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Intorduction:

Single crystals, are monocrystalline solids whose structure consists of a single, continuous and
unbroken grain. They are characterized by their extraordinary mechanical properties,

which are mainly attributed to the absence of structural defects associated with grain boundaries.
These properties and especially the inherent creep resistance of metal single crystals 1s the main
reason for their widespread implementation in turbines and the energy industry. However, research
on the mechanical behavior and constitutive modelling of single crystals is not entirely motivated by
the continuous need for mnovative industrial applications. Each and every metal consists of grains
and grain boundaries and all metals share the same defects such as vacancies, dislocations etc. Single
crystals are essentially the building block of every polycrystalline metal that existed, exist and will
exist in the future since by definition, single crystals only consist of a single grain with a given spatial
orientation and no boundaries. Understanding the mechanics of crystal plasticity and being able to
simulate the deformation of single crystals 1s therefore crucial to the understanding of very important
phenomena in metals such as texture, deformation induced anisotropy, grain interactions and many
more. In this project we will focus on FCC crystals since they represent the vast majority of metals
used mn engineering applications. We will present the fundamental theory behind single crystal
plasticity, outline the governing equations and describe the methods that can be used to solve the
equations numerically in a finite element setting. The constitutive model will then be implemented
m a User MATerial subroutine that can be used with the Abaqus commercial FEA software and the
code will be tested 1 a series of simulations designed to assess the convergence and validity of the
results.

Elastoplastic equations:

The physically based assumption, that crystal plasticity 1s the result of simultaneous simple shears
along the crystal's active systems allows us to express the velocity gradient associated with plastic
slip as (Bower):
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where S;,mg are the unit vectors along the slip and normal directions of slip system a respectively,
defined in the reference configuration B,. The summation in the above equations is carried over

the active systems at the time of calculation Nas (Number of Active Systems). Now recalling that the



deformation rate D and spin tensor W are defined as the symmetric and skew parts of L respectively,
we can also define:
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The multiplicative decomposition of the deformation gradient F :

F =F°.F*F
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Figure 1: The multiplicative decomposition of the deformation gradient

The slip direction vector S; 1s embedded in the lattice and transforms during deformation according
to s“ =F°-sy . In contrast, the unit normal to the slip plane my transforms as m* =F®-m;, so that

it constantly remains perpendicular to the slip plane.

The Elasticicty Matrix:

The constitutive relationship for the elastic behavior of an FCC metal single crystal is taken to be
that of an linearly elastic solid with cubic symmetry. In this case the constitutive law can be
parameterized with respect to 3 independent material constants and with respect to the crystal axes
can be written in the form (Bower):
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Is the elasticicty matrix with respect to the crystal axes and in terms of C;;.
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Figure 2: The local crystal system n'*! and the global coordinate system e;



n" = Qije; =Q-e;
Finally:
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Hardening of Single Crystal: The Bassani-Wu Model

A typical stress—-strain curve of an FCC metal crystal exhibits three distinct deformation stages
(Haidemenopoulos ). Initially, in Stage I, plastic slip 1s attributed to the activation of only one out of
the twelve possible slip systems that FCC crystals comprise of 12 slip systems resulting from all
possible combinations between their 4 dense planes <111> and 3 dense directions <110>
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Figure 3: The deformation stages of FCC metal single crystals

The yield criterion of each ship system a is defined in terms of the resolved shear stresses and 1s

expressed 1n rate form as:
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The consistency condition then takes the following form for every slip system a €
e <0 — A47=0

o =0 — 42>0



The hardening model proposed by Bassani and Wu 1s then summarized as:
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UMAT implementation - Stress Update Algorithms :

The resolved shear stress 7% within each slip system a can be calculated as:
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The hardening of each slip system 1s then expressed as:
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The yie 1d conditions of all slip systems are then introduced in terms of the two above equations:
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Therefore, the unknowns A;/’B are determined as the solution of the following system:

Only numerical solutions are applicable to the above equation since both 7% and 7, are highly non-

inear functions of the unknowns Ay” . Implementing the Newton Raphson method, we can

iteratively solve for the unknowns Ay“ until convergence is achieved. Newton iterations for

multivariate systems however, require the Jacobian matrix of the system, which i this case 1s defined

as (0@* / 0Ay”) . Next, we calculate the derivatives necessary to build the Jacobian matrix:
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2" Piolla - Kirchhoff’s variation:
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Calculating the derivative (0X/0Ay*)
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Final expression of the elastic Jacobian
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Figure 4: Schematic representation of the stress update algorithm




Results :

Figure 5 illustrates the anisotropic and non-uniform deformation of the sinlg crystal specimen
presenting the actual undeformed and deformed shapes before and after the uniaxial analysis.

Figure 5: Undeformed and deformed configuration

The finite element results for the uniaxial tension are presented in figure 6 by plotting the
macroscopic true stress-logarithmic strain curve.
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Figure 6: Stress - logarithmic strain curve for uniaxial tension



In total, 11 slip systems are activated during the uniaxial tension test, and the order of activation 1s
i complete agreement with the one predicted using the Schmid factors:

T = 0 COS @ COS A

Slip System Schmid Factor
5 0.489897949
2 0.419912527
6 -0.326598632
7 -0.279941685

1,3 -0.209956264
4 -0.163299316
8,9 0.139970842
10 -0.093313895
11 0.069985421
12 0.023328474
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