) \ge 0$$

requires that the Cauchy stress is related to the free energy by

$$JF_{kj}^{e-1}\sigma_{ji} = \rho_0 \frac{\partial \psi}{\partial F_{ik}^e}$$

(where ρ_0 is the mass per unit reference volume) and that the plastic part of the velocity gradient must satisfy

$$\sigma_{ij}L^p_{ij} \ge 0$$

3.3 Assume that \mathbf{F}^{e} and \mathbf{F}^{p} transform under a change of observer according to $\mathbf{F}^{e^{*}} = \mathbf{Q}\mathbf{F}^{e}$ $\mathbf{F}^{p^{*}} = \mathbf{F}^{p}$. Verify that the transformation is consistent with the transformation of deformation gradient \mathbf{F} under an observer change, and determine expressions for $\mathbf{L}^{e^{*}}, \mathbf{L}^{p^{*}}$ in terms of \mathbf{Q} and $\mathbf{\Omega} = \dot{\mathbf{Q}}\mathbf{Q}^{T}$.

3.4 Consider a constitutive relation in which the plastic velocity gradient is given by

$$L_{ij}^p = \eta \left(\sigma_{ij} - \frac{1}{3} \sigma_{kk} \delta_{ij} \right)$$

Show that if det(\mathbf{F}^p) = 1 at time t=0, then det(\mathbf{F}^p) = 1 for all t>0. (Hint: consider L_{kk}^p)

3.5 Show that the constitutive relation in 3.4 satisfies both frame indifference and the dissipation inequality (assume $\eta > 0$).