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Data 
 

Synopsis 
 
You will write a MATLAB code to compute measures of deformation and motion from 2D digital image 
correlation measures. 
 
1. Introduction 
 
Digital image correlation is a powerful and comparatively inexpensive technique for measuring 
deformation fields in materials and structures with micron scale resolution.   The basic principle is to take 
a series pictures of a speckle pattern on a surface during deformation, and to determine displacement 
fields by matching similar regions in two successive images.  An example of displacement contours 
extracted from DIC measurements on the 
surface of a tensile specimen of steel [1] 
is shown in the figure.   
 
In the example shown, only the surface of 
the specimen can be observed.   In 
transparent materials, it is also possible to 
the full 3D displacement field in a 
specimen.   For example, Professor 
Franck’s lab uses 3D DIC measurements 
to measure forces exerted by cells on a 
deformable substrate. 
 
You can download free 2D DIC codes 
from the web: two examples are Matlab 
codes written by Elizabeth Jones based 
on an earlier set of codes by Christopher 
Eberl.  There are also a number of 
expensive commercial DIC codes on the 
market. 
 
In this project you will use the image processing toolbox in MATLAB to determine a 2D displacement 
field from a set of images, and then process this data to calculate and plot 2D measures of deformation.  
 
 
 
 
 
 
 

https://www.mathworks.com/matlabcentral/fileexchange/43073-improved-digital-image-correlation--dic-
https://www.mathworks.com/matlabcentral/fileexchange/43073-improved-digital-image-correlation--dic-
http://www.mathworks.com/matlabcentral/fileexchange/12413-digital-image-correlation-and-tracking
http://www.mathworks.com/matlabcentral/fileexchange/12413-digital-image-correlation-and-tracking


 
2. Project Deliverables: 
 
Your mission is to provide: 

1. A written report that describes what your code can do, with instructions for its use, and provides 
some examples of its performance.   The examples could include a validation showing that the 
code gives correct results for a known strain field; and then some examples of fields  

2. A MATLAB code that will read the data files provided and plot strain and strain rate measures of 
interest.  

 
The due date for both is Wednesday Oct 10. 
 
3. Data files 
 
You can download some sample images (from the ncorr website) to test your code from the course 
website.  These include two simple examples: 

• translation_data.mat : a sample subjected to a small rigid translation 
• rotation_data.mat: a sample subjected to a small rigid rotation 

 
To load this data into MATLAB and show the reference and current images use (eg) 

load('rotation_data.mat') 
imshow(ref); 
imshow(cur); 

 
In addition, there is a more fancy dataset: 

• A set of DIC images (tif format) of a plate with a central hole.  You can read the Tiff files of the 
plate with a hole into Matlab using a number of different methods.  One way is 
 filedirectory = 'Hole_Plate_Images'; 
 filename = 'ohtcfrp_'; 
 ref = read(Tiff(strcat(filedirectory,'/',filename,'00','.tif'))); 
 ref = double(ref)/256.; 
 cur = read(Tiff(strcat(filedirectory,'/',filename,'11','.tif'))); 
 cur = double(cur)/256.; 
(This reads the zeroth image as the ‘reference’ and the 11th as the ‘current’ image) 

 
4. Calculating Displacements using MATLAB image processing toolbox. 
 
Matlab has an extensive image processing toolbox, which includes some built-in functions to perform 
image correlation.   A little background on MATLAB images is helpful:  

• The  images are stored as two-dimensional arrays of gray-scale values: for example, the image 
(from rotation_data.mat) shown in Fig 2 is stored in a 375x375 dimensional array called ‘cur’.  
The grayscale value of the pixel at the top left-hand corner is stored in cur(1,1); the bottom left is 
at cur(375,1); the top right is at cur(1,375). 

• You can crop out a sub-region of an image using the syntax 
cursubimage = cur(vlo:vhi,hlo:hhi); 

(here, vlo, vhi, etc are integers - the ‘v’ and ‘h’ in the indices stand for vertical and horizontal) 
You can test this on the ‘rotation_data.mat’ file if you like: you can use imshow(cursubimage) to 
display the cropped image. 
 

 

http://www.ncorr.com/


To calculate displacement and strain fields, you will always load two images.  The ‘reference’ image will 
be the specimen before deformation, and the ‘current’ will be after deformation.    If there are many 
images, it is usually best to process two consecutive images, and then combine them to track the motion 
of points of interest from the first image to the last.  
 
You can use the  MATLAB ‘normxcorr2()’ function to calculate an initial approximation to the 
displacement field (to within +/- 1 or 2 pixels).   This calculates the normalized cross-correlation between 
two matrices, and can be used to determine the location of a small sub-image within a larger image, as 
described in the Matlab manual. The displacements can then be corrected using the ‘cpcorr()’ function, 
which allows you to determine displacements with sub-pixel resolution.  
 

 
 

Fig 2: Locating a cropped image from the surface of a deformed specimen in an image of the undeformed specimen 
 
Before writing code to calculate displacements, it is instructive to test the normxcorr2() function by 
writing a short script that will execute the following operations: 

1. Load the rotation_data.mat files 
2. Pick a point of interest in the reference image (ref), eg (100,200), and crop a small rectangular 

region (say 10x10 pixels or so – you can experiment with this size to see what gives the best 
results) surrounding the point of interest 

3. Follow the procedure described in the Matlab manual to use normxcorr2 to locate the coordinates 
of the top left corner of the cropped region inside the reference image. 

4. Superimpose a rectangle on the reference image to identify the region of interest.  You can do this 
with 

  rectangle = [htopleft,vtopleft,width,height]; 
  ref = insertShape(ref,'Rectangle',rectangle,'LineWidth',2,'Color',[1,0,0]); 

Here ‘htopleft’ and ‘vtopleft’ are horizontal and vertical pixel cords of the top left hand corner of 
the rectangle, and width, height are the width and height (in pixels) of the cropped image. 
 

Check your code by making sure the cropped image matches the region inside the rectangle (your brain is 
even better at image processing than MATLAB and will be able to see that the patterns match). 
 
You can easily extend these steps to calculate displacement vectors (in pixel coordinates) that map 
regions from the reference image to the current image.  You can compute the displacement vectors 

http://www.mathworks.com/help/images/ref/normxcorr2.html
http://www.mathworks.com/help/images/ref/normxcorr2.html


corresponding to a point of interest in the reference image (this would give a Lagrangian description of 
the displacements) by: 

1. Crop a small region surrounding the point in the reference image 
2. Crop a larger region around the same point in the current image (you want the region in the 

reference image to be large enough to contain the region before deformation.  Of course, the 
disadvantage of making the cropped reference image too large is that your code will run very 
slowly) 

3. Locate the coordinates of the top left corner of the cropped current image inside the cropped 
reference image, as described above. 

4. Knowing the sizes of the two images and the coordinates of the corner found in step 3, you can 
now easily calculate the displacement vector from the center of the reference image to the center 
of the current image. 

5. To check your code, make the current image the same as the reference image – the displacements 
should then be zero. 

 
Fig. 3 Illustrating the DIC procedure: (a) Isolate sub-regions in the reference image; (b) Search the 
deformed solid for regions that best match each square in the reference image.  The centers of the squares 
in the two images define a set of points; the difference between the centers before and after deformation 
gives the displacement field. 
 
 Once you have been able to calculate the displacement of 
a point of interest, you can extend your code to track the 
motion of a grid.  You can put a uniform grid on the 
undeformed specimen (to get a Lagrangian description of 
deformation) or on the deformed specimen (Eulerian).  
Non-uniform grids can also be used. 

 
To check your computations, try plotting figures that 
resemble those shown in Figs 3 -5: these illustrate the 
displacement field in a solid of interest by plotting  

• The position of a grid on its surface before and 
after deformation. 

• Contours of horizontal and vertical displacement 
 

Fig 4: Grid of points before (red) and after 
(green) deformation 



Of course, the MATLAB ‘plot’ and ‘contour’ functions put the origin at the bottom left of the graph, so it 
is helpful to change the coordinate system to make the displays consistent with what is on the images. 
 
Once you have the code working for a pair of images, you can add steps to process a sequence of images.  
For this case it is usually simplest to define the grid on the first image, and then track the points on this 
grid as they move from one image to the next.   It is best to correlate two successive images, rather than 
correlate each image with the first one, however. 
 

 
Fig 5: Contours of horizontal (x) and vertical (y) displacement (in pixels), as determined from the 
normxcorr2 function. 

 
If you have been able to reproduce the plots in Figs 3-5, you will have a code that can generate the 
coordinates of a set of points in the reference and deformed images.  You can improve the resolution of 
the image correlation process by using the MATLAB ‘cpcorr’ function to adjust the positions of the 
points in the deformed image slightly.  This will give you displacement fields with a resolution of about 
0.1 pixels.   See the Matlab manual for details.  As an example, Fig 6 illustrates the displacements on the 
rotated sample after processing with cpcorr. 

 
 

Fig 5: Contours of horizontal (x) and vertical (y) displacement (in pixels), after correction with 
the cpcorr function. 

 
 
Finally, you could smooth the displacement fields.   For a rectangular grid, you could use this open source 
matrix smoothing code.    
 

http://www.mathworks.com/help/images/ref/cpcorr.html
https://www.mathworks.com/matlabcentral/fileexchange/23287-smooth2a
https://www.mathworks.com/matlabcentral/fileexchange/23287-smooth2a


You can test your code by applying a known transformation to a reference image.  The following 
MATLAB functions are useful: 

• B = imrotate(A,angle) rotates the image A through angle (in degrees) counterclockwise 
• B = imresize(A,size) scales the image by a factor ‘size’.  Note that this increases the number of 

pixels in the image, so you will need to crop the new image to use the cpcorr function 
• B = imtranslate(A,translation_vector) translates an image 
• B = imwarp(A,tform) applies a geometric transformation (which can include stretching) to an 

image.   The ‘tform’ variable is a MATLAB ‘geometric transformation’ object that must be 
defined using tform = affine2d(T), where T is a transformation matrix.  See the Matlab manual 
for details.  For example, you can apply a homogeneous deformation to an image using 

tform = affine2d([Fxx Fxy 0; Fyx Fyy 0; 0 0 1]) 
cur = imwarp(ref,tform); 

Fxx, Fyy,Fxy,Fyx are the components of the deformation gradient.   Your code should recover 
the deformation gradient correctly, as well as deformation measures derived from the deformation 
gradient. 

 
 
Rectangular grids don’t work well for solids with complicated shapes.   If you are an experienced coder or 
matlab user you might like to write a more sophisticated code that can handle unstructured grids.  Here 
are some suggestions for using unstructured grids: 

1. For the images provided, the background is always black.   This means that you can easily 
generate an unstructured grid on the surface by covering the solid with a rectangular grid, and 
then discarding any points with intensity less than a threshold (eg ref(i,j)<0.1). 

2. You can calculate displacements at each point in an unstructured grid using the same procedure 
as for a structured grid. 

3. You can plot contours on an unstructured grid by (i) 
triangulating the grid using the Matlab delaunay() function 
(this connects all the points with a set of triangles) (ii) 
Removing any triangles whose centroids lie outside the 
specimen (check the image intensity at the center of each 
triangle, and remove it from the ), then (iii) using the open-
source ‘tricontf’ function to plot the contours. 

4. You can smooth data on an unstructured grid using a version 
of ‘Laplacian smoothing’ – in this procedure, the value of a 
function at each point in the grid is replaced by the average 
of all the other points in the grid that share an edge of a 
triangle with the point of interest.  For example, in the grid 
shown in Fig 6, the value at vertex 9 would be computed as 
the average of grid points 2,3,4,11 and 10.  You need some trickery to make this process 
effective: for example it usually gives bad results for grid points on the edge of the region, such 
as 1,2,3 etc.   These can be omitted from the smoothing (fairly easy), or for something a bit more 
sophisticated use only line smoothing around the edge, i.e. replace the value at grid point 1 by the 
average of 8 and 2 (a bit harder). 

 
 
 
5. Calculating strain measures 
 
Your next mission is to compute, and plot, deformation measures in the specimen.   You can choose what 
deformation measures you would like to compute – but you will most likely want to start by calculating 
the deformation gradient or displacement gradient. 
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Fig 6: A simple unstructured grid 

http://www.mathworks.com/help/images/ref/affine2d-class.html
https://www.mathworks.com/matlabcentral/fileexchange/40847-tricontf
https://www.mathworks.com/matlabcentral/fileexchange/40847-tricontf


 
To do this, you will have to interpolate the displacement data generated in part 4.  There are several 
different ways you could do this, which are described briefly in the sections to follow. 
 
5.1 Using the Matlab gradient function 
 
If you calculate displacements at a set of points on a rectangular grid, you can use the Matlab ‘gradient’ 
function to calculate the displacement gradient, eg 
     [uxx,uxy] = gradient(hdisp,hspacing,vspacing); 
Here, hdisp is a matrix of horizontal displacements at each grid point (the points have to be ordered with 
hdisp(1,1) at the bottom left corner, and with row and col in hdisp(row,col) specifying y and x position in 
the grid, respectively)  
 
  
4.2 Computing displacement gradients using finite-element interpolation 
 
If you would like to use an unstructured grid (harder) you can compute 
gradients using finite element interpolation functions.  In this approach, sets 
of grid points are taken to lie at the corners of triangular element, as shown 
in Fig 6. The displacement field inside each triangle is interpolated between 
the values at the corners, which then allows the gradients to be computed. 
 
Calculating displacement gradients in triangular elements is particularly 
simple.  For this case, the displacements can be interpolated between the 
values at the three corners.  Consider a triangular element, with nodes a, b, c at its corners. Let 
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The displacement at an arbitrary point in the triangle can then be expressed as 
( ) ( ) ( )

1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , )a b c
i a b ci i iu x x u N x x u N x x u N x x= + +  

You can differentiate these to calculate the displacement gradient. Note that the displacement gradients 
are constant inside each triangle.    
 
This procedure gives gradients inside the triangles, but what you really want is values for the gradients at 
the grid points.   Again, there are various ways to find these.   The simplest procedure is to average the 
values inside all the triangles connected to each grid point.   For example, for the grid in Fig 6, the value 
at grid point 6 would be the average of the values in the two triangles (7) and (12).   The value at grid 
point 12 would be the average of triangles (1,2,4,5,6).   Once you have grid point data, you can smooth 
the field using Laplace smoothing. 
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Fig 6: Triangular element 

http://www.mathworks.com/help/matlab/ref/gradient.html
http://www.mathworks.com/help/matlab/ref/gradient.html


 
 
 
5. Data processing and plotting 
 
Once you have computed displacement gradients, it is straightforward to compute other quantities that 
characterize deformations.  Examples might include 

• The Jacobian J = det(F) 
• Left and right stretch tensors, and/or their principal values and directions (you could display these 

using a quiver plot); strain invariants 
• The rotation tensor, and its axis/angle (Rodriguez representation) (can you calculate the 

misorientation between the initial and rotated specimens in Fig 3?) 
• The velocity gradient; the stretch rate; the spin tensor, the vorticity vector (or its magnitude and 

direction) (you will have to make up a time interval between the images, of course). 
 
You can test the parts of your code that compute strains by creating a grid of points, and assigning each 
point a displacement corresponding to a uniform deformation gradient.   Your code should return the 
correct values for deformation gradient at each grid point.   You can also apply affine transformations to 
an image – your code should be able to work back and calculate the transformation (plus some noise).    
 
As a demonstration, the figures below show the unstructured correlation grid before and after 
deformation; and contours of vertical displacement (pixels) and vertical Lagrange strain for a pair of 
images for the hole-in-a-plate example. 
 

 
Fig 8: Examples of displacements and strains on the surface of a strained specimen using an 
unstructured grid. 
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Appendix 1: Grading Rubric 
 

1. Report: 10 points. 
• Report describes an extensive series of tests to verify that a substantial set of deformation 

measures are calculated correctly (including comparisons with hand-calculations)  (10 
points) 

• Good report describing a range of tests  8 points 
• Good report, minor errors or omissions 
• Adequate report, but difficult to follow; incomplete 6 points  
• Major errors or omissions 4 points 

2. Matlab Code  15 points 
• Correct, well commented, user-friendly code with extensive capabilities; capable of 

calculating deformation measures using both structured and unstructured grids 15 points 
• Good, correct, well commented and user friendly MATLAB capable of handling regular 

grids 12 points 
• Functioning code, but difficult to read or use, or limited capabilities for data processing 

or visualization 9 
• Major errors, or only minimal capabilities 6 
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