Deformation Mapping
$$y_i = x_i + u_i(x_1, x_2, x_3, t)$$

Eulerian/Lagrangian descriptions of motion

 $y_{i} = x_{i} + u_{i}(x_{j}, t) \qquad \frac{\partial y_{i}}{\partial t}\Big|_{x_{i} = \text{const}} = \frac{\partial u_{i}}{\partial t} = v_{i}(x_{j}, t)$ $y_{i} = x_{i} + u_{i}(y_{j}, t) \qquad \frac{\partial y_{i}}{\partial t}\Big|_{x_{i} = \text{const}} = v_{i}(y_{j}, t) \qquad \frac{\partial^{2} y_{i}}{\partial t^{2}}\Big|_{x_{i} = \text{const}} = a_{i}(y_{j}, t)$ $\left(\delta_{ik} - \frac{\partial u_{i}}{\partial y_{k}}\right)\frac{\partial y_{k}}{\partial t}\Big|_{x_{i} = \text{const}} = \frac{\partial u_{i}}{\partial t}\Big|_{y_{i} = \text{const}} \qquad \frac{\partial^{2} y_{i}}{\partial t^{2}}\Big|_{x_{i} = \text{const}} = a_{i}(y_{j}, t) = \frac{\partial v_{i}}{\partial t}\Big|_{y_{i} = \text{const}} + v_{k}(y_{j}, t)\frac{\partial v_{i}}{\partial y_{k}}$

Deformation Gradient

$$\nabla \mathbf{y} = \nabla \left(\mathbf{x} + \mathbf{u}(\mathbf{x}) \right) = \mathbf{F} \qquad d\mathbf{y} = \mathbf{F} \cdot d\mathbf{x}$$

or $\frac{\partial y_i}{\partial x_j} = \frac{\partial}{\partial x_j} \left(x_i + u_i \right) = \delta_{ij} + \frac{\partial u_i}{\partial x_j} = F_{ij} \qquad dy_i = F_{ik} dx_k$

Sequence of deformations

 $d\mathbf{z} = \mathbf{F} \cdot d\mathbf{x}$ with $\mathbf{F} = \mathbf{F}^{(2)} \cdot \mathbf{F}^{(1)}$ or $dz_i = F_{ij} dx_j$ $F_{ij} = F_{ik}^{(2)} F_{kj}^{(1)}$

Related to 'Engineering Strains'

$$\varepsilon_{11} = \varepsilon_{xx}$$

$$\varepsilon_{22} = \varepsilon_{yy}$$

$$\varepsilon_{12} = \varepsilon_{21} = \gamma_{xy} / 2 = \gamma_{yx} / 2$$

Principal values/directions of Infinitesimal Strain $\mathbf{\epsilon} \cdot \mathbf{n}^{(i)} = e_i \mathbf{n}^{(i)}$

or
$$\varepsilon_{kl} n_l^{(i)} = e_i n_l^{(i)}$$

Infinitesimal rotation

$$\mathbf{w} = \frac{1}{2} \left(\mathbf{u} \nabla - \left(\mathbf{u} \nabla \right)^T \right) \quad \text{or} \quad w_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right)$$

Decomposition of infinitesimal motion

$$\frac{\partial u_i}{\partial x_j} = \varepsilon_{ij} + w_{ij}$$

Left and Right stretch tensors, rotation tensor

 $\mathbf{F} = \mathbf{R} \cdot \mathbf{U}$ $\mathbf{F} = \mathbf{V} \cdot \mathbf{R}$

 $\mathbf{U} = \lambda_1 \mathbf{u}^{(1)} \otimes \mathbf{u}^{(1)} + \lambda_2 \mathbf{u}^{(2)} \otimes \mathbf{u}^{(2)} + \lambda_3 \mathbf{u}^{(3)} \otimes \mathbf{u}^{(3)}$

 $\mathbf{V} = \lambda_1 \mathbf{v}^{(1)} \otimes \mathbf{v}^{(1)} + \lambda_2 \mathbf{v}^{(2)} \otimes \mathbf{v}^{(2)} + \lambda_3 \mathbf{v}^{(3)} \otimes \mathbf{v}^{(3)}$

 λ_i principal stretches

Left and Right Cauchy-Green Tensors

 $\mathbf{C} = \mathbf{F}^T \cdot \mathbf{F} = \mathbf{U}^2$ $\mathbf{B} = \mathbf{F} \cdot \mathbf{F}^T = \mathbf{V}^2$

Generalized strain measures

Lagrangian Nominal strain:

Lagrangian Logarithmic strain:

$$\sum_{i=1}^{3} (\lambda_i - 1) \mathbf{u}^{(i)} \otimes \mathbf{u}^{(i)}$$
$$\sum_{i=1}^{3} \log(\lambda_i) \mathbf{u}^{(i)} \otimes \mathbf{u}^{(i)}$$

Eulerian Nominal strain:

Eulerian Logarithmic strain:

$$\sum_{i=1}^{3} (\lambda_i - 1) \mathbf{v}^{(i)} \otimes \mathbf{v}^{(i)}$$
$$\sum_{i=1}^{3} \log(\lambda_i) \mathbf{v}^{(i)} \otimes \mathbf{v}^{(i)}$$

Eulerian strain

$$\mathbf{E}^{*} = \frac{1}{2} (\mathbf{I} - \mathbf{F}^{-T} \cdot \mathbf{F}^{-1}) \text{ or } E_{ij}^{*} = \frac{1}{2} (\delta_{ij} - F_{ki}^{-1} F_{kj}^{-1})$$

Velocity Gradient $\mathbf{L} = \nabla_{\mathbf{y}} \mathbf{v} \equiv L_{ij} = \frac{\partial v_i}{\partial y_i}$

$$dv_i = v_i(\mathbf{y} + d\mathbf{y}) - v_i(\mathbf{y}) = \frac{\partial v_i}{\partial y_j} dy_j$$

$$dv_i = \frac{d}{dt}dy_i = \frac{d}{dt}(F_{ij}dx_j) = \dot{F}_{ij}dx_j \qquad dv_i = \dot{F}_{ij}F_{jk}^{-1}dy_k \qquad \mathbf{L} = \frac{d\mathbf{F}}{dt}\mathbf{F}^{-1}$$

Stretch rate and spin tensors $\mathbf{D} = \frac{1}{2}(\mathbf{L} + \mathbf{L}^T)$ $\mathbf{W} = \frac{1}{2}(\mathbf{L} - \mathbf{L}^T)$ $\frac{1}{l}\frac{dl}{dt} = \mathbf{n} \cdot \mathbf{D} \cdot \mathbf{n} = n_i D_{ij} n_j$

Vorticity vector
$$\boldsymbol{\omega} = curl(\mathbf{v})$$
 $\boldsymbol{\omega}_i = \epsilon_{ijk} \frac{\partial v_k}{\partial y_j}$ $\boldsymbol{\omega} = 2dual(\mathbf{W})$ $\boldsymbol{\omega}_i = -\epsilon_{ijk} W_{jk}$

Spin-acceleration-vorticity relations

$$\begin{aligned} a_{i} &= \frac{\partial v_{i}}{\partial t} \Big|_{x_{k}=const} = \frac{\partial v_{i}}{\partial t} \Big|_{y_{k}=const} + \frac{1}{2} \frac{\partial}{\partial y_{i}} (v_{k} v_{k}) + 2W_{ik} v_{k} \\ a_{i} &= \frac{\partial v_{i}}{\partial t} \Big|_{x_{k}=const} = \frac{\partial v_{i}}{\partial t} \Big|_{y_{k}=const} + \frac{1}{2} \frac{\partial}{\partial y_{i}} (v_{k} v_{k}) + \epsilon_{ijk} \omega_{j} v_{k} \\ &\in_{ijk} \frac{\partial a_{k}}{\partial y_{j}} = \frac{\partial \omega_{i}}{\partial t} \Big|_{\mathbf{x}=const} - D_{ij} \omega_{j} + \frac{\partial v_{k}}{\partial y_{k}} \omega_{i} \end{aligned}$$

 \mathbf{e}_1

Original

Configuration

Deformed

Configuration

Kinetics

Restrictions on internal traction vector

Newton II T(-n) = -T(n)

Newton II&III

$$\mathbf{T}(\mathbf{n}) = \mathbf{n} \cdot \boldsymbol{\sigma} \qquad \text{or} \quad T_i(\mathbf{n}) = n_j \sigma_{ji}$$

Cauchy Stress Tensor

Other Stress Measures

$$\mathbf{F} = \mathbf{I} + \nabla \mathbf{u} \qquad F_{ij} = \delta_{ij} + \frac{\partial u_i}{\partial x_j}$$
$$J = \det(\mathbf{F})$$

Deformed

Configuration

Kirchhoff

$$\boldsymbol{\tau} = J\boldsymbol{\sigma} \quad \boldsymbol{\tau}_{ij} = J\boldsymbol{\sigma}_{ij}$$

Nominal/ 1st Piola-Kirchhoff

$$\mathbf{S} = J\mathbf{F}^{-1} \cdot \mathbf{\sigma} \qquad S_{ij} = JF_{ik}^{-1}\sigma_{kj}$$
$$dP_j^{(\mathbf{n})} = dA_0 n_i^0 S_{ij}$$

Material/2nd Piola-Kirchhoff $\Sigma = J\mathbf{F}^{-1} \cdot \mathbf{\sigma} \cdot \mathbf{F}^{-T} \quad \Sigma_{ij} = JF_{ik}^{-1}\sigma_{kl}F_{jl}^{-1}$

$$F_{ij}dP_j^{(\mathbf{n}0)} = dP_i^{(\mathbf{n})} \qquad dP_i^{(\mathbf{n}0)} = dA_0 n_j^0 \Sigma_{ji}$$

Reynolds Transport Relation

$$\frac{d}{dt} \int_{V} \phi dV = \int_{V} \left(\frac{\partial \phi}{\partial t} \Big|_{\mathbf{x}=const} + \phi \frac{\partial v_i}{\partial y_j} \right) dV = \int_{V} \left(\frac{\partial \phi}{\partial t} \Big|_{\mathbf{y}=const} + \frac{\partial \phi v_i}{\partial y_j} \right) dV$$

Conservation Laws for Continua

Work-Energy Relations

Rate of mechanical work done on a material volume

$$\dot{r} = \int_{A} T_i^{(\mathbf{n})} v_i dA + \int_{V} \rho b_i v_i dV = \int_{V} \sigma_{ij} D_{ij} dV + \frac{d}{dt} \left\{ \int_{V} \frac{1}{2} \rho v_i v_i dV \right\}$$

Conservation laws in terms of other stresses

$$\nabla \cdot \mathbf{S} + \rho_0 \mathbf{b} = \rho_0 \mathbf{a} \qquad \frac{S_{ij}}{\partial x_i} + \rho_0 b_j = \rho_0 a_j \qquad \nabla \cdot \left[\mathbf{\Sigma} \cdot \mathbf{F}^{\mathbf{T}} \right] + \rho_0 \mathbf{b} = \rho_0 \mathbf{a} \qquad \frac{\partial \left(\Sigma_{ik} F_{jk} \right)}{\partial x_i} + \rho_0 b_j = \rho_0 a_j$$

Mechanical work in terms of other stresses

$$\dot{r} = \int_{A} T_{i}^{(\mathbf{n})} v_{i} dA + \int_{V} \rho b_{i} v_{i} dV = \int_{V_{0}} S_{ij} \dot{F}_{ji} dV_{0} + \frac{d}{dt} \left\{ \int_{V_{0}} \frac{1}{2} \rho_{0} v_{i} v_{i} dV_{0} \right\}$$
$$\dot{r} = \int_{A} T_{i}^{(\mathbf{n})} v_{i} dA + \int_{V} \rho b_{i} v_{i} dV = \int_{V_{0}} \Sigma_{ij} \dot{E}_{ij} dV_{0} + \frac{d}{dt} \left\{ \int_{V_{0}} \frac{1}{2} \rho_{0} v_{i} v_{i} dV_{0} \right\}$$

Principle of Virtual Work (alternative statement of BLM)

$$\int_{V} \sigma_{ij} \delta D_{ij} \, dV + \int_{V} \rho \frac{dv_i}{dt} \delta v_i dV - \int_{V} \rho b_i \delta v_i dV - \int_{S_2} t_i \delta v_i dA = 0 \quad \text{for all} \quad \delta v_i$$

Then
$$\frac{\partial \sigma_{ji}}{\partial y_j} + \rho b_i = \rho \frac{dv_i}{dt}$$

 $n_i \sigma_{ij} = t_j \text{ on } S_2$

Thermodynamics

Temperature θ Specific Internal Energy ε Specific Helmholtz free energy $\psi = \varepsilon - \theta s$ Heat flux vector **q** External heat flux qSpecific entropy *s*

First Law of Thermodynamics

$$\frac{d}{dt}(\mathbf{E} + K\mathbf{E}) = Q + W$$

$$\left. \rho \frac{\partial \varepsilon}{\partial t} \right|_{\mathbf{x} = const} = \sigma_{ij} D_{ij} - \frac{\partial q_i}{\partial y_i} + q$$

 $dS - \frac{dH}{dH} \ge 0$

Second Law of Thermodynamics

$$dt \quad dt \\ \rho \frac{\partial s}{\partial t} + \frac{\partial (q_i / \theta)}{\partial y_i} - \frac{q}{\theta} \ge 0$$

Dissipation Inequality

$$\sigma_{ij}D_{ij} - \frac{1}{\theta}q_i\frac{\partial\theta}{\partial y_i} - \rho\left(\frac{\partial\psi}{\partial t} + s\frac{\partial\theta}{\partial t}\right) \ge 0$$

Transformations under observer changes

Transformation of space under a change of observer

$$\mathbf{y}^* = \mathbf{y}_0^*(t) + \mathbf{Q}(t)(\mathbf{y} - \mathbf{y}_0)$$
$$\mathbf{\Omega} = \frac{d\mathbf{Q}}{dt}\mathbf{Q}^T$$

All physically measurable vectors can be regarded as connecting two points in the inertial frame

These must therefore transform like vectors connecting two points under a change of observer

$$\mathbf{b}^* = \mathbf{Q}\mathbf{b} \ \mathbf{n}^* = \mathbf{Q}\mathbf{n} \ \mathbf{v}^* = \mathbf{Q}\mathbf{v} \ \mathbf{a}^* = \mathbf{Q}\mathbf{a}$$

Note that time derivatives in the observer's reference frame have to account for rotation of the reference frame

$$\mathbf{v}^{*} = \mathbf{Q}\mathbf{v} = \mathbf{Q}\frac{d\mathbf{y}}{dt} = \mathbf{Q}\frac{d}{dt}\mathbf{Q}^{T}(\mathbf{y}^{*} - \mathbf{y}_{0}^{*}(t)) = \frac{d\mathbf{y}^{*}}{dt} - \frac{d\mathbf{y}_{0}^{*}}{dt} - \mathbf{\Omega}(\mathbf{y}^{*} - \mathbf{y}_{0}^{*}(t))$$
$$\mathbf{a}^{*} = \mathbf{Q}\mathbf{a} = \mathbf{Q}\frac{d^{2}\mathbf{y}}{dt^{2}} = \mathbf{Q}\frac{d^{2}}{dt^{2}}\mathbf{Q}^{T}(\mathbf{y}^{*} - \mathbf{y}_{0}^{*}(t)) = \frac{d^{2}\mathbf{y}^{*}}{dt^{2}} - \frac{d^{2}\mathbf{y}_{0}^{*}}{dt^{2}} + \left(\mathbf{\Omega}^{2} - \frac{d\mathbf{\Omega}}{dt}\right)(\mathbf{y}^{*} - \mathbf{y}_{0}^{*}(t)) - 2\mathbf{\Omega}(\frac{d\mathbf{y}^{*}}{dt} - \frac{d\mathbf{y}_{0}^{*}(t)}{dt})$$

Some Transformations under observer changes

Objective (frame indifferent)

tensors: map a vector from the observed (inertial) frame back onto the inertial frame

$$\boldsymbol{\sigma}^* = \boldsymbol{\mathbf{Q}}\boldsymbol{\sigma}\boldsymbol{\mathbf{Q}}^T \qquad \boldsymbol{\mathbf{D}}^* = \boldsymbol{\mathbf{Q}}\boldsymbol{\mathbf{D}}\boldsymbol{\mathbf{Q}}^T$$

Invariant tensors: map a vector from the reference configuration back onto the reference configuration

Mixed tensors: map a vector from the reference configuration onto the inertial frame

$$\mathbf{T}_0 = \mathbf{m} \cdot \boldsymbol{\Sigma}$$

 $\Sigma^* = \Sigma$

$$d\mathbf{y} = \mathbf{F}d\mathbf{x}$$
$$\mathbf{F}^* = \mathbf{Q}\mathbf{F}$$

$$\mathbf{t} = \mathbf{n} \cdot \boldsymbol{\sigma}$$

Some Transformations under observer changes

• The deformation mapping transforms as
$$\mathbf{y}^*(\mathbf{X},t) = \mathbf{y}_0^*(t) + \mathbf{Q}(t)(\mathbf{y}(\mathbf{X},t) - \mathbf{y}_0)$$

• The deformation gradient transforms as $\mathbf{F}^* = \frac{\partial \mathbf{y}^*}{\partial \mathbf{X}} = \mathbf{Q} \frac{\partial \mathbf{y}}{\partial \mathbf{X}} = \mathbf{Q}\mathbf{F}$

• The right Cauchy Green strain Lagrange strain, the right stretch tensor are invariant $\mathbf{C}^* = \mathbf{F}^{*T}\mathbf{F}^* = \mathbf{F}^T\mathbf{Q}^T\mathbf{Q}\mathbf{F} = \mathbf{C}$ $\mathbf{E}^* = \mathbf{E}$ $\mathbf{U}^* = \mathbf{U}$

• The left Cauchy Green strain, Eulerian strain, left stretch tensor are frame indifferent

$$\mathbf{B}^* = \mathbf{F}^* \mathbf{F}^{*T} = \mathbf{Q} \mathbf{F} \mathbf{F}^T \mathbf{Q}^T = \mathbf{Q} \mathbf{C} \mathbf{Q}^T \qquad \mathbf{V}^* = \mathbf{Q} \mathbf{V} \mathbf{Q}^T$$

• The velocity gradient and spin tensor transform as

$$\mathbf{L}^* = \dot{\mathbf{F}}^* \mathbf{F}^{*-1} = \left(\dot{\mathbf{Q}}\mathbf{F} + \mathbf{Q}\dot{\mathbf{F}}\right) \mathbf{F}^{-1} \mathbf{Q}^T = \mathbf{Q} \mathbf{L} \mathbf{Q}^T + \mathbf{\Omega}$$
$$\mathbf{W}^* = \left(\mathbf{L}^* - \mathbf{L}^{*T}\right) / 2 = \mathbf{Q} \mathbf{W} \mathbf{Q}^T + \mathbf{\Omega}$$

• The velocity and acceleration vectors transform as

$$\mathbf{v}^{*} = \mathbf{Q}\mathbf{v} = \mathbf{Q}\frac{d\mathbf{y}}{dt} = \mathbf{Q}\frac{d}{dt}\mathbf{Q}^{T}(\mathbf{y}^{*} - \mathbf{y}_{0}^{*}(t)) = \frac{d\mathbf{y}^{*}}{dt} - \frac{d\mathbf{y}_{0}^{*}}{dt} - \mathbf{\Omega}(\mathbf{y}^{*} - \mathbf{y}_{0}^{*}(t))$$
$$\mathbf{a}^{*} = \mathbf{Q}\mathbf{a} = \mathbf{Q}\frac{d^{2}\mathbf{y}}{dt^{2}} = \mathbf{Q}\frac{d^{2}}{dt^{2}}\mathbf{Q}^{T}(\mathbf{y}^{*} - \mathbf{y}_{0}^{*}(t)) = \frac{d^{2}\mathbf{y}^{*}}{dt^{2}} - \frac{d^{2}\mathbf{y}_{0}^{*}}{dt^{2}} + \left(\mathbf{\Omega}^{2} - \frac{d\mathbf{\Omega}}{dt}\right)(\mathbf{y}^{*} - \mathbf{y}_{0}^{*}(t)) - 2\mathbf{\Omega}(\frac{d\mathbf{y}^{*}}{dt} - \frac{d\mathbf{y}_{0}^{*}(t)}{dt})$$

(the additional terms in the acceleration can be interpreted as the centripetal and coriolis accelerations)

• The Cauchy stress is frame indifferent $\sigma^* = Q\sigma Q^T$ (you can see this from the formal definition, or use the fact that the virtual power must be invariant under a frame change)

• The material stress is frame invariant $\Sigma^* = \Sigma$

• The nominal stress transforms as $\mathbf{S}^* = J(\mathbf{QF})^{-1} \cdot \mathbf{Q} \mathbf{\sigma} \mathbf{Q}^T = J\mathbf{F}^{-1} \cdot \mathbf{\sigma} \mathbf{Q}^T = \mathbf{S} \mathbf{Q}^T$ (note that this transformation rule will differ if the nominal stress is defined as the transpose of the measure used here...)

Constitutive Laws

Equations relating internal force measures to deformation measures are known as *Constitutive Relations*

General Assumptions:

- Local homogeneity of deformation

 (a deformation gradient can always be calculated)
- Principle of local action (stress at a point depends on deformation in a vanishingly small material element surrounding the point)

Restrictions on constitutive relations:

- 1. Material Frame Indifference stress-strain relations must transform consistently under a change of observer
- 2. Constitutive law must always satisfy the second law of thermodynamics for any possible deformation/temperature history.

$$\sigma_{ij}D_{ij} - \frac{1}{\theta}q_i\frac{\partial\theta}{\partial y_i} - \rho\left(\frac{\partial\psi}{\partial t} + s\frac{\partial\theta}{\partial t}\right) \ge 0$$

Fluids

Properties of fluids

- No natural reference configuration
- Support no shear stress when at rest

Kinematics

• Only need variables that don't depend on ref. config

$$e_2$$
 y R e_1 e_3 e_1 e_1 e_2 e_3 $e_$

$$L_{ij} = \frac{\partial v_i}{\partial y_j} \qquad L_{ij} = D_{ij} + W_{ij} \qquad D_{ij} = (L_{ij} + L_{ji})/2 \quad W_{ij} = (L_{ij} - L_{ji})/2 \qquad \omega_i = \epsilon_{ijk} \frac{\partial v_k}{\partial y_j} = -\epsilon_{ijk} W_{ij}$$

$$\begin{aligned} a_{i} &= \frac{\partial v_{i}}{\partial t} \Big|_{x_{k}=const} = \frac{\partial v_{i}}{\partial y_{k}} \frac{\partial y_{k}}{\partial t} + \frac{\partial v_{i}}{\partial t} \Big|_{y_{i}=const} = L_{ik}v_{k} + \frac{\partial v_{i}}{\partial t} \Big|_{y_{i}=const} = \left(D_{ik} + W_{ik} \right) v_{k} + \frac{\partial v_{i}}{\partial t} \Big|_{y_{i}=const} \\ &= \frac{1}{2} \frac{\partial}{\partial y_{i}} (v_{k}v_{k}) + 2W_{ik}v_{k} = \frac{\partial v_{i}}{\partial t} \Big|_{y_{k}=const} + \frac{1}{2} \frac{\partial}{\partial y_{i}} (v_{k}v_{k}) + \epsilon_{ijk} \omega_{j}v_{k} \end{aligned}$$

Conservation Laws

General Constitutive Models for Fluids

Objectivity and dissipation inequality show that constitutive relations must have form

Internal Energy $\varepsilon = \hat{\varepsilon}(\rho, \theta)$ Entropy $s = \hat{s}(\rho, \theta)$ Free Energy $\psi = \hat{\psi}(\rho, \theta) = \varepsilon - \theta s$ Stress response function $\sigma_{ij} = \hat{\sigma}_{ij}(\theta, \rho, D_{ij}) = -\hat{\pi}_{eq}(\rho, \theta)\delta_{ij} + \hat{\sigma}_{ij}^{vis}(\rho, \theta, D_{ij})$ Heat flux response function $q_i = \hat{q}_i \left(\theta, \rho, \frac{\partial \theta}{\partial y_i}, D_{ij}\right)$

In addition, the constitutive relations must satisfy

$$\begin{aligned} \hat{\pi}_{eq} &= \rho^2 \frac{\partial \hat{\psi}}{\partial \rho} \qquad \hat{s} = -\frac{\partial \psi}{\partial \theta} \\ \frac{\partial \hat{\pi}_{eq}}{\partial \theta} &= -\rho^2 \frac{\partial \hat{s}}{\partial \rho} \qquad \hat{\pi}_{eq} = \theta \frac{\partial \hat{\pi}_{eq}}{\partial \theta} + \rho^2 \frac{\partial \hat{\varepsilon}}{\partial \rho} \\ c_v &= -\theta \frac{\partial^2 \hat{\psi}}{\partial \theta^2} \qquad \frac{\partial c_v}{\partial \rho} = -\frac{\theta}{\rho^2} \frac{\partial^2 \hat{\pi}_{eq}}{\partial \theta^2} \qquad \sigma_{ij}^{vis}(\rho, \theta, D_{ij}) D_{ij} \ge 0 \qquad q_i \left(\rho, \theta, \frac{\partial \theta}{\partial y_i}\right) \frac{\partial \theta}{\partial y_i} \ge 0 \end{aligned}$$

where
$$c_v(\theta, \rho) = \frac{\partial \hat{\varepsilon}}{\partial \theta}$$

Constitutive Models for Fluids

$$\psi = \hat{\psi}(\rho, \theta) = \varepsilon - \theta s \qquad \qquad \sigma_{ij} = \hat{\sigma}_{ij}(\theta, \rho, D_{ij}) = -\hat{\pi}_{eq}(\rho, \theta)\delta_{ij} + \hat{\sigma}_{ij}^{vis}(\rho, \theta, D_{ij})$$

Elastic Fluid
$$\psi = \hat{\psi}(\rho)$$
 $\sigma_{ij} = -\pi_{eq}(\rho)\delta_{ij}$

Ideal Gas
$$\varepsilon = c_v \theta = \frac{p}{(\gamma - 1)\rho}$$
 $\psi = c_v \theta - \theta (c_v \log \theta - R \log \rho - s_0)$ $\sigma_{ij} = -\rho R \theta \delta_{ij}$

Newtonian Viscous
$$\psi = \hat{\psi}(\rho, \theta)$$
 $\sigma_{ij} = -(\pi_{eq}(\rho, \theta) - \kappa(\rho, \theta)D_{kk})\delta_{ij} + 2\eta(\rho, \theta)(D_{ij} - D_{kk}\delta_{ij}/3)$

Non-Newtonian
$$\psi = \hat{\psi}(\rho, \theta)$$
$$\sigma_{ij} = -\pi_{eq}(\rho, \theta)\delta_{ij} + \eta_1(I_1, I_2, I_3, \rho, \theta)\delta_{ij} + \eta_2(I_1, I_2, I_3, \rho, \theta)D_{ij} + \eta_3(I_1, I_2, I_3, \rho, \theta)D_{ik}D_{kj}$$

Derived Field Equations for Newtonian Fluids

Unknowns: p, v_i

$$\begin{aligned} \left| \begin{array}{l} \text{Must always satisfy mass conservation} \quad \left| \frac{\partial \rho}{\partial t} \right|_{\mathbf{x}=const} + \rho D_{kk} = 0 \quad \text{or} \quad \left| \frac{\partial \rho}{\partial t} \right|_{\mathbf{y}=const} + \frac{\partial \rho v_i}{\partial y_i} = 0 \end{aligned} \right| \\ \text{Combine BLM} \quad \left| \frac{\partial \sigma_{ji}}{\partial y_j} + \rho b_i \right| = \rho a_i \qquad a_i = \left| \frac{\partial v_i}{\partial y_k} v_k + \frac{\partial v_i}{\partial t} \right|_{y_i=const} = \left| \frac{\partial v_i}{\partial t} \right|_{y_k=const} + \left| \frac{\partial}{2} \frac{\partial}{\partial y_i} (v_k v_k) + e_{ijk} \omega_j v_k \right| \\ \text{With constitutive law. Also recall} \qquad D_{ij} = \left| \frac{1}{2} \left(\frac{\partial v_i}{\partial y_j} + \frac{\partial v_j}{\partial y_i} \right) \right| \\ \text{Compressible Navier-Stokes} \quad \left| \frac{\partial \rho}{\partial y_i} + 2 \frac{\partial}{\partial y_j} \eta(\rho, \theta) (D_{ij} - D_{kk} \delta_{ij} / 3) + \rho b_i = \rho a_i \qquad p = \pi_{eq}(\rho, \theta) - \kappa(\rho, \theta) D_{kk} \\ \text{With density indep viscosity} \quad \left| \frac{1}{\rho} \frac{\partial \pi_{eq}}{\partial y_i} + \frac{\eta}{\rho} \frac{\partial^2 v_i}{\partial y_j \partial y_j} + \left| \frac{\kappa}{\rho} - \frac{2\eta}{\beta \rho} \right| \frac{\partial^2 v_j}{\partial y_j \partial y_i} + b_i = a_i \\ \text{For an incompressible Newtonian viscous fluid} \quad \left| \frac{1}{\rho} \frac{\partial \rho}{\partial y_i} + \frac{\eta}{\rho} \frac{\partial^2 v_i}{\partial y_j \partial y_j} + b_i = a_i \\ \text{Incompressibility reduces mass balance to} \quad \left| \frac{\partial v_i}{\partial y_i} = 0 \\ \text{For an elastic fluid (Euler eq)} \quad \left| \frac{\partial \pi_{eq}}{\partial y_i} + \rho b_i = \rho \frac{\partial v_i}{\partial t} \right|_{y_i=const} + \frac{1}{2} \rho \frac{\partial}{\partial y_i} (v_k v_k) + \rho e_{ijk} \omega_j v_k \end{aligned} \right| \end{aligned}$$

Derived Field Equations for Fluids

Recall vorticity vector

$$\omega_i = \epsilon_{ijk} \left. \frac{\partial v_k}{\partial y_j} = -\epsilon_{ijk} W_{ij} \right. \qquad \epsilon_{ijk} \left. \frac{\partial a_k}{\partial y_j} = \frac{\partial \omega_i}{\partial t} \right|_{\mathbf{x}=const} - D_{ij} \omega_j + \frac{\partial v_k}{\partial y_k} \omega_i$$

Vorticity transport equation (constant temperature, density independent viscosity)

$$+\frac{\eta}{\rho}\frac{\partial^{2}\omega_{i}}{\partial y_{j}\partial y_{j}} - \frac{1}{\rho^{2}} \in_{ijk} \frac{\partial\rho}{\partial y_{j}} \left\{ \eta \frac{\partial^{2}v_{k}}{\partial y_{l}\partial y_{l}} + \left(\kappa - \frac{2\eta}{3}\right)\frac{\partial^{2}v_{l}}{\partial y_{l}\partial y_{k}} \right\} + \in_{ijk} \frac{\partial}{\partial y_{j}}(b_{k}) + D_{ij}\omega_{j} - \frac{\partial v_{k}}{\partial y_{k}}\omega_{i} = \frac{\partial\omega_{i}}{\partial t} \Big|_{\mathbf{x}=const}$$

For an elastic fluid
$$\in_{ijk} \frac{\partial}{\partial x_j} (b_k) + D_{ij} \omega_j - \frac{\partial v_k}{\partial y_k} \omega_i = \frac{\partial \omega_i}{\partial t} \Big|_{\mathbf{x}=const}$$

For an incompressible fluid
$$+\frac{\eta}{\rho}\frac{\partial^2 \omega_i}{\partial y_j \partial y_j} + \epsilon_{ijk} \frac{\partial}{\partial x_j}(b_k) + D_{ij}\omega_j = \frac{\partial \omega_i}{\partial t}\Big|_{\mathbf{x}=const}$$

If flow of an ideal fluid is irrotational at *t*=0 and body forces are curl free, then flow remains irrotational for all time (**Potential flow**)

Derived field equations for fluids

For an elastic fluid

• Bernoulli
$$H = \psi + \frac{\pi_{eq}}{\rho} + \frac{1}{2}v_iv_i + \Phi = \text{constant}$$
 alo

along streamline

For irrotational flow

$$H = \psi + \frac{\pi_{eq}}{\rho} + \frac{1}{2}v_iv_i + \Phi = \text{constant}$$

everywhere

For incompressible fluid

$$\frac{p}{\rho} + \frac{1}{2}v_iv_i + \Phi = \text{constant}$$

Solving fluids problems: control volume approach

Governing equations for a control volume (review)

• Mass Conservation:
$$\frac{d}{dt} \int_{R} \rho dV + \int_{B} \rho \mathbf{v} \cdot \mathbf{n} dA = 0$$

• Linear Momentum Balance
$$\int_{B} \mathbf{n} \cdot \mathbf{\sigma} dA + \int_{R} \rho \mathbf{b} dV = \frac{d}{dt} \int_{R} \rho \mathbf{v} dV + \int_{B} (\rho \mathbf{v}) \mathbf{v} \cdot \mathbf{n} dA$$

• Angular Momentum Balance
$$\int_{B} \mathbf{y} \times (\mathbf{n} \cdot \mathbf{\sigma}) dA + \int_{R} \mathbf{y} \times (\rho \mathbf{b}) dA = \frac{d}{dt} \int_{R} \mathbf{y} \times \rho \mathbf{v} dV + \int_{B} (\mathbf{y} \times \rho \mathbf{v}) \mathbf{v} \cdot \mathbf{n} dA$$

• Mechanical Power Balance
$$\int_{B} (\mathbf{n} \cdot \mathbf{\sigma}) \cdot \mathbf{v} dA + \int_{R} \rho \mathbf{b} \cdot \mathbf{v} dV = \int_{R} \mathbf{\sigma} : \mathbf{D} dV + \frac{d}{dt} \int_{R} \frac{1}{2} \rho(\mathbf{v} \cdot \mathbf{v}) dV + \int_{B} \frac{1}{2} \rho(\mathbf{v} \cdot \mathbf{v}) \mathbf{v} \cdot \mathbf{n} dA$$

• First law of thermodynamics

$$\int_{B} (\mathbf{n} \cdot \boldsymbol{\sigma}) \cdot \mathbf{v} dA + \int_{R} \rho \mathbf{b} \cdot \mathbf{v} dV - \int_{B} \mathbf{q} \cdot \mathbf{n} dA + \int_{V} q dV = \frac{d}{dt} \int_{R} \rho \left(\varepsilon + \frac{1}{2} \mathbf{v} \cdot \mathbf{v} \right) dV + \int_{B} \rho \left(\varepsilon + \frac{1}{2} \mathbf{v} \cdot \mathbf{v} \right) \mathbf{v} \cdot \mathbf{n} dA$$

Example

i

 A_5

 v_0

 $A_0 \,
ho_0$

 $v_1 A_1$

 A_3

 α

Steady 2D flow, ideal fluid Calculate the force acting on the wall Take surrounding pressure to be zero

$$\int_{B} \mathbf{n} \cdot \mathbf{\sigma} dA + \int_{R} \rho \mathbf{b} dV = \frac{d}{dt} \int_{R} \rho \mathbf{v} dV + \int_{B} (\rho \mathbf{v}) \mathbf{v} \cdot \mathbf{n} dA$$

$$\int_{A} (-p_0 \mathbf{n} \cdot \mathbf{j} dA) \mathbf{j} - A_0 \rho_0 v_0^2 \sin \alpha \mathbf{j} + \int_{A_3} (p - p_0) dA \mathbf{j} = 0$$

 $\mathbf{F} = -A_0 \rho_0 v_0^2 \sin \alpha \mathbf{j}$

Exact solutions: potential flow

If flow irrotational at *t*=0, remains irrotational; Bernoulli holds everywhere

Irrotational: curl(**v**)=**0** so
$$v_i = \frac{\partial \Omega}{\partial y_i}$$

Mass cons
$$\frac{\partial v_i}{\partial y_i} = 0 \Rightarrow \frac{\partial^2 \Omega}{\partial y_i \partial y_i} = 0$$

Bernoulli
$$\frac{p}{\rho} + \frac{1}{2}v_iv_i + \Phi + \frac{\partial\Omega}{\partial t} = \text{constant}$$

Example: flow surrounding a moving sphere

$$\Omega = -\frac{a^2 V_{\alpha} (y_{\alpha} - V_{\alpha} t)}{r^2} \qquad r = \sqrt{(y_{\alpha} - V_{\alpha} t)(y_{\alpha} - V_{\alpha} t)}$$

Exact solutions: Stokes Flow

Steady laminar viscous flow between plates Assume constant pressure gradient in horizontal direction

$$-\frac{1}{\rho}\frac{\partial p}{\partial y_i} + \frac{\eta}{\rho}\frac{\partial^2 v_i}{\partial y_j \partial v_j} + b_i \approx \frac{\partial v_i}{\partial t}\Big|_{y_k = const} \Longrightarrow -\frac{\Delta p}{\Delta L} + \eta \frac{\partial^2 f}{\partial y_2^2} = 0$$

Solve subject to boundary conditions

$$\mathbf{v} = \left[V \frac{y_2}{h} - \frac{\Delta p}{2\Delta L} y_2(h - y_2) \right] \mathbf{e}_1$$
$$\mathbf{\sigma} = \frac{\eta V}{h} + \frac{\Delta p}{\Delta L} \left(\frac{h}{2} - y_2 \right)$$

Exact Solutions: Acoustics

Assumptions:

Small amplitude pressure and density fluctuations Irrotational flow Negligible heat flow Neglect body forces

Irrotational: $v_i = \frac{\partial \Omega}{\partial v_i}$ Approximate N-S as: $-\frac{\partial p}{\partial y_i} \approx \rho \frac{\partial v_i}{\partial t}\Big|_{y_i=const}$ $-\frac{\partial^2 p}{\partial y_i \partial y_i} \approx \rho \frac{\partial^2 v_i}{\partial y_i \partial t}\Big|_{v_i=const}$ $-\frac{\partial^2 p}{\partial y_i \partial t} \approx \rho \frac{\partial^2 v_i}{\partial t^2}\Big|_{v_i=const}$ For small perturbations: $\frac{\partial p}{\partial t} = c_s^2 \frac{\partial \delta \rho}{\partial t}$ $c_s = \sqrt{\frac{\partial p}{\partial \rho}} \Big|_{s=const}$ $\frac{\partial \delta \rho}{\partial t} \bigg|_{\mathbf{v} = const} + \rho \frac{\partial v_i}{\partial v_i} = 0$ Mass conservation: Combine: $\frac{\partial^2 \Omega}{\partial t^2} - c_s^2 \frac{\partial^2 \Omega}{\partial y_i \partial y_i} = 0$ $\delta p = -\rho_0 \frac{\partial \Omega}{\partial t}$

(Wave equation)

Wave speed in an ideal gas

Assume heat flow can be neglected

Entropy equation:
$$\theta \frac{\partial s}{\partial t}\Big|_{\mathbf{x}=const} = -\frac{\partial q_i}{\partial y_i} + q \Rightarrow s = const$$

 $\varepsilon = c_v \theta \qquad \psi = c_v \theta - \theta (c_v \log \theta - R \log \rho + s_0) \qquad p = \rho R \theta$
 $s = (c_v \log \theta - R \log \rho + s_0) \Rightarrow \theta = \rho^{R/c_v} \exp[(s - s_0) / c_v)$
 $R / c_v = \gamma - 1 \qquad \text{so} \qquad p = k \rho^{\gamma}$
Hence: $c_s = \sqrt{\frac{\partial p}{\partial \rho}\Big|_{s=const}} = \sqrt{k\gamma \rho^{\gamma-1}} = \sqrt{\gamma \frac{p}{\rho}} = \sqrt{\gamma R \theta}$

Application of continuum mechanics to elasticity

Material characterized by

• The mass density ρ_0 per unit reference volume

- The specific internal energy ε
- The specific entropy s

• The specific Helmholtz free energy $\psi = \varepsilon - \theta s$

• A stress response function, e.g. $\Sigma_{ij} = \hat{\Sigma}_{ij} (\theta, \text{kinematic and internal variables})$. Here, Σ_{ij} is the material stress – one can use response functions for other stress measures as well.

• A heat flux response function $q_i = \hat{q}_i(\theta, \text{kinematic and internal variables})$. In actual calculations for solids it is often preferable to define a heat fluxe response function that characterizes heat flow through the reference configuration – an appropriate measure is defined below.

General structure of constitutive relations

To be consistent with frame indifference and the laws of thermodynamics, the specific free energy, internal energy, Helmholtz free energy, stress response function and heat transfer function must have the forms

- Specific internal energy ε = ε̂(C, θ)
- Specific entropy $s = \hat{s}(\mathbf{C}, \theta)$ • Specific Helmholtz free energy $\psi = \hat{\psi}(\mathbf{C}, \theta) = \varepsilon - \theta s$ • Stress response function $\Sigma_{ij} = \hat{\Sigma}_{ij}(\mathbf{C}, \theta)$ • Heat flux response function $Q_i = \hat{Q}_i \left(\theta, \mathbf{C}, \frac{\partial \theta}{\partial y_i} \right)$ $\Sigma^* = \Sigma$

Frame indifference, dissipation inequality

Forms of constitutive relation used in literature

$$I_{1} = \text{trace}(\mathbf{B}) = B_{kk}$$

$$\overline{I}_{1} = \frac{I_{1}}{J^{2/3}} = \frac{B_{kk}}{J^{2/3}}$$

$$I_{2} = \frac{1}{2} \Big(I_{1}^{2} - \mathbf{B} \cdot \mathbf{B} \Big) = \frac{1}{2} \Big(I_{1}^{2} - B_{ik} B_{ki} \Big)$$

$$\overline{I}_{2} = \frac{I_{2}}{J^{4/3}} = \frac{1}{2} \Big(\overline{I}_{1}^{2} - \frac{\mathbf{B} \cdot \mathbf{B}}{J^{4/3}} \Big) = \frac{1}{2} \Big(\overline{I}_{1}^{2} - \frac{B_{ik} B_{ki}}{J^{4/3}} \Big)$$

$$I_{3} = \det \mathbf{B} = J^{2}$$

$$J = \sqrt{\det \mathbf{B}}$$

 $\mathbf{B} = \lambda_1^2 \mathbf{b}^{(1)} \otimes \mathbf{b}^{(1)} + \lambda_2^2 \mathbf{b}^{(2)} \otimes \mathbf{b}^{(2)} + \lambda_3^2 \mathbf{b}^{(3)} \otimes \mathbf{b}^{(3)}$

Strain energy potential

$$W = \rho_0 \psi$$

 $W(\mathbf{F}) = \hat{W}(\mathbf{C}) = U(I_1, I_2, I_3) = \overline{U}(\overline{I_1}, \overline{I_2}, J) = \tilde{U}(\lambda_1, \lambda_2, \lambda_3)$

$$\begin{split} \sigma_{ij} &= \frac{1}{J} F_{ik} \frac{\partial W}{\partial F_{jk}} \\ \sigma_{ij} &= \frac{2}{\sqrt{I_3}} \bigg[\bigg(\frac{\partial U}{\partial I_1} + I_1 \frac{\partial U}{\partial I_2} \bigg) B_{ij} - \frac{\partial U}{\partial I_2} B_{ik} B_{kj} \bigg] + 2\sqrt{I_3} \frac{\partial U}{\partial I_3} \delta_{ij} \\ \sigma_{ij} &= \frac{2}{J} \bigg[\frac{1}{J^{2/3}} \bigg(\frac{\partial \overline{U}}{\partial \overline{I_1}} + \overline{I_1} \frac{\partial \overline{U}}{\partial \overline{I_2}} \bigg) B_{ij} - \bigg(\overline{I_1} \frac{\partial \overline{U}}{\partial \overline{I_1}} + 2\overline{I_2} \frac{\partial \overline{U}}{\partial \overline{I_2}} \bigg) \frac{\delta_{ij}}{3} - \frac{1}{J^{4/3}} \frac{\partial \overline{U}}{\partial \overline{I_2}} B_{ik} B_{kj} \bigg] + \frac{\partial \overline{U}}{\partial J} \delta_{ij} \\ \sigma_{ij} &= \frac{\lambda_1}{\lambda_1 \lambda_2 \lambda_3} \frac{\partial \widetilde{U}}{\partial \lambda_1} b_i^{(1)} b_j^{(1)} + \frac{\lambda_2}{\lambda_1 \lambda_2 \lambda_3} \frac{\partial \widetilde{U}}{\partial \lambda_2} b_i^{(2)} b_j^{(2)} + \frac{\lambda_3}{\lambda_1 \lambda_2 \lambda_3} \frac{\partial \widetilde{U}}{\partial \lambda_3} b_i^{(3)} b_j^{(3)} \end{split}$$

Specific forms for free energy function

- Neo-Hookean material $\overline{U} = \frac{\mu_1}{2} (\overline{I_1} 3) + \frac{\kappa_1}{2} (J 1)^2$ $\sigma_{ij} = \frac{\mu_1}{J^{5/3}} \left(B_{ij} \frac{1}{3} B_{kk} \delta_{ij} \right) + \kappa_1 (J 1) \delta_{ij}$
- Mooney-Rivlin $\overline{U} = \frac{\mu_1}{2} (\overline{I_1} - 3) + \frac{\mu_2}{2} (\overline{I_2} - 3) + \frac{K_1}{2} (J - 1)^2$ $\sigma_{ij} = \frac{\mu_1}{J^{5/3}} \left(B_{ij} - \frac{1}{3} B_{kk} \delta_{ij} \right) + \frac{\mu_2}{J^{7/3}} \left(B_{kk} B_{ij} - \frac{1}{3} [B_{kk}]^2 \delta_{ij} - B_{ik} B_{kj} + \frac{1}{3} B_{kn} B_{nk} \delta_{ij} \right) + K_1 (J - 1) \delta_{ij}$
- Generalized polynomial function $\overline{U} = \sum_{i+j=1}^{N} C_{ij} (\overline{I_1} 3)^i (\overline{I_2} 3)^j + \sum_{i=1}^{N} \frac{K_i}{2} (J-1)^{2i}$
 - Ogden $\tilde{U} = \sum_{i=1}^{N} \frac{2\mu_i}{\alpha_i^2} (\overline{\lambda_1}^{\alpha_i} + \overline{\lambda_2}^{\alpha_i} + \overline{\lambda_3}^{\alpha_i} 3) + \frac{K_1}{2} (J-1)^2$
 - Arruda-Boyce $\overline{U} = \mu \left\{ \frac{1}{2} (\overline{I_1} 3) + \frac{1}{20\beta^2} (\overline{I_1}^2 9) + \frac{11}{1050\beta^4} (\overline{I_1}^3 27) + \ldots \right\} + \frac{K}{2} (J 1)^2$

Solving problems for elastic materials (spherical/axial symmetry)

- Assume incompressiblility
- Kinematics

$$\boldsymbol{\sigma} \equiv \begin{bmatrix} \sigma_{rr} & 0 & 0\\ 0 & \sigma_{\theta\theta} & 0\\ 0 & 0 & \sigma_{\phi\phi} \end{bmatrix} \quad \mathbf{F} \equiv \begin{bmatrix} F_{rr} & 0 & 0\\ 0 & F_{\theta\theta} & 0\\ 0 & 0 & F_{\phi\phi} \end{bmatrix} \quad \mathbf{B} \equiv \begin{bmatrix} B_{rr} & 0 & 0\\ 0 & B_{\theta\theta} & 0\\ 0 & 0 & B_{\phi\phi} \end{bmatrix}$$
$$F_{rr} = \frac{dr}{dR} \quad F_{\phi\phi} = F_{\theta\theta} = \frac{r}{R} \quad B_{rr} = \left(\frac{dr}{dR}\right)^2 \quad B_{\phi\phi} = B_{\theta\theta} = \left(\frac{r}{R}\right)^2$$

$$\left(\frac{dr}{dR}\right)\left(\frac{r}{R}\right)^2 = 1 \qquad r^3 - a^3 = R^3 - A^3$$

• Constitutive law
$$\sigma_{rr} = 2 \left[\left(\frac{\partial U}{\partial I_1} + I_1 \frac{\partial U}{\partial I_2} \right) B_{rr} - \frac{I_1}{3} \frac{\partial U}{\partial I_1} - \frac{2I_2}{3} \frac{\partial U}{\partial \overline{I_2}} - \frac{\partial U}{\partial I_2} B_{rr}^2 \right] + p$$
$$\sigma_{\theta\theta} = \sigma_{\phi\phi} = 2 \left[\left(\frac{\partial U}{\partial I_1} + I_1 \frac{\partial U}{\partial I_2} \right) B_{\theta\theta} - \frac{I_1}{3} \frac{\partial U}{\partial I_1} - \frac{2I_2}{3} \frac{\partial U}{\partial \overline{I_2}} - \frac{\partial U}{\partial I_2} B_{\theta\theta}^2 \right] + p$$

- Equilibrium (or use PVW) $\frac{d\sigma_{rr}}{dr} + \frac{1}{r} (2\sigma_{rr} \sigma_{\theta\theta} \sigma_{\phi\phi}) + \rho_0 b_r = 0$ (gives ODE for p(r)
 - Boundary conditions

 $u_r(a) = g_a$ $u_r(b) = g_b$ $\sigma_{rr}(a) = t_a$ $\sigma_{rr}(b) = t_b$

Linearized field equations for elastic materials

Approximations:

- Linearized kinematics
- All stress measures equal
- Linearize stress-strain relation

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \qquad \sigma_{ij} = C_{ijkl} (\varepsilon_{kl} - \alpha_{kl} \Delta \theta) \qquad \frac{\partial \sigma_{ij}}{\partial x_i} + \rho b_j = \rho \frac{\partial^2 u_j}{\partial t^2}$$
$$u_i = u_i^*(t) \qquad \text{on} \quad \partial_1 R \qquad \sigma_{ij} n_i = t_j^*(t) \qquad \text{on} \quad \partial_2 R$$

Elastic constants related to strain energy/unit vol

 $C_{ijkl} = \frac{\partial \hat{\sigma}_{ij}}{\partial \varepsilon_{kl}} = \frac{\partial^2 U}{\partial \varepsilon_{ij} \partial \varepsilon_{kl}} \qquad \beta_{ij} = \frac{\partial \hat{\sigma}_{ij}}{\partial \theta} = \frac{\partial^2 U}{\partial \varepsilon_{ij} \partial \theta}$

$$\mathbf{\varepsilon} = \mathbf{S}\mathbf{\sigma} + \mathbf{\alpha}\Delta T$$
 $\mathbf{\sigma} = \mathbf{C}(\mathbf{\varepsilon} - \mathbf{\alpha}\Delta T)$

Isotropic materials:

$$\varepsilon_{ij} = \frac{1+\nu}{E}\sigma_{ij} - \frac{\nu}{E}\sigma_{kk}\delta_{ij} + \alpha\Delta T\delta_{ij} \qquad \qquad \sigma_{ij} = \frac{E}{1+\nu}\left\{\varepsilon_{ij} + \frac{\nu}{1-2\nu}\varepsilon_{kk}\delta_{ij}\right\} - \frac{E\alpha\Delta T}{1-2\nu}\delta_{ij}$$

Solving linear elasticity problems spherical/axial symmetry

$$\sigma = \begin{bmatrix} \sigma_{RR} & 0 & 0 \\ 0 & \sigma_{\theta\theta} & 0 \\ 0 & 0 & \sigma_{\phi\phi} \end{bmatrix} \qquad \varepsilon = \begin{bmatrix} \varepsilon_{RR} & 0 & 0 \\ 0 & \varepsilon_{\theta\theta} & 0 \\ 0 & 0 & \varepsilon_{\phi\phi} \end{bmatrix}$$

$$\varepsilon_{RR} = \frac{du}{dR} \qquad \varepsilon_{\phi\phi} = \varepsilon_{\theta\theta} = \frac{u}{R}$$
$$\begin{bmatrix} \sigma_{RR} \\ \sigma_{\theta\theta} \end{bmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & 2\nu \\ \nu & 1 \end{bmatrix} \begin{bmatrix} \frac{du}{dR} \\ \frac{u}{R} \end{bmatrix} - \frac{E\alpha\Delta T}{1-2\nu} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Constitutive law

$$\frac{d\sigma_{RR}}{dR} + \frac{1}{R} \left(2\sigma_{RR} - \sigma_{\theta\theta} - \sigma_{\phi\phi} \right) + \rho_0 b_R = 0$$

$$\frac{d^2 u}{dR} + \frac{2}{R} \frac{du}{dR} - \frac{2u}{dR} = \frac{d}{R} \left\{ \frac{1}{R^2} \frac{d}{dR} \left(R^2 u \right) \right\} = \frac{\alpha(1+\nu)}{\alpha(1+\nu)} \frac{d\Delta T}{d\Delta T} - \frac{(1+\nu)}{\alpha(1+\nu)} \frac{d\Delta T}{d\Delta T} = 0$$

Equilibrium

$$\frac{d\sigma_{RR}}{dR} + \frac{1}{R} \left(2\sigma_{RR} - \sigma_{\theta\theta} - \sigma_{\phi\phi} \right) + \rho_0 b_R = 0$$
$$\frac{d^2 u}{dR^2} + \frac{2}{R} \frac{du}{dR} - \frac{2u}{R^2} = \frac{d}{dR} \left\{ \frac{1}{R^2} \frac{d}{dR} (R^2 u) \right\} = \frac{\alpha(1+\nu)}{(1-\nu)} \frac{d\Delta T}{dR} - \frac{(1+\nu)(1-2\nu)}{E(1-\nu)} \rho_0 b(R)$$

Boundary conditions

$$u_r(a) = g_a$$
 $u_r(b) = g_b$
 $\sigma_{rr}(a) = t_a$ $\sigma_{rr}(b) = t_b$

Some simple static linear elasticity solutions

Navier equation:
$$\frac{1}{1-2\nu} \frac{\partial^2 u_k}{\partial x_k \partial x_i} + \frac{\partial^2 u_i}{\partial x_k \partial x_k} + \rho_0 \frac{b_i}{\mu} = \frac{\rho_0}{\mu} \frac{\partial^2 u_i}{\partial t^2}$$
Potential Representation (statics):
$$u_i = \frac{2(1+\nu)}{E} \left(\Psi_i + \frac{1}{4(1-\nu)} \frac{\partial}{\partial x_i} (\phi - x_k \Psi_k) \right) \qquad \frac{\partial^2 \Psi_i}{\partial x_j \partial x_j} = -\rho_0 b_i \qquad \frac{\partial^2 \phi}{\partial x_k \partial x_k} = -\rho_0 b_i x_i$$

Point force in an infinite solid:

$$\begin{split} \Psi_{i} &= \frac{P_{i}}{4\pi R} \qquad \phi = 0 \\ u_{i} &= \frac{(1+\nu)}{8\pi E(1-\nu)R} \left\{ \frac{P_{k}x_{k}x_{i}}{R^{2}} + (3-4\nu)P_{i} \right\} \\ \varepsilon_{ij} &= \frac{-(1+\nu)}{8\pi E(1-\nu)R^{2}} \left\{ \frac{3P_{k}x_{k}x_{i}x_{j}}{R^{3}} - \frac{P_{k}x_{k}\delta_{ij}}{R} + (1-2\nu)\frac{P_{i}x_{j} + P_{j}x_{i}}{R} \right\} \\ \sigma_{ij} &= \frac{-1}{8\pi(1-\nu)R^{2}} \left\{ \frac{3P_{k}x_{k}x_{i}x_{j}}{R^{3}} + (1-2\nu)\frac{P_{i}x_{j} + P_{j}x_{i} - \delta_{ij}P_{k}x_{k}}{R} \right\} \end{split}$$

P

Point force normal to a surface:

$$\begin{split} \Psi_{i} &= \frac{(1-\nu)\delta_{i3}}{\pi R} \qquad \phi = -\frac{(1-2\nu)(1-\nu)}{\pi}\log(R+x_{3}) \\ u_{i} &= \frac{(1+\nu)P}{2\pi E} \left\{ \frac{x_{3}x_{i}}{R^{3}} + (3-4\nu)\frac{\delta_{i3}}{R} - \frac{(1-2\nu)}{R+x_{3}} \left(\delta_{3i} + \frac{x_{i}}{R} \right) \right\} \\ \sigma_{ij} &= \frac{P}{2\pi R^{2}} \left\{ -3\frac{x_{i}x_{j}x_{3}}{R^{3}} + \frac{(1-2\nu)(2R+x_{3})}{R(R+x_{3})^{2}} \left(x_{i}x_{j} + \delta_{ij}x_{3}^{2} - x_{3} \left(\delta_{i3}x_{j} + \delta_{j3}x_{i} \right) \right) + \frac{(1-2\nu)R^{2}}{(R+x_{3})^{2}} \left(\delta_{i3}\delta_{j3} - \delta_{ij} \right) \right\} \end{split}$$

Dynamic elasticity solutions

Plane wave solution

$$u_i = a_i f(ct - x_k p_k)$$

Navier equation

$$\frac{1}{1-2\nu} \quad \frac{\partial^2 u_k}{\partial x_k \partial x_i} + \quad \frac{\partial^2 u_i}{\partial x_k \partial x_k} + \rho_0 \frac{b_i}{\mu} = \frac{\rho_0}{\mu} \frac{\partial^2 u_i}{\partial t^2}$$

$$\left(\mu - \rho_0 c^2\right) a_k + \frac{\mu}{1 - 2\nu} p_i a_i p_k = 0$$

Solutions:

$$a_i p_i = 0 \implies c^2 = c_2^2 = \rho_0 / \mu$$

$$a_i = \eta p_i \implies c^2 = c_L^2 = 2\mu(1-\nu)/\rho_0(1-2\nu)$$