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1 Introduction

During uniaxial tensile test certain polycrystalline alloys are able to withstand extremely large
plastic strains, which is referred to as superplasticity. Several attempts have been made developing
the models for superplastic flow accounting for many internal processes such as grain boundary
sliding, diffusion, dislocation creep etc,.

In this project, a similar but simple version of the model considering only the stress driven
diffusion of atoms along grain boundaries has been modeled. FEA formulation is done in EN324FEA
and the same is implemented in ABAQUS.

2 Model Description

The solid under deformation is idealized as a collection of two dimensional single crystal. In our
model we consider one element of the upper grain boundary Γ+ and the other element from lower
grain boundary Γ−.

The solid is stress free at time t = 0 and then loaded by prescribing the displacements on the
upper boundary of the top element ∂1R and tractions over the remaining boundaries while keeping
lower boundary ∂2R fixed. Then the objective is to compute the distribution of the stress across
the grain boundary caused by the material flux across the interfaces.

Figure 1: Simple figure describing the model, notation and sign convention
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In response to the chemical potential difference, atoms detach from either grain and the resulting
flux can be distinguished into three types. The volumetric flux jn and the two tangential flux jt−
and jt+ along the grain boundary interface. In our model we ignore the volumetric flux jn

2.1 Governing Equations

The flux of atoms tangent to each interface is related through

jt+− = −
DGBtδGBexp(

−QGBt

kT
)

2kT

∂µ+−

∂s
(1)

Total flux tangent to the boundary

jt = jt+ + jt− = −
DGBtδGBexp(

−QGBt

kT
)

2kT

∂µ

∂s
(2)

Where µ = (µ+ + µ−)/2 and the chemical potential of atoms adjacent to each grain is

µ+− = Ωσn (3)

Therefore the normal velocity of the grain boundary follows as

vn =
1

2
(vn+ + vn−) =

1

2

∂[jt+ − jt−]

∂s
(4)

vn =
ΩDGBtδGBexp(

−QGBt

kT
)

kT

∂2σn
∂s2

(5)

2.2 FE formulation

The finite element approximation for the field is computed using augmented form of virtual work.

∫
Vt

σij(δui)δLijdV −
∫
∂Vt

t∗i δvids+

∫
Γt

(
∆un
∆t

− ΩDGBtδGBexp(−QGBt/kT )

kT

∂2σn
∂s2

)δσnds

+

∫
Γt

σt(δv
+
i − δv+

i )tids+

∫
Γt

(
∆ut
∆t

−
Ωη0exp(

−QGBt

kT
)

kT
σt)δσtds = 0

(6)

On integrating by parts we get the discrete weak form. Here, the continuum part is not shown.

∫
Γe

N b[Na+ −Na−]σbnds+

∫
Γ

N b∆u
b
n

∆t
Nads+

∫
Γ

C1
∂Na

∂s

∂N b

∂s
σbnds

+

∫
Γ

N bσbt (N
a+ −Na−)ds+

∫
Γ

[N b∆u
b
t

∆t
− C2N

bσbt ]N
ads = 0

(7)

Where C1 and C2 are constants below and both set to value of 1

C1 =
ΩDGBtδGBexp(

−QGBt

kT
)

kT
C2 =

Ωη0exp(
−QGBt

kT
)

kT
(8)
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The rest of the formulation is similar to the Cahn-Hillard case. Below is the element formulation
to solve the problem. The nodes 7, 8, 9 have the tangential and normal stresses as the Degree of
Freedom (DOF) while the rest have displacements as DOF.

Figure 2: Element Formulation

Now we define matrices p and B. The B matrix maps the DOFs to the variables in the matrix p

p =


∆un
∆ut
σn
∂σn
∂s

σt

 =
[
B
]



u1
1

u1
2

u2
1

u2
2

u3
1

u3
2
...
σ8
t

σ9
n

σ9
t


(9)

B =


N1n1 N1n1 N1n1 . . . N

6n2 0 0 . . .
N1n1 N1n1 N1n1 . . . N

6n2 0 0 . . .
0 0 0 . . . N7 0 . . . N9 0

0 0 0 . . . ∂N7

∂s
0 . . . ∂N9

∂s
0

0 0 0 . . . 0 N7 . . . 0 N9

 (10)

The finite element stiffness matrix and the residual vector can then be expressed as

[kel] =

∫
V

[B]T [D][B]dV [rel] = −
∫
v

[B]T qdV (11)

where
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q =


σn
σt

∆un
∆t

C1
∂σn
∂s

∆ut
∆t

− C2σt

 (12)

[D] =


0 0 1 0 0
0 0 0 0 1

1/∆t 0 0 0 0
0 0 0 −C1 0
0 1/∆t 0 0 −C2

 (13)

2.3 Analytical Solution

From the earlier discussion C1 and C2 = 1. Now consider the governing equation (5)

vn =
∂2σn
∂s2

(14)

On solving the above equation with the help of below boundary conditions.

u1 = u2 = 0 for nodes 1,2 and 3. σ7
n = 0, ∂σ9

n

∂s
= 0 with the velocity vn = 0 on top nodes 4,5, 6.

The final analytical solution is

σn =
Vn
2

(s2 − 4s) where 0 < s < 2 (15)

3 Simulation and Results

The model is coded as UEL in EN234FEA and a displacements of 0.1 has been applied to the top
nodes while the bottom nodes are fixed in both DOFs. σ7

n = 0 and the σ8
n and σ9

n of the other
elements are computed by the simulation. The obtained results should be in conjuncture with the
analytical solution. Hence σn vs s should be a quadratic curve.

Figure 3: Comparison of the Analytical and Simulated Numerical results
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The same model is implemented in Abaqus. Below is the plot of the stress contours. As can be
seen the contours are based on the quadratic distribution of the stresses.

Figure 4: ABAQUS simulation results
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4 Conclusion & Future Work

In conclusion, the numerical results obtained from EN234 FEA are in conjunction with the analytical
results. The normal stress follows the quadratic distribution as obtained in the analytical result.
The same is shown in ABAQUS contour plots.

In addition, one can extend the above work to include the volumetric flux, increase the number
of elements under consideration, add the boundary migration effects. The same can be implemented
in the ABAQUS.
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