EN 232 Experimental Mechanics for Nano- and Micro-Mechanics of Solids K.-S. Kim, Spring Semester, 2004

Chapter 1 Introduction

Principles of Mechanical Testing Principles of Fourier Optics* Principles of Transducers, Actuators and Sensors

Chapter 2 Measurement Techniques

Optical methods: Interferometries

Moire Interferometry and Temporal Interferometries Digital Image Correlation and Speckle Interferometry* Optical Tweezers and Applications

Electron Optics and Electron Microscopy

High Resolution Transmission Electron Microscopy Scanning Electron Microscopy and Electron Spectroscopy

Scanning Probe Microscopy

Atomic Force Microscopy* Scanning Tunneling Microcopy

Chapter 3 Data Processing

Error and Noise Analysis Digital Filters and Data Smoothing Digital Processing for Inverse Problems

Chapter 4 Applications

Multi-Scale Experiments

Nano- and Micro- Indentation^(*) Nano- and Micro-Tribology; AFM vs SFA Experimental Mechanics of Defects

Experimental Mechanics for Thin film Technology

Thin Film Testing; Wafer Curvature Measurement* Surface Roughness Evolution Spectroscopy Experimental Mechanics for Self Organizing Structures

* Laboratory Projects: Four reports and one final presentation are required for grading .