Applications of FEA

Plate Tectonics

Applications of FEA

Machine Design
Applications of FEA

Dynamics and Vibrations

NASA

Simulia
Applications of FEA

Process Modeling

GM

Third Wave Systems
Applications of FEA

Biomechanics

A) CFD Simulation of Airway reopening

B) Optical Measurement of Cytoskeletal Structure and Mechanics:

C) Molecular model of adhesion proteins
 - α1β2 Integrin molecule
 - ECM Proteins (collagen)

D) Finite Element Model of Cell Deformation:
Materials Design

Applications of FEA

Accumulation of dislocations under cyclic loading on ~um scale

Cracked 5x10um particle
Applications of FEA

Coupled problems (multiphysics)

Simulia

Coupled ABAQUS/Numerica FSI

J Biomech Eng 135(8), 081001 (Jun 12, 2013)
A few current research areas in FEA in solid mechanics:

- XFEM
- Meshfree methods
- Asynchronous explicit dynamics parallelization (static and dynamic)
- Enhanced element formulations, Constitutive laws, multiphysics
- Mesh adaption/remeshing...
- Special procedures – eg acoustics (SEA, EFEA)
- Design optimization, probabilistic FEA

Applications of FEA
Selected commercial FEA codes

• ABAQUS
• ANSYS
• ADINA
• LS-DYNA
• COMSOL
• MATLAB Pdetool or Mathematica works well for simple problems
Selected open-source FEA codes

These are mostly focused on solving general PDEs. Often good choice for multi-physics. Solid mechanics can be fairly rudimentary, but is improving.

• Fenics – Imperial College

• MOOSE – Idaho National Laboratory

• FreeFem++

• Parafem

• Code Aster

• Lib Mesh

• Get fem++
PETSc

Portable, Extensible Toolkit for Scientific Computation

MUMPS: A PARALLEL SPARSE DIRECT SOLVER

MUMPS MAIN FEATURES

- Solution of large linear systems with
 symmetric positive definite matrices
 general symmetric matrices
 general unsymmetric matrices
- Version for complex arithmetic
- Parallel factorization and solve phases (uniprocessor version also available)
- Iterative refinement and backward error analysis

Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities

http://www.cg.its.tudelft.nl/~matthijss/oss_meshing_software.html
Deformation/fracture in electrode microstructures
Bower/Guduru MSMSE 2012

- Material model / surface electrochemistry model are taken from thin film studies
- Model also incorporates fracture using cohesive zones. Li insertion through new crack surfaces is included.
- Numerical methods to handle coupled diffusion/deformation, finite strains, electrochemical boundary conditions
- Now implemented as user subroutines in ABAQUS for sharing

Applications
- Fracture in thin Si film
- Fracture in Si nanoparticle electrode
FEA – DIC for measuring material properties

- We want to find material properties that best fit experimental displacements (from DIC) and load-displacement curves for a specimen of some sort.
- Use an objective function that penalizes differences between FEA simulations and experimental results.
- Minimizing the objective function can be done analytically alongside a normal finite element computation.

Goal: find material parameters Q_i that minimize

$$\Pi = \frac{\partial}{\partial x} \sum S (\Delta \phi - \Delta \phi^*)^2 + \frac{1}{\|u\|^2} \sum S (\Delta u - \Delta \bar{u}) : (\Delta u - \Delta \bar{u}) dA$$

Experiment

- Displacement \bar{u}
- Work Φ
- Domain S

FE simulation

- Displacement \bar{u}
- Work Φ
- Reference configuration

Best fit flow curves and stress exponent m

- 1.03 mm, $m = 79.30$
- 2.30 mm, $m = 76.01$
- 4.03 mm, $m = 100.78$
Large strain constitutive models for metallic glasses
Constitutive models for electro-active polymers
Constitutive models for granular materials
Implementation in ABAQUS
Phase field models are relatively new for studying fracture mechanics and damage evolution problems. However, they show great promise for tackling fracture problems that have been difficult to handle using standard finite element techniques. They are especially suitable for handling fracture problems which involve topology changes, such as crack branching, merging, etc. They, however, require further development for studying crack evolution in materials with spatial heterogeneity in mechanical properties and architecture.
Isogeometric Analysis, FSI (Yuri Bazilevs)

A numerical formulation for stratified incompressible flows, which is based on ALE-VMS methodology, is applied to simulate multiple 5MW horizontal-axis wind turbines (HAWT) at full scale interacting with Atmospheric Boundary Layer (ABL) flow. A multi-domain modeling (MDM) approach is adopted for computational efficiency.

A Reissner–Mindlin shell formulation based on a degenerated solid is implemented for NURBS-based isogeometric analysis. The performance of the approach is examined on a set of linear elastic and nonlinearelasto-plastic benchmark examples. The analyses were performed with LS-DYNA.
Course Goals

After completing EN2340, you should

• Be familiar with the theoretical basis for FEA in solid mechanics
• Be able to set up and solve problems using ABAQUS (or matlab/mathematica for simple problems)
• Be able to develop user elements and materials for ABAQUS (or use open source codes)
• Be able to use an IDE/Version control system to write and share code, and document revisions
Related Courses

APMA 2230-S01 Partial Differential Equations
CRN: 15807
Primary Meeting: TR 10:30 am - 11:50 am
Barus & Holley 163

The theory of the classical partial differential equations, as well as the method of characteristics and general first order theory. Basic analytic tools include the Fourier transform, the theory of distributions, Sobolev spaces, and techniques of harmonic and functional analysis. More general linear and nonlinear elliptic, hyperbolic, and parabolic equations and properties of their solutions, with examples drawn from physics, differential geometry, and the applied sciences. Generally, semester II of this course concentrates in depth on several special topics chosen by the instructor.

Instructor(s)
Constantine M. Dafermos (P)

APMA 2550-S01 Numerical Solution of Partial Differential Equations I
CRN: 15809
Primary Meeting: W 03.00 pm - 05.30 pm
Barus & Holley 165

Finite difference methods for solving time-dependent initial value problems of partial differential equations. Fundamental concepts of consistency, accuracy, stability and convergence of finite difference methods will be covered. Associated well-posedness theory for linear time-dependent PDEs will also be covered. Some knowledge of computer programming expected.

Instructor(s)
Chi-Wang Shu (P)

APMA 2570 - Numerical Solution of Partial Differential Equations III

No description available.
1.000 Credit hours
1.000 Lecture hours

Levels: Graduate, Undergraduate
Schedule Types: Do not Schedule

Applied Mathematics Department

APMA 2580A - Computational Fluid Dynamics

The course will focus on finite element methods for viscous incompressible flows. We first find discretization for Stokes equation and in the process discuss inf-sup stability and other stability techniques. We also consider different time discretizations as well as splitting methods. We then consider Navier-Stokes equations. We will write code and use software (e.g. Fenics) to run numerical experiments. Pre-requisites: APMA 2550, basic knowledge of finite element methods would be helpful but not necessary.
1.000 Credit hours
1.000 Lecture hours

Levels: Graduate, Undergraduate
Schedule Types: Primary Meeting

Applied Mathematics Department
What is special about FEA for solid mechanics?

- We always solve the same PDE ($\mathbf{F} = 0$ or $\mathbf{F} = \mathbf{ma}$)
- EOM (for dynamics) is second order in time
- Problems are nearly always nonlinear
- Describing geometry changes, and designing elements that capture these changes properly, can be tricky
- We are usually using a complex history and/or time dependent material model
- We often need to handle challenging boundary conditions (e.g., contact)
- We often need special procedures only relevant to solids – buckling; fracture; etc.
1. Overview of FEA, introduction to ABAQUS and ABAQUS/CAE
2. FEA for static linear elasticity
3. Advanced Element Formulations – shear locking; pressure locking; hybrid elements
4. FEA for nonlinear materials (hypoelasticity; small strain plasticity)
5. FEA with finite deformation problems (hyperelasticity; large strain plasticity)
6. FEA for time dependent problems: diffusion, dynamic linear elasticity
7. Structural elements (beams, plates, shells)
8. Cohesive Zones
9. Contact
You will need the following software:

- MATLAB/Mathematica (download from CIS website)
- ABAQUS and ABAQUS/CAE (available on instructional computer facility and via remote desktop)
- ABAQUS is available for windows/linux through engineering software server (no mac version).
- Can run ABAQUS on CCV with a free exploratory account
- For writing code (these work on Win, Mac, Linux):
 - Either: Gnu Fortran/Eclipse IDE, or: Intel parallel studio
 - A GitHub account
 - EN234FEA (on GitHub)
- TECPLLOT (download from CIS website)
Assignments

• ABAQUS simulations
• MATLAB coding
• FEA with Mathematica
• Implementing elements/materials in ABAQUS
• A final project

• Assignments 1 week long
• Due Fridays
• Assignments submitted via Canvas / GitHub
Assignments

• HW1: ABAQUS/CAE simulation

• HW2: Basic FEA – write a MATLAB code to solve a simple incompressible flow problem

• HW3: A Basic ABAQUS user element – implement 2D plane elasticity
Assignments

• HW4: FEA with Mathematica

• HW5: Special elements – incompatible mode elements

• HW6: Nonlinear materials: ABAQUS UMAT for a simple porous elasticity model

• HW7 Large deformations (anisotropic hyperelasticity)
• HW8: Phase field simulations

• HW9: Dynamic plasticity (modeling PLC bands)

• HW10: Continuum beam elements
• Completed all phases of the course - (use of ABAQUS; Matlab coding exercises; ABAQUS user element and material subroutine development); no more than two assignments submitted late; solutions were correct, well presented and organized; evidence of initiative and significant effort in most assignments and in final project - A
• Completed 8 or more homeworks and a final project; no more than four assignments were submitted late; assignments well presented and organized; final project is extensive and shows initiative; B
• Completed 6 or more homeworks; completed a final project - C
• Anything else – NC

• If you have a very busy semester and might find it hard to meet the HW deadlines consider S/NC