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Abstract: Two nodes 2D continuum-based beam element is implemented in EN234_FEA 
codes. Several tests have been run to verify this beam element. 
 
1 Background 
Structural element, such as beam element, shell element, are widely used in engineering 
practice. Compared with continuum element, those structural elements have the advantages of 
lower computational costs and higher stability. There are generally two different methods to 
develop structural elements[1]. One is developing directly from the weak form of classical 
beam/shell equations of equilibrium/ momentum. This method is difficult due to the 
complexity of governing equations of structural elements. The other method is developing the 
element by degenerating from a corresponding continuum element with some structural 
assumptions. A 2D continuum-based beam element is developed below to show the general 
ideas. 
 
2 Continuum-based beam element 
Figure 1 shows the sketch of a two nodes 2D beam element (5, 6) which is degenerated from a 
four nodes 2D quadratic element (1, 2, 3, and 4).  Nodes 5, 6 are called master nodes, and 
nodes 1,2,3,4 are called slave nodes whose coordinates and degrees of freedom could be 
represented in terms of the corresponding terms of master nodes. 
 

 
Figure 1 sketch of continuum-based beam element 

 
Master nodes have three degrees of freedom{𝑈𝑈1,𝑈𝑈2,𝜃𝜃}. The coordinates and displacements of 
slave nodes (1, 4) can be computed from master node 5 under Timoshenko assumption: 
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4 = 𝑥𝑥15 − 0.5 ∗ ℎ ∗ sin (𝜃𝜃1)
𝑥𝑥24 = 𝑥𝑥25 + 0.5 ∗ ℎ ∗ cos(𝜃𝜃1)
𝑥𝑥11 = 𝑥𝑥15 + 0.5 ∗ ℎ ∗ sin(𝜃𝜃1)
𝑥𝑥21 = 𝑥𝑥25 − 0.5 ∗ ℎ ∗ cos(𝜃𝜃1)

                                              (1) 

 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∶              �
  𝑑𝑑𝑑𝑑4 =  𝑑𝑑𝑑𝑑5 + 𝑑𝑑𝑑𝑑1 𝑒𝑒3 × (𝑥𝑥4 − 𝑥𝑥5) 
𝑑𝑑𝑑𝑑1 =  𝑑𝑑𝑑𝑑5 + 𝑑𝑑𝑑𝑑1 𝑒𝑒3 × (𝑥𝑥1 − 𝑥𝑥5)

                                (2) 

The linear transformation that link DOFs of beam element with DOFs of solid element is: 
𝑈𝑈𝑠𝑠 = 𝑇𝑇𝑈𝑈𝑚𝑚                                                                      (3) 

Where, 
𝑈𝑈𝑠𝑠 = {𝑈𝑈11,𝑈𝑈21,𝑈𝑈12,𝑈𝑈22,𝑈𝑈13,𝑈𝑈23,𝑈𝑈14,𝑈𝑈24} 

 
𝑈𝑈𝑚𝑚 = {𝑈𝑈15,𝑈𝑈25,𝜃𝜃1,𝑈𝑈16,𝑈𝑈26, 𝜃𝜃2} 
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Then we have: 

𝜀𝜀 = 𝐵𝐵𝐵𝐵𝑈𝑈𝑚𝑚                                                                    (5) 
Where B is the standard B matrix for the four nodes 2D element. 
 
The calculation of stress is performed in corotational coordinates {𝑒𝑒1�, 𝑒𝑒2�, 𝑒𝑒3�}, where 

𝑒𝑒1�＝
𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕

�𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕
��   𝑒𝑒3� = 𝑒𝑒3  𝑒𝑒2� =  𝑒𝑒3� × 𝑒𝑒1�                                             (6) 

We adopted the so-called plane stress condition or zero normal stress condition, which says the 
transverse normal stress 𝜎𝜎𝑦𝑦𝑦𝑦�  is negligible. So we have the following constitutive relation: 

𝜎𝜎� = 𝐷𝐷𝜀𝜀 ̂                                                                              (7) 
Where, 

𝜎𝜎� = �𝜎𝜎�11𝜎𝜎�12
�   𝜀𝜀̂ = � 𝜀𝜀1̂12𝜀𝜀1̂2
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�𝑒𝑒1� ∗ 𝑒𝑒1��𝑒𝑒2� ∗ 𝑒𝑒1�
�𝑒𝑒2� ∗ 𝑒𝑒1�
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      �𝑒𝑒1� ∗ 𝑒𝑒2��𝑒𝑒2� ∗ 𝑒𝑒2�
�𝑒𝑒1� ∗ 𝑒𝑒1� ∗ �𝑒𝑒1� ∗ 𝑒𝑒2�

      �𝑒𝑒1� ∗ 𝑒𝑒1��𝑒𝑒2� ∗ 𝑒𝑒2� + �𝑒𝑒1� ∗ 𝑒𝑒2��𝑒𝑒2� ∗ 𝑒𝑒1�
� 

 
Combining (5) (7), we get  𝜎𝜎� = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑈𝑈𝑚𝑚. 
 
Recalling principle of virtual work equation for a standard four nodes 2D element: 

∫𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝜕𝜕𝑁𝑁𝑎𝑎

𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑁𝑁𝑏𝑏

𝜕𝜕𝑥𝑥𝑙𝑙
𝑈𝑈𝑙𝑙𝑠𝑠 𝑏𝑏𝑑𝑑𝑑𝑑 = −∫𝜎𝜎𝑖𝑖𝑖𝑖0

𝜕𝜕𝑁𝑁𝑎𝑎

𝜕𝜕𝑥𝑥𝑗𝑗
𝑑𝑑𝑑𝑑 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓                  (8) 



Substituting (3) (5) (7) into (8), we get the finite element scheme for 2D beam element: 

� [𝑘𝑘𝑒𝑒𝑒𝑒]𝑈𝑈𝑚𝑚

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

= � 𝑟𝑟𝑒𝑒𝑒𝑒
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

+ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

[𝑘𝑘𝑒𝑒𝑒𝑒] = �(𝑅𝑅𝑅𝑅𝑅𝑅)𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷       𝑟𝑟𝑒𝑒𝑒𝑒 = −�(𝑅𝑅𝑅𝑅𝑅𝑅)𝑇𝑇𝜎𝜎�𝑑𝑑𝑑𝑑   

In order to avoid shear locking, the integral is calculated using ‘’Trapezoidal Rule’’ with 5 points 
in the line of 𝜉𝜉 = 0. 
 
3 Examples  
3.1 Shear Lock and Unlock 
Figure 2 and figure 3 respectively show the FEA result for a beam fixed at one end and loaded at 
the other end. The dimension of the beam is 33 units long with a constant cross section of 1*1. 
In figure 2, standard 4 nodes Gauss interpolation points are used, while in figure 3 Trapezoidal 
Rule with 5 points in 𝜉𝜉 = 0 is adopted.  From these figures, we could see that for this relative 
long beam, Gauss interpolation will result in shear lock, while trapezoidal rule could solve this 
problem. Figure 4 and Figure 5 shows the FEA results of a relatively short beam with a cross 
section of 8*8. Under this condition, no shear lock happens. 

 
             Figure 2 Gauss interpolation (long beam)      Figure 3 Trapezoidal Rule (long beam) 

 
            Figure 4 Gauss interpolation (short beam)      Figure 5 Trapezoidal Rule (short beam) 



3.2 Comparison of Timoshenko beam and Euler beam 
Timoshenko beam and Euler beam differ in the structural assumptions that Euler theory 
assumes that the plane normal to the midline remain plane and normal, while Timoshenko 
beam theory says plane normal to the midline remain plane but no longer normal. Figure 6 
shows the different kinematic assumptions of two different beam theories. The continuum-
based beam element adopts Timoshenko structural assumptions which count the effects of 
shear force. For a cantilever beam fixed at one end and subjected to pin load at free end, these 
two beam theories give different deflection equations: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∶                    𝑤𝑤(𝑥𝑥) = 𝑃𝑃
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Figure 7 shows the results of Timoshenko beam theory, Euler beam theory and FEA for the 
same cantilever beam model. The dimension of this beam is 33*6*6. From the figure, we could 
see that the FEA coincides with Timoshenko theory. 

 
Figure 6 Euler beam and Timoshenko beam 

 
Figure 7 deflection –x  



3.3 distributed load on simply supported beam 
Figure 8 shows the FEA results for a simply supported beam under constant distributed load. 
The deflection is calculated through Timoshenko theory as following: 

𝑤𝑤(𝑥𝑥) = 𝑞𝑞
24𝐸𝐸𝐸𝐸
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Figure 9 shows the comparison between Timoshenko results and FEA results. The dimension of 
the beam is 33*6*6. 

 
Figure 8 deflection of simply supported beam 

 
Figure 9 comparison between Timoshenko beam theory with FEA result 
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