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1. The figure shows the trajectory of a particle in a Penning trap, for a particular choice of the electric and
magnetic fields that trap the particle. The particle remains in the (x,y) plane at all times, and move from a to
b to c to d…

At point (a), the particle’s speed is decreasing
At point (c), the particle’s speed is increasing
At point (d), the particle’s speed is a maximum

1.1 Draw arrows on the figure at points (a), (c), and (d) to show the approximate direction of the particle’s
acceleration vector.

[1 POINT EACH]

1.2 What is the particle’s speed at point (b)? The trajectory is vertical, so the particle must have zero
vertical velocity. The direction of motion of the particle must reverse, so at (b) the vertical component of
velocity must also be zero. So the total speed is zero.

[1 POINT]

2. The figure shows a vibration measurement from a
displacement transducer. The vibration may be assumed to
be harmonic. Estimate

(a) The period of oscillation

There are 4 cycles in 100 sec, so period is 100/4=25 sec

(b) The angular frequency of oscillation

Angular frequency is related to period by

/ 2 / 25 / secT rad    

(c) The amplitude of the velocity

The amplitude of the displacement is 10 cm. The velocity amplitude is related to displacement amplitude by
20 / 25 / secV X cm    
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(d) The amplitude of the acceleration

The acceleration amplitude is related to velocity amplitude by  2 210. 2 / 25 / secA V cm    

[1 POINT EACH]

3. An airport ‘people mover’ travels at constant speed
V around a circular path with radius R.

3.1 Write down the position vector of the vehicle in
terms of R and the angle  shown in the figure.

Trig gives cos sinR R  r i j

[1 POINT]

3.2 Hence, calculate formulae for the velocity and acceleration vectors for the vehicle, in terms of R, V, and
 , expressing your answer as components in the basis shown.

Note that  varies with time. Differentiate the position vector, using the Chain rule

 sin cos sin cos
d d d d

R R R
dt dt dt dt

  
         

r
v i j i j .

Note that  sin cos  i j is a unit vector, so /Rd dt is the magnitude of the velocity (i.e. the speed V)

and therefore
d

R V
dt


 . Thus

 sin cosV    v i j

Differentiate again to find the acceleration

   
2

cos sin cos sin
d d V

V
dt dt R


         

v
a i j i j

[2 POINTS]
3.4 The figure shows a passenger inside the car, at the instant when 0  .
His center of mass is a height h above the floor, and he stands with feet a
distance d apart, facing in the direction of motion of the vehicle. There is
sufficient friction between the floor and his feet to prevent slip. Draw the
forces acting on the passenger on the figure provided below

[2 POINTS]
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3.5 By considering the motion of the passenger at the instant when 0  , determine formulae for the
reaction forces exerted on the passenger by the floor of the vehicle, in terms of m, g, V , R, d and h. Not all
the forces can be determined uniquely.

Substituting 0  into the acceleration formula from 3.2, and writing down Newton’s law gives
2

( ) ( )A B A B
V

T T N N mg m m
R

        F i k a i

We can get another equation of motion by idealizing the passenger as a massless frame, in which case
moments about the COM must vanish, i.e.

  ( )
2

A B B A
d

T T h N N   j j 0

The i component of the first equation gives.

 
2

A B
mV

T T
R

 

Using the k component of the first equation, and substituting for  A BT T in the second gives

2

( ) 0

( ) 0
2

A B

B A

N N mg

mV d
h N N

R

  

  

These can be easily solved to give
2 2

2 2
A B

mg mV h mg mV h
N N

R d R d
   

[3 POINTS]

3.6 Finally, calculate an expression for the minimum allowable radius of the path for the passenger to remain
standing, in terms of V, g, h and d.

The passenger tips over if his feet lose contact with the ground. Contact is lost if the reaction force is zero

or negative. The preceding part of the problem shows that AN is always positive, but BN will be zero if the

radius is too small. So
2 22

0
2

B
mg mV h V h

N R
R d g d

    

[2 POINTS]
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4. The figure shows a proposed design for a spring-loaded
catapult. It operates as follows: (a) The spring is compressed to a
length d and then released from rest; (b) the spring returns to its

unstretched length, accelerating mass 1m to a speed 0V ; (c)

immediately after this point masses 1m and 2m collide; (d)

causing mass 2m to be expelled from the muzzle with speed 2v

The spring has stiffness k and un-stretched length 0L , and the

collision between the two masses can be characterized by a
restitution coefficient e.

4.1 Write down the potential energy of the system in state (a).

The PE is just the energy of the spring, i.e.

2
0

1
( )

2
V k L d 

[1 POINT]

4.2 Hence, calculate a formula for the speed of mass 1m just before impact (b), in terms of k, 0L , 1m and d.

This is a conservative system, so PE+KE is constant. At the instant just before impact, the spring returns to
its unstretched length, and the KE is

2
1 1

1

2
T m v

Thus

2 2
0 1 1 1 0

1

1 1
( ) ( )

2 2

k
k L d m v v L d

m
    

[2 POINTS]

4.3 Deduce expressions for the speeds 1v and 2v of the two masses just after the collision (d), in terms of k,

0L , 1m , 2m , e and d.

Momentum is conserved during the impact, so 1 0 1 1 2 2
1

( )
k

m L d m v m v
m

  

In addition, velocities before and after impact are related by the restitution coefficient

0 2 1
1

( ) ( )
k

e L d v v
m

  

These two equations can be solved for the two velocities, with the result

V0

m2m1

m2m1

m2m1*

L0

v1

m2m1

v2

d

(a)

(b)

(c)

(d)
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1 1 2
2 0 1 0

1 2 1 1 2 1

(1 ) ( )
( ) ( )

e m m emk k
v L d v L d

m m m m m m

 
   

 

[4 POINTS]

4.4 Show that the speed of mass 2m is optimized if 1 2m m

From the preceding part,

1
2 0

1 2

(1 ) ( )
m

v e k L d
m m

  


We want to find the value of 1m that maximizes this (for a fixed projectile mass 2m ). Differentiate with

respect to 1m and set the derivative to zero

   

 

12
2

1 1 1 2 1 2

1 2 1
1 22

1 1 2

1
0 0

2

2
0

2

mdv

dm m m m m m

m m m
m m

m m m

   
 

 
   



[2 POINTS]
4.5 Finally, compute a formula for the energy efficiency of the optimal design.

The energy efficiency is the ratio of the KE of the projectile to the initial PE in the spring. With 1 2m m

this is

 

 
2 2

2 2
22 1

22
1 20

1
12 (1 )

1 4( )
2

m v em m
e

m mk L d


  



[3 POINTS]

5. The figure shows an idealization of a vehicle’s suspension system.

Mass cm represents the body of the vehicle, while mass wm represents

the wheel. The spring with stiffness sk and unstretched length sL

represents the shock absorbers, while the spring with stiffness wk and

unstretched length wL accounts for the deformation of the car tire. As

the car drives over a rough road, the base of this spring vibrates
vertically with a time dependent displacement h(t). The motion of the

system will be described by the height wy and cy of the wheel and car,

respectively.

5.1 Write down an expression for the acceleration of the two masses, in

terms of time derivatives of the heights wy and cy . Both masses may

be assumed to have a constant horizontal velocity. You don’t need to use

kS,LS

yW

mW

h(t)

kW,LW

mC

yC
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Newton’s laws to answer this part.

The vertical component of acceleration is simply

2

2

2

2

w
w

c
c

d y
a

dt

d y
a

dt





[2 POINTS]
5.2 Draw the forces acting on the two masses on the figure provided.

[3 POINTS]

5.3 Hence, derive equations of motion for wy and cy . Both masses can be idealized as point masses.

Vertical components of F=ma for the two masses gives

2

2

2

2

c
c c c s

w
w w s wg w

d y
m a m m g F

dt

d y
m a F m F

dt

   

   

And the spring force law is
( )

( )

s s c w s

w w w w

F k y y L

F k y h L

  

  
. Substituting this into the formula and rearranging the

result gives
2

2

2

2

( )

( ) ( )

c s
c w s

c

w s w
c w s w w

w w

d y k
g y y L

mdt

d y k k
y y L g y h L

m mdt

    

      

[3 POINTS]

5.4 Arrange the equations of motion into a form that could be integrated numerically using the MATLAB
ODE solver.

For a MATLAB solution, we would have to turn the second derivatives into first derivatives by introducing
the velocities as additional unknowns. This gives

mC

FS

mCg

mW

mWg

FS

FW
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( ) /

( ) / ( ) /

c c

w w

c s c w s c

w s c w s w w w w w

y v

y vd

v g k y y L mdt

v k y y L m g k y h L m

   
   
   
      
   

        

[2 POINTS]


