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1. Show that a fluid with constitutive equation of the form 

0( , ) 2ij eq ij ij ijDσ π ρ q δ τ µ= − + +  

with 0
ijτ  a nonzero constant, violates the second law of thermodynamics. 

 
 
 
The second law requires 
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− − + + + ≥  ∂ ∂ ∂ ∂ ∂ 

 

  

For all processes.   We can consider a process with constant density and temperature, which gives 
  

0ij ijDσ ≥  
 

0( , ) 2ij ij eq kk ij ij ij ijD D D D Dσ π ρ q τ µ= − + +  

But 0kkD =  for a constant density process.  We can choose 0 0( / 3)ij ij kk ijD λ τ τ δ= − − ( 0λ > )  (we need to 
make D volume preserving) in which case  
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If 0 0 0 0 / 3 0ij ij kk nnτ τ τ τ− >  this is negative for any 1
2

λ
µ

<  . If 0 0 0 0 / 3 0ij ij kk nnτ τ τ τ− <  it is negative for any 

1 / 2λ µ>  .  Hence there is always some D for which the second law is violated. 
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2. Suppose that the internal energy of a continuum is expressed as a function of density and entropy, as 
( , )sε ρ  .   Show that the dissipation inequality requires that 
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The standard dissipation in equality is  
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Substituting sy ε q= −  gives the required result. 
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3. Consider an inviscid van der Waals fluid with specific heat capacity ( )vc q  an arbitrary function of 
temperature (but independent of density), and pressure related to temperature and density by 
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−

 

3.1 Show that the dissipation inequality (use problem 2) requires that 

2
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= +  

 
For this case the dissipation inequality reduces to 
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This must hold for all ,s ρ  which implies that  
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This now shows that  
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And hence 
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3.2 Hence conclude that  

( ) log
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+  
= + − 

 



for all ,ρ q   
 
 
Substitute for ˆeqπ  
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Rearranging this result gives the required expression. 
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3.3 Hence show that 
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Let log
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, then the preceding problem shows that 

vcε ε ε φ φρ q ρ q q ρ q
ρ q ρ ρ q

 ∂ ∂ ∂ ∂ ∂
+ = + = + ∂ ∂ ∂ ∂ ∂ 

  

    

 
This must hold for all ,q ρ   so 

vc φq q
q q
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Integrating this expression gives  
( )vc d constq

φ q
q

= +∫  

which gives the first result. 
 
For the second one note that  
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4. The deformation of a viscoelastic material is modeled by representing the deformation gradient F of a 
material element as a sequence of an irreversible deformation pF , followed by a reversible (elastic) 
deformation eF , so that e p=F F F .  The Helmholtz free energy ( , )ey qF  of the material is assumed to 

be a function of eF  and temperature q  only. 
 
4.1 Show that the velocity gradient L can be decomposed into elastic and plastic parts as 

1 1 1
e p

e p e e p e p ed d
dt dt

− − −= + = =
F FL L L L F L F F F  

 

We have that 1 1 1( )e p
p ed d

dt dt
− − −= =

F F FL F F F , and expanding the time derivative using the 

product rule and simplifying gives the required solution. 
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4.2 Show that the dissipation inequality 
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 requires that the Cauchy stress is related to the free energy by 
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(where 0ρ  is the mass per unit reference volume) and that the plastic part of the velocity gradient must 
satisfy 

0p
ij ijLσ ≥  

Noting that ij ij ij ijD Lσ σ=  from the symmetry of the Cauchy stress, and taking the time derivative of the 
free energy gives 
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This must hold for all , pe
ij ijF F  , which shows that  
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and 0p
ij ijLσ ≥  follows directly 
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4.3 Assume that eF  and pF  transform under a change of observer according to 
* *e e p p= =F QF F F .  Verify that the transformation is consistent with the transformation of 

deformation gradient F under an observer change, and determine expressions for * *,e pL L in terms of Q  
and T=Ω QQ . 
 
The deformation gradient should transform as * =F QF .  For the transformations given we have 



* * *e p e p= = =F F F QF F QF  

We also have that ( )* * * 1 1 *e e e e e e T e T p p T− −= = + = + =L F F QF QF F Q Ω QL Q L QL Q   
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4.4 Consider a constitutive relation in which the plastic velocity gradient is given by 

1
3

p
ij kk ijijL η σ σ δ = − 

 
 

Show that if det( ) 1p =F  at time t=0, then det( ) 1p =F  for all t>0.   (Hint: consider p
kkL ) 

 
In the usual way, 
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Note also that  
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Finally the constitutive equation shows that 0p
kkL = . 
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4.5 Show that the constitutive relation in 3.4 satisfies both frame indifference and the dissipation 
inequality (assume 0η > ). 
 

Note that 1 1 1
3 3 3

p
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.  This is a perfect square. 

 
The constitutive equation satisfies 
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