EN234: Computational methods in Structural and Solid Mechanics
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HEALTH WARNING: Unfortunately FEA and solid mechanics use B to denote two different quantities —
the Left Cauchy Green deformation tensor, and the B matrix that maps displacements to strains. We use the
standard notation in this homework, so be careful to distinguish between the two!

In this homework you will extend EN234FEA to solve static boundary value problems for hyperelastic
materials. As a simple nonlinear elastic material we will consider the neo-Hookean material, with stress-
strain relation
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where o;; denotes the Cauchy stress, J=det(F), and B; = F, F; . This model is intended to be used with
K, >> g .

As last week you can choose whether to do a straightforward version of this problem, or a more challenging
(but more useful) implementation.



1. Simple problem — basic hyperelasticity

A straightforward implementation of finite strain elasticity was discussed in class.  Recall that the
equilibrium equation reduces to a set of nonlinear equations for the displacements of the form
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where Tjj is the Kirchhoff stress, and
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are the spatial shape function derivatives.

The nonlinear equations must be solved using Newton-Raphson iteration: as always this involves repeatedly
computing a correction to the approximation to the displacement field by solving a set of linear equations
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The following expression was derived in class for the tangent stiffness matrix
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The relevant products can be expanded as matrix operations
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where ¢ now stores the Kirchoff stress, and the matrix B is the usual one, except (eg) that aa— has been
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Here, B is the usual matrix (but with derivatives wrt y); the Tangent Stiffness D represents
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Here B; = F, F; . We can store the identity matrix, B;, B;' as 1-D vectors, eg

1=[1110,0,01 B=[B,;,B,,,B;3,B;,,B5,B] , in which case
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The matrix G represents %Frs = (5an|r +0)p Bnr) . This is symmetric in In, but not in pr and so must be

ps
stored as a 6x9 matrix
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I couldn’t think of an eleg_ant way to generate this matrix and just typed it in term-by-term. If you can think
of a better way please send me the code! Be careful not to make any typos...

The matrix B maps nodal velocities to the velocity gradient (stored as a vector) and is a 9x3*n_nodes
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The matrix X is a 3*n_nodesx3*n_nodes matrix, which represents the product
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This is a rather tricky matrix to assemble. Of course, you can do it using brute-force loops. If you want to
use the faster built-in Fortran matrix operations, you can use the following approach.
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Where @ denotes the elemental product of the two matrices. Note that blocks of these matrices can
be created by a sequence of spread and reshape operations.
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The following lines therefore construct X (there are probably other ways as well)

S = reshape(matmul (transpose(B),stress), (/3,length_dof _array/3/))
do i = 1,n_nodes
Pvec = reshape(spread(transpose(dNdx(i:i,1:3)),dim=2,ncopies=n_nodes), (/3*n_nodes/))
Pmat(3*i-2:3*1,1:3*n_nodes) = spread(Pvec,dim=1,ncopies=3)
Svec = reshape(spread(S(1:3,i:1),dim=2,ncopies=n_nodes),(/3*n_nodes/))
Smat(3*i-2:3*i,1:3*n_nodes) = spread(Svec,dim=1,ncopies=3)
end do
Sigma = Pmat*transpose(Smat)

Run the following tests to check your code:

(1) Asalways, use CHECK STIFFNESS to check that your element stiffness is consistent with the
element force vector.

(2) Run asimple test in which you stretch a hyperelastic bar, with a coarse mesh. A sample input file is
provided in a file called Hyperelastic_bar_stretch.in. You will probably need to edit the file to
change the integer number used to identify the element, to make it consistent with your code.
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Run a simulation in which the bar is first stretched, then rotated, as shown in the figure (this
simulation would be impossible with linear elasticity). A user subroutine has been provided with
EN234FEA that applies this sequence of deformations, along with the input file called
hyperelastic_stretch_rotate (again, you will probably need to edit the file a bit). You should find that
s22 at the end of the deformation is equal to S11 at the end of the stretch (obviously!). You could
modify the field projection routine to plot principal stresses (which should be constant). The
element_utilities module includes a function that calculates principal stresses given a 3D stress
vector. Also, the stiffness matrix should still be correct at the end of the deformation.

If steps 1-3 all work, you can try a more complicated problem — there is a sample input file to run the
dreaded hole-in-a-plate simulation but with large elastic strains, but you can create your own mesh
with a more interesting problem too. The holeplate example will take a few minutes to run (and you
have to be a little careful with the choice of material properties to avoid locking).

As a solution to this homework please submit:
(1) A short summary of the tests you ran to demonstrate that your code works correctly
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Please push your updated code to GitHub.



2. More challenging problem — a B-bar element for hyperelasticity

Most hyperelastic materials have a large bulk modulus compared to their shear modulus (and are often
idealized as incompressible materials). As we have seen, it is important to design elements carefully for this
sort of material. The simple implementation described in class (and in problem 1) will suffer from
volumetric locking. With this in mind, you will implement a finite strain version of the B-bar method.

As in the small strain B-bar method the basic idea is to interpolate the volumetric and deviatoric strains
separately. In finite strain problems we use the deformation gradient as the basic measure of deformation
rather than the strain; as you probably know, the Jacobian of the deformation gradient quantifies volume
changes. Accordingly, the B-bar method for finite strains uses a modified measure of the Jacobian of the
deformation gradient. To this end:

e We define the volume averaged Jacobian of the deformation gradient

= j det(F)dV
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Here, the integral is taken over the volume of the element in the reference configuration.

e The deformation gradient is replaced by an approximation Ifij =F;j (77/J )1/”

strain problem and n=3 for a 3D problem, while J=det(F).
e The virtual work equation is expressed in terms of this modified deformation gradient as
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where z; = Joy; is the Kirchhoff stress,
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e We now introduce the usual element interpolation functions and calculate the deformation gradient and
velocity gradient as

a
Rj =5ij +—- o = 5jj + Zﬂuf"
aXJ a1
- a a a
sL = 90V _ 1 ON N7 52 ON" N Fk}l
i aa Vi ¥j %
e Asin the small-strain B-bar method we introduce the volume averaged shape function derivatives
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e With these identities the discrete equilibrium equatlon can be expressed as
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Notice that this result is essentially identical to equation (1) of Homework 5, except that the shape
function derivatives are multiplied by the inverse of the deformation gradient, and we are using the
Kirchhoff stress in the finite strain version.

e As usual, we must solve this equation using Newton-Raphson iteration.  The correction to the
approximation to the solution is computed using
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where the stiffness follow from linearizing the virtual work equation. The element stiffness is
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where the term IEIrS Ifq‘,r1 = Jgs has been introduced for convenience. Simplifying this result is a tedious
but straightforward exercise. Note that
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We now need to find a way to reduce this to a set of compact matrix operations.
The residual vector has the usual form
R= '[ §T GdVO
v,
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where ¢ now stores the Kirchoff stress, and the matrix B is identical to the one you used in Homework 5,
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except (eg) that v has been replaced by _:8_Fk_i . You can cut and paste the code you used in
Xi i Xk
HWS5 and add this small modification.

The stiffness can be expressed as a series of matrix products
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The matrices in this expression are defined (and can be computed) as follows:

(1) The Tangent Stiffness D represents
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Here B; = F Ifjk. We can store the identity matrix, By, Bijfl as 1-D vectors, eg

1=[1110,0,0] B =[B};,B;,,Bs3,B,,,By3,Bys] , in which case
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Recall that in Fortran90 the outer product of two 6 dimensional vectors a®b can be calculated using the
following code aouterproductb = spread(a,dim=2,ncopies=6)*spread(b,dim=1,ncopies=6)

(2) The matrix G represents %Frs :(5an|r +0)p Bnr). This is symmetric in In, but not in pr and so
ps

must be stored as a 6x9 matrix
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I couldn’t think of an eleg_ant way to generate this matrix and just typed it in term-by-term. If you can think
of a better way please send me the code! Be careful not to make any typos...

(4) The matrix B" maps nodal velocities to the velocity gradient (stored as a vector)
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We next examine the terms in the geometric stiffness: I X+ Tﬂ(P +Q)dVy .
n
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. P is constant in each
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element, and for a 3D problem with n nodes it is a 3n x 3n matrix. It can be calculated at the same time as
oN?

. To evaluate the various products of the shape function derivatives, note that:
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They can therefore be constructed with the following two lines of code (which assumes a 3D
problem):
dNdxvec(1:3*n_nodes) = reshape(transpose(dNdx(1:n_nodes,1:3)),(/3*n_nodes/))
result=spread(dNdxvec,dim=2,ncopies=3*n_nodes)*spread(dNdxvec,dim=1,ncopies=3*n_nodes)
where dNdxvec must be declared as a 3*n_nodes long 1-D vector.

e Matrices of the form

ny =




e Products of the form A, By,; appear in both P and Q, and are somewhat more cumbersome to
assemble. Note that
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Where @ denotes the elemental product of the two matrices. Note that blocks of these matrices can
be created by a sequence of spread and reshape operations.

A1 Al A1 Ao A1 A2 As
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The matrix representing W can therefore be constructed as follows
k %Yi

do i = 1,n_nodes
Pvec = reshape(spread(transpose(dNdx(i:i,1:3)),dim=2,ncopies=n_nodes), (/3*n_nodes/))
Pmat(3*i-2:3*i,1:3*n_nodes) = spread(Pvec,dim=1,ncopies=3)

end do

result = Pmat*transpose(Pmat))

a b

(2) The matrix Q is also a 3n x 3n matrix storing % This can be computed using the procedure
k %Yi

outlined above.
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(3) Finally, the matrix X represents the product %rij [Rq ]ayl and is also a 3n x 3n matrix (for a 3D
k

J
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problem). It can be assembled by first constructing the matrix Sy, :WT” and then following the
j
procedure used to create P and Q, i.e
S = reshape(matmul (transpose(B),stress), (/3,1length_dof_array/3/))
do i = 1,n_nodes
Pvec = reshape(spread(transpose(dNdx(i:i,1:3)),dim=2,ncopies=n_nodes), (/3*n_nodes/))
Pmat(3*i-2:3*1,1:3*n_nodes) = spread(Pvec,dim=1,ncopies=3)
Svec = reshape(spread(S(1:3,i:1),dim=2,ncopies=n_nodes),(/3*n_nodes/))
Smat(3*i-2:3*i,1:3*n_nodes) = spread(Svec,dim=1,ncopies=3)
end do
Sigma = Pmat*transpose(Smat)



Here is a rough code template, which broadly follows the steps you used to construct your B-bar element:

1. Initialize any variables that are incremented in the loops below
2. Initialize integration points and weights

3. Loop over integration points
b

. I N® .
a. Compute shape functions and derivatives; convert to i— in the usual way
Xk

) n a
b.  Compute the deformation gradient F (3x3 matrix) F; = o;; +%= Sij + zﬂui‘"‘
an a1 8xj
c. Compute inverse of the deformation gradient and J

d. Convert the shape function derivatives to derivatives with respect to deformed coordinates

oN® _oN®
o ox ¢
e. Add contributionto oN® /gy, and \]_ziJ' JdV from current integration point

el Vy
f.  Add contribution to element volume from current integration point
b a a b
g. Add contribution to j J ONZ N -J ON" N dV from current integration point
v, KNx O Wk i
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4. Divide the result of (g) above and 6N/ dy; by element volume and J ; add the last term in the

expression for P
5. Loop over integration points

b

a. Compute shape functions and derivatives; convert to é;l in the usual way
Xk
: : : au; LONE
b. Compute the deformation gradient F (3x3 matrix) F; = 6j; + — =dj; + Z—ui
an a1 8xj
c. Compute inverse of the deformation gradient and J
b b
d. Convert the shape function derivatives T _NT Fk‘il
i X

. Compute F=(J /J)"*F
f.  Compute the Kirchhoff stresse and material tangent stiffness D
g. Assemble B,B",G (note that you must use the modified deformation gradient F in
computing G).
h. Compute £ and Q.
i. Add the contributions from the current integration point to the integrals

R=[BlotVy  K=[B'DGB'aYy +[-x+ 0(P+Q)dv,
V Vv, vV,

0



Run the following tests to check your code:

(5) As always, use CHECK STIFFNESS to check that your element stiffness is consistent with the
element force vector.

(6) Run a simple test in which you stretch a hyperelastic bar, with a coarse mesh. A sample input file is
provided in a file called Hyperelastic_bar_stretch.in. You will probably need to edit the file to
change the integer number used to identify the element, to make it consistent with your code.
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(7) Run asimulation in which the bar is first stretched, then rotated, as shown in the figure (this
simulation would be impossible with linear elasticity). A user subroutine has been provided with
EN234FEA that applies this sequence of deformations, along with the input file called
hyperelastic_stretch_rotate (again, you will probably need to edit the file a bit). You should find that
s22 at the end of the deformation is equal to S11 at the end of the stretch (obviously!). You could
modify the field projection routine to plot principal stresses (which should be constant). The
element_utilities module includes a function that calculates principal stresses given a 3D stress
vector. Also, the stiffness matrix should still be correct at the end of the deformation.

(8) If steps 1-3 all work, you can try a more complicated problem — there is a sample input file to run the
dreaded hole-in-a-plate simulation but with large elastic strains, but you can create your own mesh
with a more interesting problem too. The holeplate example will take a few minutes to run....

As a solution to this homework please submit:
(3) A short summary of the tests you ran to demonstrate that your code works correctly
(4) Please push your updated code to GitHub.
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