Review

Conservation Laws

Mass
\[\frac{\partial \rho}{\partial t}_{x=\text{const}} + \rho \frac{\partial v_i}{\partial y_i} = 0 \]
\[\frac{\partial \rho}{\partial t}_{y=\text{const}} + \frac{\partial \rho v_i}{\partial y_i} = 0 \]

Linear Momentum
\[\frac{\partial \sigma_{ji}}{\partial y_j} + \rho b_i = \rho a_i \]

Angular Momentum
\[\sigma_{mn} - \sigma_{nm} = 0 \]

Conservation Laws in terms of other stress measures

Define:
\[F = \nabla y \]
\[\varepsilon = \int \sigma \]
\[S = \int F^{-T} \sigma F^{-T} \]
\[\varepsilon = \int F^{-T} \sigma F^{-T} \]
Then \textbf{BLM}:

\[\nabla \cdot S^T + p_0 b = p_0 \frac{dr}{dt} \bigg|_x \]

\[\frac{\partial S_{ij}}{\partial x_i} + p_0 b_j = p_0 \frac{\partial v_j}{\partial t} \bigg|_x \]

\[\nabla \cdot (F \xi) + p_0 b = p_0 \frac{\partial v_j}{\partial t} \bigg|_x \]

\[\frac{\partial}{\partial x_i} \sum_{k} F_{jk} + p_0 b_j = p_0 \frac{\partial v_j}{\partial t} \bigg|_x \]

Notes: Divergences are \textit{wrt} \(x\) instead of \(y\)

Other authors may use different convention for \(D\).
BAM: \(\sigma = \sigma^T \quad FS = (FS)^T = S^T F^T \)

\[\varepsilon = \varepsilon^T \]

Special case: Infinitesimal Deformations

Let \(F = (I + D\varepsilon) \quad D\varepsilon; \quad D\varepsilon \ll 1 \)

We approximate \(\sigma = S = \varepsilon \)

Approximate BAM as \(\frac{\partial \sigma_{ij}}{\partial x_i} + p_0 b_j = p_0 \frac{\partial \varepsilon_{ij}}{\partial t} \)
Mechanical Work and Energy

\[F \cdot v = \frac{d}{dt} \left(\frac{1}{2} m v^2 \right) \]

For a continuum

\[f_p = \int_S (n \sigma) \cdot v \, dA + \int_V p b \cdot v \, dV = \int_V \sigma \cdot \dot{V} \, dV + \frac{d}{dt} \int_V \rho v^2 \, dV \]

\[\text{Stress power} \quad \text{Stored or dissipated} \]

Proof:

\[\sigma = \int_S n_i \sigma_{ij} v_j \, dA = \int_V \frac{\partial}{\partial y_i} (\sigma_{ij} v_j) \, dV \]

\[= \int_V \left(\sigma_{ij} \frac{\partial v_j}{\partial y_i} + v_j \frac{\partial \sigma_{ij}}{\partial y_i} \right) \, dV \]
\[\Theta = \int_V v_j \left(\frac{\partial \phi_j}{\partial y_i} + \rho b_j \right) \, dv = \int_V v_j \rho \frac{\partial v_i}{\partial t} \, dv \]

\[= \int_{V_0} v_j \rho \frac{\partial v_j}{\partial t} \, dV_0 = \int_{V_0} \frac{d}{dt} \left(\frac{1}{2} \rho_0 (v_1)^2 \right) \, dV_0 \]

\[= \frac{d}{dt} \int_{V_0} \frac{1}{2} \rho (v_1)^2 \, dV \]

\[\Rightarrow \rho = \Theta + \Delta = \int_V \sigma \cdot \omega \, dV + \frac{d}{dt} \int_V \frac{1}{2} \rho (v_1)^2 \, dV \]

\[\text{KE} \]
Work-energy in terms of other stress measures

\[r_p = \int_{V_0} \mathbf{e} : \mathbf{D} \, dV_0 + \frac{d}{dt} (KE) \]

\[r_p = \int_{V_0} \mathbf{S} \cdot \frac{d\mathbf{F}}{dt} \, dV_0 + \frac{d}{dt} (KE) \]

\[r_p = \int_{V_0} \mathbf{e} : \frac{d\mathbf{E}}{dt} \, dV_0 + \frac{d}{dt} (KE) \]

Proof:

1. \[r_p = \int_{V} \mathbf{e} : \mathbf{D} \, dV = \int_{V_0} \mathbf{e} : \mathbf{D} \, J \, dV_0 - \int_{V_0} \mathbf{e} : \partial \mathbf{D} \, dV_0 \]
2. Recall \[L = \frac{dF}{dt} F^{-1} \] (see kinematic notes)

\[\mathbf{r}_\mathbf{p} = \int_V \mathbf{O}_{ij} \mathbf{K}_{ii} \ d\mathbf{V} = \int_{V_0} \mathbf{O}_{ij} \ \frac{dF_j}{dt} \ F_i^{-1} \ J dV_0 \]

\[= \int_{V_0} J \ F_i \mathbf{O}_{ij} \ \frac{dF_j}{dt} \ dV_0 \]

\[= \int_{V_0} S_{ij} \mathbf{O}_{ij} \ \frac{dF_j}{dt} \ dV_0 \]

3. Recall \[J = F^{-T} \frac{dE}{dt} F^{-1} \] (HW #3)

\[\Rightarrow \int_{V_0} \mathbf{\sigma} : \mathbf{D} \ J dV_0 = \int_{V_0} J \mathbf{\sigma} : \left(F^{-T} \frac{dE}{dt} F^{-1} \right) dV_0 \]
\[p = \int_{V_0} \varepsilon \cdot dE \ dV_0 + \frac{d}{dt} (KE) \]

Note: \(\varepsilon : D \) \(\Rightarrow \) rate of work done by stresses per unit ref volume
\(S \cdot \dot{\varepsilon} \) \(\Rightarrow \) Work-conjugate pair
3. The figure shows a test designed to measure the viscosity of a fluid. The sample is a hollow cylinder with internal radius \(a_0 \) and external radius \(a_1 \). The inside diameter is bonded to a fixed rigid cylinder. The external diameter is bonded inside a rigid tube, which is rotated with angular velocity \(\omega(t) \). Assume that all material particles in the specimen (green) move circumferentially, with a velocity field (in spatial coordinates) \(\mathbf{v} = v_\theta(r,t) \mathbf{e}_\theta \).

(a) Calculate the spatial velocity gradient \(\mathbf{L} \) in the basis \(\{ \mathbf{e}_r, \mathbf{e}_\theta, \mathbf{e}_z \} \) and hence deduce the stretch rate tensor \(\mathbf{D} \).

\[
\mathbf{L} = \nabla_y \mathbf{v} = v_\theta(r) \mathbf{e}_\theta \otimes \left(\frac{\partial}{\partial r} \mathbf{e}_r + \frac{1}{r} \frac{\partial}{\partial \theta} \mathbf{e}_\theta + \frac{\partial}{\partial z} \mathbf{e}_z \right)
\]

\[
= \frac{\partial}{\partial r} v_\theta \mathbf{e}_\theta \otimes \mathbf{e}_r - \frac{v_\theta}{r} \mathbf{e}_r \otimes \mathbf{e}_\theta
\]

\[
\mathbf{D} = \text{sym}(\mathbf{L}) = \frac{1}{2} \left(\frac{\partial}{\partial r} - \frac{v_\theta}{r} \right) \left(\mathbf{e}_\theta \otimes \mathbf{e}_r + \mathbf{e}_r \otimes \mathbf{e}_\theta \right)
\]
(b) Calculate the acceleration field

\[\frac{\partial \mathbf{u}}{\partial t} \bigg|_y = \frac{\partial \mathbf{u}}{\partial t} \bigg|_y + \mathbf{L} \cdot \mathbf{u} = -\frac{V_0^2}{r} \mathbf{e}_r \]

(c) Suppose that the specimen is homogeneous, has mass density \(\rho \), and may be idealized as a viscous fluid, in which the Kirchhoff stress is related to stretch rate by

\[\mathbf{\tau} = 2\mu \mathbf{D} + p(r,t)\mathbf{I} \]

where \(p \) is a hydrostatic pressure (to be determined) and \(\mu \) is the viscosity. Use this to write down an expression for the Cauchy stress tensor in terms of \(p \), expressing your answer as components in \(\{\mathbf{e}_r, \mathbf{e}_\theta, \mathbf{e}_z\} \)

Note: \(\mathbf{J} = 1 \)

\[\mathbf{\sigma} = \mathbf{\tau} = \mu \left(\frac{\partial \mathbf{u}_\theta}{\partial r} - \frac{\partial \mathbf{u}_r}{\partial \theta} \right) \left(\mathbf{e}_\theta \otimes \mathbf{e}_r + \mathbf{e}_r \otimes \mathbf{e}_\theta \right) + \mathbf{p} \mathbf{I} \]
(d) Assume steady deformation. Express the equations of \(v_\theta(r, t) \) in terms of \(v_\theta(r, t) \).

\[
\nabla_y \cdot \sigma = \rho \alpha
\]

\[
\sigma \cdot \left(\frac{\partial}{\partial r} \frac{e_r}{r} + \frac{1}{r} \frac{\partial}{\partial \theta} e_\theta + \frac{\partial}{\partial z} e_z \right) = -\rho \frac{v_\theta^2}{r}
\]

\[
+ \mu \frac{\partial}{\partial r} \left(\frac{\partial v_\theta}{\partial r} \right) e_\theta + 2\mu \left(\frac{\partial v_\theta}{\partial r} \right) e_\theta
\]

\[
+ \frac{\partial}{\partial z} e_r = -\frac{v_\theta^2}{r} e_r
\]

(e) Solve the equilibrium equation, together with appropriate boundary conditions, to calculate \(v_\theta(r, t) \) and \(p(r) \). (The pressure can only be determined to within an arbitrary constant).

\[
Solve \quad \frac{\partial}{\partial r} \left(\frac{\partial v_\theta}{\partial r} \right) + 2 \left(\frac{\partial v_\theta}{\partial r} \right) = 0
\]
Boundary condition: \(\nu_0 = 0 \quad r = a_0 \)
\(\nu_0 = \omega q_1 \quad r = a_1 \)

\[
\frac{d\rho}{dr} + \frac{\nu_0^2}{r} \quad \text{solve within a constant}
\]

\[
c1 := (\text{diff}(\nu q(r), r) - \nu q(r)/r): \quad \frac{d\nu}{dr} = \frac{\nu}{r}
\]
\[
diffeq1 := \text{diff}(c1, r) + 2*c1/r=0:
\]
\[
bc := \nu q(a0)=0, \nu q(a1)=a1*w: \quad \text{Boundary Conditions}
\]
\[
vqsol := \text{solve}(\text{ode}([\text{diffeq1}, bc], \nu q(r)), \text{IgnoreSpecialCases}))\[1\]
\[
\frac{a1^2 \omega (a0^2 - r^2)}{r (a0^2 - a1^2)}
\]
\[
\nu_0 = \frac{a1^2 \omega}{a_i^2 - a_o^2} \left(r - \frac{a_o^2}{r} \right)
\]
\[
diffeq2 := \text{diff}(p(r), r) = -\rho o * vqsol^2/r:
\]
\[
psol := \text{solve}(\text{ode}([\text{diffeq2}], p(r)), \text{IgnoreSpecialCases}))\[1\]
\[
C16 + \frac{a1^4 \rho o w^2 (a0^4 - r^4 + 4 a0^2 r^2 \ln(r))}{2 r^2 (a0^2 - a1^2)^2}
\]
\[
p = \text{const of integration}
\]