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Homework 7: Large deformation elasticity 

Due Fri Nov 3, 2017 
   

 
School of Engineering 
Brown University 
 
In this homework you will implement a finite 
element method to solve problems involving 
large-deformations of elastic materials 
(hyperelasticity).    
 
The calculations in this homework will show 
that there are a large number of equivalent 
ways to solve large deformation problems, 
depending on what stress and strain measures 
you choose to use.   You will come across all 
of them in the mechanics literature. 
 
As a specific choice, we will consider the 
generalized ‘Fung’ hyperelastic material.   
This model specifies the second Piola-
Kirchhoff stress (or ‘material stress’, which is related to Cauchy stress by 1 TJ− −=Σ F σF  ) as a function of 
the jacobian J=det(F) and the deviatoric right Cauchy-Green deformation tensor T=C F F  as 
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where 2/3/ij ijC C J=  ;  , ijklGµ  are two constants that control the anisotropic elastic moduli and the rate of 
stiffening of the material with stretch, and exp( )K Qµ>>  is the bulk modulus. 

The material has a strain energy density 2(exp( ) 1) ( 1)
2 2

KW Q Jµ
= − + − .  To interpret the constants , ijklGµ , 

note that for small strains the stress is 
1
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In this homework, we will assume for simplicity that the components of G in the global basis (with the usual 
convention for storing the modulus tensor as a 6x6 matrix) have the form 
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1. In this problem we will implement a finite element method for this material directly, by coding an 
ABAQUS format UEL.  This problem is meant to illustrate the general Newton-Raphson method for finite 
strain hyperelasticity problems, so we will not try to correct for volumetric locking in the element.   To use 
this approach for most real hyperelastic materials (which are usually close to incompressible) it would be 
essential to correct for volumetric locking.    
 
Since the stress-strain law is expressed in terms of the second Piola-Kircchoff stress, it is simplest to proceed 
by re-writing the finite element equilibrium equations in terms of this stress measure.   It is straightforward 
to show that the equilibrium equations reduce to a set of nonlinear equations for the displacements of the 
form 
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The nonlinear equations must be solved using Newton-Raphson iteration: as always this involves repeatedly 
computing a correction to the approximation to the displacement field by solving a set of linear equations 
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1.1 Follow the procedure in class to show that the tangent matrix can be expressed as 
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1.2 Show that the elastic tangent modulus is something like (I don’t guarantee that the result below is correct, 
but it is close enough to pass the stiffness check in EN234FEA and for the Newton iterations to converge): 

( )

( )

1 1

1
1 1 1 1

1 1
4/3 2/3

1
4/3

2 2 exp( ) (2 1) 2[ 1]

1
2

1 1 1 1
3 32 2

1 1
32

ij
ij kl ijkl ij kl ijkl

kl

ij
ijkl ik jl il jk

kl

ij
ijkl

kl

ijkl ij kl ij klpq pq pq

ijpq pq kl kl

Q P P KJ J C C J
C

C
C C C C

C
P
C

G P C C G C
J J

G C C G
J

µ

δ

− −

−
− − − −

− −

−

∂
 = + + − + − ∂

∂  = = − + ∂

∂
=
∂

= − − −

+ − +

Σ
Λ Ω

Ω

Λ

( )
2/3

1 1 11
3 9pq pq ij µn µnpq pq pq ijkl µn µnpq pq ij kl

JC C C G C C G C C Cδ− − −    − − +    
Ω

 
The following identities are useful 
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1.3 Now, implement this procedure as an ABAQUS UEL (you can use EN234FEA to do this, there is no 
need to run your code in ABAQUS.) 

 
As always, your UEL will need to calculate the element internal force vector and stiffness matrix.   The 
general structure of your code will be very similar to those you have written in previous assignments (and 
you could start by copying the small strain linear elastic UEL into a new file).   The stiffness and internal 
force vectors can be expressed in matrix form as 
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Here, *B  is a modified B matrix that maps the displacements onto the deformation gradient (for a 3D 
element with n nodes this is a 9x3n matrix) as 
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The vector q stores the (unsymmetric) nominal stress ik jkFΣ  as a 9 dimensional vector  
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You can compute q by: 

(i) Find the deformation gradient F, which can be assembled as a 3x3 matrix by first computing the 

shape function derivatives 
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 in the usual way, then multiply by the displacement vector 
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 (you can use a Fortran matmul to do this) 

(ii) Calculate the material stress Σ  , and store it as a 3x3 matrix 
(iii) Find TΣF  (use matmul) 
(iv) Assemble q (be careful to get the order right, or your code will bomb…) 

 
The matrix H in the stiffness is a 6x9 matrix with components  
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It is best to calculate the stress  and the material tangent matrix D in a separate subroutine (which takes F and 
the material properties as input, and returns Σ  and D). It is helpful to define vectors  
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where T=C F F  . We also need two stretch vectors with the shear terms doubled 
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Then (assuming you agree with the result in problem 1.2 – if not, you will need to change what is below) 
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Note that in Fortran the outer product of two 6 dimensional vectors ⊗a b can be calculated quickly using 
D = spread(a,dim=2,ncopies=6)*spread(b,dim=1,ncopies=6)  



 
Finally the geometric stiffness can be constructed by first computing the matrix 
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which can be assembled using standard matrix multiplications.  The full 3nx3n matrix follows by expanding 
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When you write your UEL, store the components of Cauchy stress 
/T Jσ = FΣF  

at each integration point as state variables (using the usual vector notation) , so EN234FEA can print the 
stress components to the tecplot format output file. 

 
 
1.4 Test your UEL by using the input file Abaqus_uel_hyperelastic.in provided with EN234FEA.  The file 
sets up a problem in which a bar is subjected to a sequence of a stretch, followed by a rotation.   Check the 
file to determine the order of the material properties in the PROPS vector in the UMAT subroutine.  
 
Use the CHECK STIFFNESS to make sure that the stiffness matrix for your element is consistent with the 
internal force vector. You can use Tecplot to visualize the deformed mesh 
 
As a solution to this problem (i) Upload your derivations of 1.1 and 1.2 and include a short summary of tests 
you have run to verify your code; and (ii) push your code to Github. 
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