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HEALTH WARNING:  Unfortunately FEA and solid mechanics use B to denote two different quantities – 
the Left Cauchy Green deformation tensor, and the B matrix that maps displacements to strains.  We use the 
standard notation in this homework, so be careful to distinguish between the two!  
  
In this homework you will extend EN234FEA to solve static boundary value problems for hyperelastic 
materials.  As a simple nonlinear elastic material we will consider the neo-Hookean material, with stress-
strain relation 
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where ijσ  denotes the Cauchy stress,  J=det(F), and ij ik jkB F F=   .   This model is intended to be used with 

1 1K µ>>  . 
 

As last week you can choose whether to do a straightforward version of this problem, or a more challenging 
(but more useful) implementation. 

 
 
 



1. Simple problem – basic hyperelasticity 
 
A straightforward implementation of finite strain elasticity was discussed in class.   Recall that the 
equilibrium equation reduces to a set of nonlinear equations for the displacements of the form 
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where ijτ is the Kirchhoff stress, and  
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are the spatial shape function derivatives. 
 
The nonlinear equations must be solved using Newton-Raphson iteration: as always this involves repeatedly 
computing a correction to the approximation to the displacement field by solving a set of linear equations 
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The following expression was derived in class for the tangent stiffness matrix 
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The relevant products can be expanded as matrix operations 
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Here, B is the usual matrix (but with derivatives wrt y); the Tangent Stiffness D represents 
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Here ij ik jkB F F= .  We can store the identity matrix,  1,ij ijB B−    as 1-D vectors, eg 

11 22 33 12 13 23[1,1,1,0,0,0] [ , , , , , ]I B B B B B B B= =  , in which case 
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.  This is symmetric in ln, but not in pr and so must be 

stored as a 6x9 matrix 
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I couldn’t think of an elegant way to generate this matrix and just typed it in term-by-term.  If you can think 
of a better way please send me the code!   Be careful not to make any typos… 
 
The matrix  *B  maps nodal velocities to the velocity gradient (stored as a vector) and is a 9x3*n_nodes 
matrix: 
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The matrix Σ  is a 3*n_nodesx3*n_nodes matrix, which represents the product 
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This is a rather tricky matrix to assemble.  Of course, you can do it using brute-force loops.  If you want to 
use the faster built-in Fortran matrix operations, you can use the following approach. 
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Where @ denotes the elemental product of the two matrices.   Note that blocks of these matrices can 
be created by a sequence of spread and reshape operations. 
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The following lines therefore constructΣ  (there are probably other ways as well) 

 
S = reshape(matmul(transpose(B),stress),(/3,length_dof_array/3/)) 
 do i = 1,n_nodes 
   Pvec = reshape(spread(transpose(dNdx(i:i,1:3)),dim=2,ncopies=n_nodes),(/3*n_nodes/))      
   Pmat(3*i-2:3*i,1:3*n_nodes) = spread(Pvec,dim=1,ncopies=3) 
   Svec = reshape(spread(S(1:3,i:i),dim=2,ncopies=n_nodes),(/3*n_nodes/)) 
   Smat(3*i-2:3*i,1:3*n_nodes) = spread(Svec,dim=1,ncopies=3) 
 end do 
Sigma = Pmat*transpose(Smat) 
 
 
Run the following tests to check your code: 
 

(1) As always, use CHECK STIFFNESS to check that your element stiffness is consistent with the 
element force vector.  

(2) Run a simple test in which you stretch a hyperelastic bar, with a coarse mesh.   A sample input file is 
provided in a file called Hyperelastic_bar_stretch.in.  You will probably need to edit the file to 
change the integer number used to identify the element, to make it consistent with your code. 

 



 
 

(3) Run a simulation in which the bar is first stretched, then rotated, as shown in the figure (this 
simulation would be impossible with linear elasticity).   A user subroutine has been provided with 
EN234FEA that applies this sequence of deformations, along with the input file called 
hyperelastic_stretch_rotate (again, you will probably need to edit the file a bit).  You should find that 
s22 at the end of the deformation is equal to S11 at the end of the stretch (obviously!).   You could 
modify the field projection routine to plot principal stresses (which should be constant).   The 
element_utilities module includes a function that calculates principal stresses given a 3D stress 
vector.  Also, the stiffness matrix should still be correct at the end of the deformation. 

(4) If steps 1-3 all work, you can try a more complicated problem – there is a sample input file to run the 
dreaded hole-in-a-plate simulation but with large elastic strains, but you can create your own mesh 
with a more interesting problem too.  The holeplate example will take a few minutes to run (and you 
have to be a little careful with the choice of material properties to avoid locking). 

 
As a solution to this homework please submit: 
(1) A short summary of the tests you ran to demonstrate that your code works correctly 
(2) Please push your updated code to GitHub. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2. More challenging problem – a B-bar element for hyperelasticity 
 
Most hyperelastic materials have a large bulk modulus compared to their shear modulus (and are often 
idealized as incompressible materials).   As we have seen, it is important to design elements carefully for this 
sort of material.  The simple implementation described in class (and in problem 1) will suffer from 
volumetric locking. With this in mind, you will implement a finite strain version of the B-bar method. 
 
As in the small strain B-bar method the basic idea is to interpolate the volumetric and deviatoric strains 
separately.   In finite strain problems we use the deformation gradient as the basic measure of deformation 
rather than the strain; as you probably know, the Jacobian of the deformation gradient quantifies volume 
changes.   Accordingly, the B-bar method for finite strains uses a modified measure of the Jacobian of the 
deformation gradient.  To this end: 
• We define the volume averaged Jacobian of the deformation gradient 
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Here, the integral is taken over the volume of the element in the reference configuration. 
• The deformation gradient is replaced by an approximation ( )1// n
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strain problem and n=3 for a 3D problem, while J=det(F). 

• The virtual work equation is expressed in terms of this modified deformation gradient as 
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• We now introduce the usual element interpolation functions and calculate the deformation gradient and 
velocity gradient as 
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• As in the small-strain B-bar method we introduce the volume averaged shape function derivatives 
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• With these identities the discrete equilibrium equation can be expressed as 
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Notice that this result is essentially identical to equation (1) of Homework 5, except that the shape 
function derivatives are multiplied by the inverse of the deformation gradient, and we are using the 
Kirchhoff stress in the finite strain version.     

• As usual, we must solve this equation using Newton-Raphson iteration.   The correction to the 
approximation to the solution is computed using 
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where the stiffness follow from linearizing the virtual work equation.  The element stiffness is 
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where the term 1
rs qr qsF F δ− =  has been introduced for convenience.   Simplifying this result is a tedious 

but straightforward exercise.  Note that 
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We now need to find a way to reduce this to a set of compact matrix operations.   
The residual vector has the usual form 
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where σ  now stores the Kirchoff stress, and the matrix B  is identical to the one you used in Homework 5, 
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HW5 and add this small modification. 
 
The stiffness can be expressed as a series of matrix products 
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The matrices in this expression are defined (and can be computed) as follows: 
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Here ij ik jkB F F= .  We can store the identity matrix,  1,ij ijB B−    as 1-D vectors, eg 
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Recall that in Fortran90 the outer product of two 6 dimensional vectors ⊗a b  can be calculated using the 
following code aouterproductb = spread(a,dim=2,ncopies=6)*spread(b,dim=1,ncopies=6) 
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I couldn’t think of an elegant way to generate this matrix and just typed it in term-by-term.  If you can think 
of a better way please send me the code!   Be careful not to make any typos… 
 
 
(4) The matrix  *B  maps nodal velocities to the velocity gradient (stored as a vector) 
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We next examine the terms in the geometric stiffness:   ( )
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They can therefore be constructed with the following two lines of code (which assumes a 3D 
problem): 

dNdxvec(1:3*n_nodes) = reshape(transpose(dNdx(1:n_nodes,1:3)),(/3*n_nodes/)) 
result=spread(dNdxvec,dim=2,ncopies=3*n_nodes)*spread(dNdxvec,dim=1,ncopies=3*n_nodes) 
where dNdxvec must be declared as a 3*n_nodes long 1-D vector. 



• Products of the form ak biA B  appear in both P and Q, and are somewhat more cumbersome to 
assemble.  Note that 

11 11 12 11 13 11 11 21 12 21

11 12

11 13

21 11

21 12

11 12 13 11 12 11 11 11 21 21

11 12

11 13

21 11

21 12

@

ak bi

A B A B A B A B A B
A B

A B A B
A B
A B

A A A A A B B B B B
A B
A B
A B
A B

 
 
 
 =
 
 
  

   
   
   
   =
   
   
      

 

Where @ denotes the elemental product of the two matrices.   Note that blocks of these matrices can 
be created by a sequence of spread and reshape operations. 

[ ]
11 11 11 11 11 12 13

12 12 12 12 11 12 13 11 11 12 13

13 13 13 13 11 12 13

A A A A A A A
A A A A A A A A A A A
A A A A A A A

     
     → → →     
          

 

  

 

The matrix representing 
a b

k i

N N
y y

∂ ∂
∂ ∂

 can therefore be constructed as follows 

do i = 1,n_nodes 
  Pvec = reshape(spread(transpose(dNdx(i:i,1:3)),dim=2,ncopies=n_nodes),(/3*n_nodes/)) 
  Pmat(3*i-2:3*i,1:3*n_nodes) = spread(Pvec,dim=1,ncopies=3) 
end do 
result = Pmat*transpose(Pmat)) 
 

(2) The matrix Q is also a 3n x 3n matrix storing 
a b

k i

N N
y y

∂ ∂
∂ ∂

.   This can be computed using the procedure 

outlined above. 
 

(3) Finally, the matrix Σ   represents the product [ ]
a b

ij kl
k j

N NF
y y

τ∂ ∂
∂ ∂

 and is also a 3n x 3n matrix (for a 3D 

problem).  It can be assembled by first constructing the matrix 
b

bi ij
j

NS
y

τ∂
=
∂

 and then following the 

procedure used to create P and Q, i.e 
 S = reshape(matmul(transpose(B),stress),(/3,length_dof_array/3/)) 
 do i = 1,n_nodes 
   Pvec = reshape(spread(transpose(dNdx(i:i,1:3)),dim=2,ncopies=n_nodes),(/3*n_nodes/))      
   Pmat(3*i-2:3*i,1:3*n_nodes) = spread(Pvec,dim=1,ncopies=3) 
   Svec = reshape(spread(S(1:3,i:i),dim=2,ncopies=n_nodes),(/3*n_nodes/)) 
   Smat(3*i-2:3*i,1:3*n_nodes) = spread(Svec,dim=1,ncopies=3) 
 end do 
Sigma = Pmat*transpose(Smat) 
 



Here is a rough code template, which broadly follows the steps you used to construct your B-bar element: 
 

1. Initialize any variables that are incremented in the loops below 
2. Initialize integration points and weights 
3. Loop over integration points 

a. Compute shape functions and derivatives; convert to 
b

k

N
x

∂
∂

 in the usual way 

b. Compute the deformation gradient F (3x3 matrix) 
1

n a
ai

ij ij ij i
j ja

u NF u
x x

δ δ
=

∂ ∂
= + = +

∂ ∂∑  

c. Compute inverse of the deformation gradient and J 
d. Convert the shape function derivatives to derivatives with respect to deformed coordinates 

1
b b

ki
i k

N N F
y x

−∂ ∂
=

∂ ∂
 

e. Add contribution to /a
iN y∂ ∂   and 1

el
el V

J JdV
V

= ∫   from current integration point 

f. Add contribution to element volume from current integration point 

g. Add contribution to 
el

b a a b

k i k iV

N N N NJ J dV
y y y y

 ∂ ∂ ∂ ∂
−  ∂ ∂ ∂ ∂ 

∫ from current integration point 

4. Divide the result of (g) above and /a
iN y∂ ∂  by element volume and J  ; add the last term in the 

expression for P 
5. Loop over integration points 

a. Compute shape functions and derivatives; convert to 
b

k

N
x

∂
∂

 in the usual way 

b. Compute the deformation gradient F (3x3 matrix) 
1

n a
ai

ij ij ij i
j ja

u NF u
x x

δ δ
=

∂ ∂
= + = +

∂ ∂∑  

c. Compute inverse of the deformation gradient and J 

d. Convert the shape function derivatives 1
b b

ki
i k

N N F
y x

−∂ ∂
=

∂ ∂
 

e. Compute 1/3( / )J J=F F   
f. Compute the Kirchhoff stressσ   and material tangent stiffness D 
g. Assemble *, ,B B G  (note that you must use the modified deformation gradient F  in 

computing G). 
h. Compute Σ  and Q. 
i. Add the contributions from the current integration point to the integrals 

( )
0 0 0

*
0 0 0

T T nn

V V V

dV dV dV
n
τ

= = + − + +∫ ∫ ∫R B σ K B DGB Σ P Q  

 
 
 
 
 



 
 
 
Run the following tests to check your code: 
 

(5) As always, use CHECK STIFFNESS to check that your element stiffness is consistent with the 
element force vector.  

(6) Run a simple test in which you stretch a hyperelastic bar, with a coarse mesh.   A sample input file is 
provided in a file called Hyperelastic_bar_stretch.in.  You will probably need to edit the file to 
change the integer number used to identify the element, to make it consistent with your code. 

 

 
 

(7) Run a simulation in which the bar is first stretched, then rotated, as shown in the figure (this 
simulation would be impossible with linear elasticity).   A user subroutine has been provided with 
EN234FEA that applies this sequence of deformations, along with the input file called 
hyperelastic_stretch_rotate (again, you will probably need to edit the file a bit).  You should find that 
s22 at the end of the deformation is equal to S11 at the end of the stretch (obviously!).   You could 
modify the field projection routine to plot principal stresses (which should be constant).   The 
element_utilities module includes a function that calculates principal stresses given a 3D stress 
vector.  Also, the stiffness matrix should still be correct at the end of the deformation. 

(8) If steps 1-3 all work, you can try a more complicated problem – there is a sample input file to run the 
dreaded hole-in-a-plate simulation but with large elastic strains, but you can create your own mesh 
with a more interesting problem too.  The holeplate example will take a few minutes to run…. 

 
As a solution to this homework please submit: 
(3) A short summary of the tests you ran to demonstrate that your code works correctly 
(4) Please push your updated code to GitHub. 
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