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This project consists of two parts. The first part is the FEM implementation of linear

viscoelasticity based on standard solid model. And the second part is an extension of
the linear model into the finite deformation, based on theory proposed by Reese and
Govindjee (1998)

L. Linear viscoelasticity
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Figure 1: Standard linear solid

In this solid model, two springs and the dashpot are all linear, whose elasticity and
viscosity tensors are denoted by Cjy,, Cil}kl and Cj};, giving following constitutive
relations:
O-i(;' = Ci‘}kzgkz .,
Uil} = Cil}kl(ekl — &) = il;kl%
Combining relations above gives the total constitutive equation of the material:
do & dEjj
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Now, write the equation of force balance into weak form:
faij’jé'uidV + f bi5uidV = — f aijé‘ui‘jdV + f bl5uldV = O,fOT' any 5ui
Inside each element, we use interpolation: du; = N%§uf, which gives the residual:

Then, with 8 scheme and given u', Au; = uf*** — u', 6} and interpolation u; =
N%uf, we can easily compute the increment of stress Ag;; = 0{}“ —0;j (and

therefore the updated stress) at each point of interest from equation 1. And since
the updated stresses are obtained, the residual could be calculated simply by plug
the stress into the formula at each integration point and do the integral (the
procedure for corresponding material tangent would be similar).

The procedure described above is implemented as an ABAQUS UMAT subroutine. To
test the validity of the results, we first perform a stress relaxation test. The



geometry of the model is a cube with edge length of 1. For all the three isotropic

tensors Cijy;, Ci’}kl and Cjjy;, the shear modulus/viscosity is taken as 1, and the bulk

part is 5. The corresponding stress relaxation curve versus time is given in Fig. 2.
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Figure 2: Stress relaxation with linear viscoelastic model

This result is consistent with the classic theory of exponential decay of stress, which
predicts ¢ = 0.14 + 0.14 - exp (—t).

Then, with the same model and material parameters, we applied a cyclic uniaxial
stretch. In this case, one cube surface is given an displacement of 0.05sin (2rt),
corresponding to a sinusoidal strain with magnitude of 0.05, which starts from t=0.
And the total time period computed is 10. The hysteresis curve is shown in Fig. 3
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Figure 3: Hysteresis of linear viscoelastic material

[t can be observed after several cycles a stable elliptic hysteresis is developed, which
is also consistent with the theory.



IL. Finite deformation viscoelasticity

Reese and Govindjee (1998) proposed a theory of finite deformation viscoelasticity
as an extension of the classical standard linear solid model. In his model, the
deformation gradient is decomposed into Ft = F¢F*, where F¢ corresponds to the
deformation of the dashpot in the standard solid model (Fig. 4) It should be noted
that in our following part of the report, for simplicity the upper note ‘t’ is sometimes
omitted for the total deformation gradient, but would stay for the stress on the
upper spring in Fig.4.
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Figure 4: Reese - Govindjee model

The authors proposed that, besides from the non-linear constitutive equations that
govern two springs in the model, another governing equation is :

—%L,,Be -(B®)" 1 =v1l:.¢°

where £, B€ represents the Lie derivative of the non-equilibrium left Cauchy-Green
tensor B¢ = F¢ - (F®)T. And V is a fourth order isotropic viscosity tensor (the same
as the Cj,, we used in our linear viscoelastic model). This equation gives the time-

dependent behavior of the material.

Putting this model into principle of virtual work, together with the interpolation of
displacement and test function in each element, we could easily get the weak form
for finite element formulation:
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where ] is the determinant of the total deformation gradient. Notice the Kirchhoff
stress Jo;; = ]aitj +J¢0f - (J/]¢) (J¢ is the determinant of F¢), the above formula can
be rewritten as
AR = f dJo}; 0By, ON? ON®
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In the formula above, all the Kirchhoff stresses’ derivative with respect to

corresponding left Cauchy-Green tensor could be easily obtained through material’s
elastic constitutive relations. And since ] is the determinant of deformation gradient,
and /¢ is the square root of B¢’s determinant, all the derivatives about them can also

e

be easily computed. The only term left to obtain is DB
kl

Reese and Govindjee (1998) suggest that, the time evolution equation:
1
—5L,B® - (B) =V7ho®
can be numerically solved with the trial step technique. At the beginning of each

time step t,,, we compute a trial value of B¢ = B! = F,_, - (C");%,  -Fi_. ,
where €' = (F)TF!. And then, the real B¢ is obtained by solving the non-linear
equation with Newton iteration:

Bf_. = exp[-2At(V™':0©),,] - B
With the equation above, actually we could obtain not only the B¢ at each step, but
also—— aF’Z” By taking the derivative of Fj; on two sides, we get an equation:
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Solving it, we get the 22mn aF =, and therefore every term in the weak form can be
kl

computed.

Implementing this model as an ABAQUS UEL, we select the neo-Hookean model for
the springs in the model, and both shear moduli are 1, and bulk moduli are 5.
Similarly, the shear viscosity for V is also 1 and bulk viscosity is 5. We use the same
geometry and mesh in our linear viscoelastic part, and also put it under a uniaxial
stress relaxation test. Again, the applied step strain is 0.05. The result is plotted in
Fig. 5
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Figure 5: Stress relaxation of Reese and Govindjee model

From Fig. 5, we can see, during the relaxation, the stress level would gradually
decrease to half of initial value, which is consistent with the model (Fig. 4), and the
characteristic time of the decay is also around 1. However, it should be noted that
the initial level of the stress is somewhat lower than the theoretical value, which
indicates our code still have problems to fix.

In conclusion, in this project we first implement the linear viscoelastic material
model in UMAT, which successfully reproduces the theoretical results. And then we
attemptively implement the finite deformation viscoelastic model proposed by
Reese and Govindjee (1998), whose result, although partially consistent with the
model, indicates further fixes are necessary for our code.



