School of Engineering Brown University

# EN40: Dynamics and Vibrations 

Midterm Examination<br>Tuesday March 52013

NAME: $\qquad$

## General Instructions

- No collaboration of any kind is permitted on this examination.
- You may bring 2 double sided pages of reference notes. No other material may be consulted
- Write all your solutions in the space provided. No sheets should be added to the exam.
- Make diagrams and sketches as clear as possible, and show all your derivations clearly. Incomplete solutions will receive only partial credit, even if the answer is correct.
- If you find you are unable to complete part of a question, proceed to the next part.

Please initial the statement below to show that you have read it
`By affixing my name to this paper, I affirm that I have executed the examination in accordance with the Academic Honor Code of Brown University. PLEASE WRITE YOUR NAME ABOVE ALSO!

## 1 (10 points)

2. (8 points)
3. (8 points)
4. (8 points)

TOTAL (34 points)
3. The path and speed of a vehicle driving around a sharp bend is shown in the figure below (the vehicle is at point A at time $t=0$ ). Sketch graphs of the normal and tangential acceleration of the vehicle on the axes provided. Explain briefly how you calculated relevant quantities.


[1 POINT]

[1 POINT]

This problem involves applying and interpreting the formula for acceleration in normal-tangential coordinates

$$
\mathbf{a}=\frac{d V}{d t} \mathbf{t}+\frac{V^{2}}{R} \mathbf{n}
$$

- During the first 5 sec the car travels with average speed $20 \mathrm{~m} / \mathrm{s}$, and therefore travels a total distance 100 m and just reaches B. [1 POINT]
- During the first 5 sec the tangential acceleration is $-20 / 5=-4 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ [1 POINT]
- The distance traveled during the subsequent 7.85 sec is 78.5 m - the angle BOC is therefore $78.5 / 50=1.57$ radians (approximately $\pi / 2$ ). The car reaches C at the end of this time. [1 POINT]
- During this period the tangential acceleration is zero (speed is constant). The normal acceleration is $100 / 50=2 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ [1 POINT]
- During the subsequent 5.23 sec , the average speed is $15 \mathrm{~m} / \mathrm{s}$, and the car therefore travels 78.5 m and reaches D at the end of the time period. [1 POINT]
- The tangential acceleration is equal to $10 / 5.23=1.91 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ (for 10.46 sec ) [1 POINT]
- The speed during this phase varies linearly with time - the normal acceleration varies quadratically. At D, the speed is $20 \mathrm{~m} / \mathrm{s}$, so the normal acceleration is $400 / 50=8 \mathrm{~m} / \mathrm{s}^{\wedge} 2$. [ $\mathbf{1}$ POINT]
- Thereafter, the normal acceleration drops to zero (the radius of curvature is infinity). [1 POINT]

2. In a Rutherford scattering experiment, a positively charged alpha particle with mass $m$ is fired with speed $V_{0}$ i from a distant point towards a stationary, positively charged nucleus. The charged particle experiences a radial repulsive force

$$
\mathbf{F}=\frac{K}{r^{2}} \mathbf{e}_{r}
$$

where $K$ is a constant. The trajectory of the particle is sketched in the figure below.

2.1 Find an expression for the potential energy of the force acting on the alpha particle, in terms of $K$ and $r$.

The potential energy is $V=-\int_{\infty}^{r} \frac{K}{r^{2}} d r=\frac{K}{r}$
[2 POINTS]
2.2 Use energy conservation to show that the speed of the particle $v$ is related to its distance from the nucleus $r$ by

$$
v^{2}=V_{0}^{2}-\frac{2 K}{m r}
$$

Energy conservation gives

$$
T_{0}+V_{0}=T+V \Rightarrow \frac{1}{2} m V_{0}^{2}=\frac{1}{2} m v^{2}+\frac{K}{r}
$$

This can be re-arranged into the form stated.
2.3 Write down the angular momentum vector of the particle about the origin at time $t=0$. (Don't forget to specify the direction as well as the magnitude)

$$
\mathbf{h}_{0}=\mathbf{r} \times m \mathbf{v}=-m d V_{0} \mathbf{k}
$$

[2 POINTS]
2.4 Hence, show that the minimum distance of the particle from the nucleus is

$$
r_{0}=\frac{K}{m V_{0}^{2}}\left[1+\sqrt{1+\left(\frac{V_{0}^{2} m d}{K}\right)^{2}}\right]
$$

At the minimum distance, the radial component of velocity must be zero (since $\mathrm{dr} / \mathrm{dt}=0$ at the minimum value of $r$ ). This means that the velocity vector is perpendicular to the position vector, and hence the angular momentum is

$$
\mathbf{h}=-m v r_{0} \mathbf{k}
$$

Angular momentum conservation thus gives

$$
v r_{0}=d V_{0} \Rightarrow v=\frac{d}{r_{0}} V_{0}
$$

Energy conservation (from 2.2) already showed that

$$
\begin{aligned}
& v^{2}=V_{0}^{2}-\frac{2 K}{m r} \Rightarrow\left(\frac{d}{r_{0}} V_{0}\right)^{2}=V_{0}^{2}-\frac{2 K}{m r_{0}} \\
& \Rightarrow r_{0}^{2}-\frac{2 K}{m V_{0}^{2}} r_{0}-d^{2}=0 \\
& \Rightarrow r_{0}=\frac{K}{m V_{0}^{2}}+\frac{1}{2} \sqrt{\left(\frac{2 K}{m V_{0}^{2}}\right)^{2}+4 d^{2}}=\frac{K}{m V_{0}^{2}}\left[1+\sqrt{1+\left(\frac{m d V_{0}^{2}}{K}\right)^{2}}\right]
\end{aligned}
$$

3. The figure shows a flexible pendulum, idealized as a point mass $m$ at the end of a spring with stiffness $k$ and un-stretched length $L_{0}$.
3.1 Write down the acceleration of the mass, expressed as components in the polar-coordinate basis $\left\{\mathbf{e}_{r}, \mathbf{e}_{\theta}\right\}$

We can use the formula from notes:

$$
\mathbf{a}=\left(\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}\right) \mathbf{e}_{r}+\left(r \frac{d^{2} \theta}{d t^{2}}-2 \frac{d r}{d t} \frac{d \theta}{d t}\right) \mathbf{e}_{\theta}
$$


[2 POINTS]
3.2 Draw the forces acting on the mass on the figure provided.

[2 POINTS]
3.3 Hence, show that $r, \theta$ satisfy the differential equations

$$
\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}-g \cos \theta+\frac{k}{m}\left(r-L_{0}\right)=0 \quad r \frac{d^{2} \theta}{d t^{2}}+2 \frac{d r}{d t} \frac{d \theta}{d t}+g \sin \theta=0
$$

The spring force gives $T=k\left(r-L_{0}\right)$.
Newton's law gives

$$
\mathbf{F}=m \mathbf{a}=m\left(\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}\right) \mathbf{e}_{r}+m\left(r \frac{d^{2} \theta}{d t^{2}}+2 \frac{d r}{d t} \frac{d \theta}{d t}\right) \mathbf{e}_{\theta}=(m g \cos \theta-T) \mathbf{e}_{r}-m g \sin \theta \mathbf{e}_{\theta}
$$

Combining these, the two components of Newton's law give the expressions stated.
3.4 Re-write the equations into a form that MATLAB could solve

As always, we must introduce $v=\frac{d r}{d t} \quad \omega=\frac{d \theta}{d t}$ as additional variables. The equations thus reduce to

$$
\frac{d}{d t}\left[\begin{array}{c}
r \\
\theta \\
v \\
\omega
\end{array}\right]=\left[\begin{array}{c}
v \\
\omega \\
r\left(\frac{d \theta}{d t}\right)^{2}+g \cos \theta+\frac{k}{m}\left(r-L_{0}\right) \\
-\frac{2}{r} \frac{d r}{d t} \frac{d \theta}{d t}-\frac{g}{r} \sin \theta
\end{array}\right]
$$

[2 POINTS]
4. The figure shows an aircraft just starting its take-off roll. The engines provide a total thrust $F_{T}$ that act a height $h$ below the center of mass, producing an acceleration $a_{x}=-(g / 2)$ i. Since the aircraft is not yet moving lift and drag forces are zero.

4.1 Draw the forces acting on the aircraft on the figure provided below.

4.2 Write down Newton's law of motion and the equation of rotational motion for the aircraft (assume straight line motion without rotation)

$$
\begin{aligned}
& \mathbf{F}=m \mathbf{a} \Rightarrow-F_{T} \mathbf{i}+\left(N_{A}+N_{B}-m g\right) \mathbf{j}=-\frac{g}{2} \mathbf{i} \\
& \mathbf{M}_{C}=\left[-N_{A}\left(L-x_{c}\right)-F_{T} h+x_{c} N_{B}\right] \mathbf{k}=\mathbf{0}
\end{aligned}
$$

[2 POINTS]
4.3 Hence, find formulas for the reaction forces on the wheels (for the rear wheels, calculate the total force).

The previous problem gives three equations, which can be solved for $N_{A}, N_{B}, F_{T}$ with the results

$$
\begin{aligned}
& F_{T}=m g / 2 \\
& N_{A}=m g\left(\frac{x_{c}}{L}-\frac{h}{2 L}\right) \\
& N_{B}=m g\left(1+\frac{h}{2 L}-\frac{x_{c}}{L}\right)
\end{aligned}
$$

[2 POINTS]
4.4 Hence, show that the front wheel will lose contact with the ground if $h$ exceeds a critical value, and find a formula for this critical value of $h$.

$$
\text { Notice that } N_{A}>0 \Leftrightarrow\left(\frac{x_{c}}{L}-\frac{h}{2 L}\right)>0 \Rightarrow h<2 x_{c}
$$

The critical value of $h$ is $2 x_{c}$

