

EN40: Dynamics and Vibrations

Midterm Examination Thursday April 2 2015

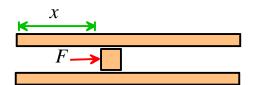
NAME:	
General Instructions	
 Write all your solutions in the space pro Make diagrams and sketches as clear as Incomplete solutions will receive only process. 	reference notes. No other material may be consulted ovided. No sheets should be added to the exam. s possible, and show all your derivations clearly. partial credit, even if the answer is correct. part of a question, proceed to the next part.
Please initial the statement below to show that you have read it `By affixing my name to this paper, I affirm that I have executed the examination in accordance with the Academic Honor Code of Brown University. PLEASE WRITE YOUR NAME ABOVE ALSO!	
	1 (5 points)
	2. (10 points)
	3. (5 points)
	4. (10 points)

TOTAL (30 points)

1. The projectile in a gas gun is subjected to a propulsive force

$$F = F_0 \left(1 - \frac{v}{3c} \right)^5$$

where F_0 , c are constants and v is the projectile's speed. The projectile has mass m. It starts at rest at time t=0 at position x=0.



1.1 Use Newton's law to determine the acceleration of the projectile and hence determine an expression for its speed as a function of time and other parameters. Air resistance and friction may be neglected.

$$F = ma \Rightarrow m\frac{dv}{dt} = F_0 \left(1 - \frac{v}{3c}\right)^5$$

$$\Rightarrow \int_0^v \left(1 - \frac{v}{3c}\right)^{-5} dv = \frac{F_0}{m} \int_0^t dt$$

$$\Rightarrow \frac{3c}{4} \left(1 - \frac{v}{3c}\right)^{-4} - \frac{3c}{4} = \frac{F_0}{m}t$$

$$\Rightarrow v = 3c \left[1 - \frac{1}{\left(1 + 4F_0t / 3cm\right)^{1/4}}\right]$$

[3 POINTS]

1.2 Find a formula for the distance traveled by the projectile as a function of time.

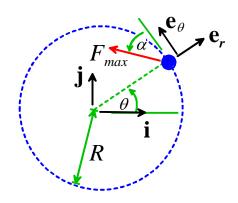
$$\frac{dx}{dt} = 3c \left[1 - \frac{1}{(1 + 4F_0 t / 3cm)^{1/4}} \right]$$

$$\Rightarrow x = \int_0^t 3c \left[1 - \frac{1}{(1 + 4F_0 t / 3cm)^{1/4}} \right]$$

$$\Rightarrow x = 3ct - \frac{3mc^2}{F_0} \left[(1 + 4F_0 t / 3cm)^{3/4} - 1 \right]$$

[2 POINTS]

- **2.** A 'prey' particle with mass m is subjected to a propulsive force with magnitude $F_{\rm max}$ that is applied at a constant angle α to its direction of motion. It also experiences a drag force (not shown in the figure) with magnitude cV (where V is the magnitude of the velocity and c is a constant) that acts opposite to its direction of motion. The random force is zero. As a result, it travels at constant speed V around a circular path with radius R.
- 2.1 Write down expressions for the propulsive force vector and drag force vector acting on the particle, in terms of F_{\max} , α , c and V, expressing your answer in polar coordinates $\{\mathbf{e}_r, \mathbf{e}_\theta\}$.



$$\mathbf{F}_{P} = F_{\text{max}} \cos \alpha \mathbf{e}_{\theta} - F_{\text{max}} \sin \alpha \mathbf{e}_{r}$$
$$\mathbf{F}_{D} = -cV\mathbf{e}_{\theta}$$

[2 POINTS]

2.2 Write down an expression for the acceleration vector in terms of *V* and *R*, and hence use Newton's law to show that

$$V = \frac{F_{\text{max}}}{c} \cos \alpha \qquad R = \frac{mF_{\text{max}}}{c^2} \frac{\cos^2 \alpha}{\sin \alpha}$$

The circular motion formula gives

$$\mathbf{a} = -\frac{V^2}{R} \mathbf{e}_r$$

$$\mathbf{F} = m\mathbf{a} \Rightarrow -F_{\text{max}} \sin \alpha \mathbf{e}_r + (F_{\text{max}} \cos \alpha - cV)\mathbf{e}_\theta = -m\frac{V^2}{R}\mathbf{e}_r$$

The hoop direction equation shows that

$$V = \frac{F_{\text{max}}}{c} \cos \alpha$$

and the radial equation then gives

$$R = \frac{mV^2}{F_{\text{max}} \sin \alpha} = \frac{mF_{\text{max}}}{c^2} \frac{\cos^2 \alpha}{\sin \alpha}$$

[3 POINTS]

2.3 Find a formula for the time required for the particle to complete a full circle.

$$T = 2\pi R / V = 2\pi \frac{m}{c} \frac{\cos \alpha}{\sin \alpha}$$

[1 POINT]

2.4 In the MATLAB code controlling the prey, the propulsive force is calculated from the formula $\mathbf{F} = F_{\max} \cos \omega t \mathbf{i} + F_{\max} \sin \omega t \mathbf{j}$, where ω is a constant. Use the solutions to 2.2 and 2.3 to find a formula relating the radius of the path R to ω , F_{\max} , m and c. The formula $\cos \theta = 1/\sqrt{1+\tan^2 \theta}$ might be helpful.

The applied force has a period $T = 2\pi/\omega$. Setting this equal to the period calculated in 2.3 shows that

$$\Rightarrow \cos \alpha = 1/\sqrt{1+(m\omega/c)^2}$$

Hence the radius of the path follows as

$$R = \frac{mF_{\text{max}}}{c^2} \frac{\cos^2 \alpha}{\sin \alpha} = \frac{F_{\text{max}}}{\omega c \sqrt{1 + (m\omega/c)^2}} = \frac{F_{\text{max}}}{\omega \sqrt{c^2 + m^2 \omega^2}}$$

[2 POINTS]

2.5 The prey starts with a total energy supply E. Find a formula for the maximum time that the particle can continue traveling around the circular path without exhausting the energy supply, in terms of $E, F_{\text{max}}, m, \omega, c$.

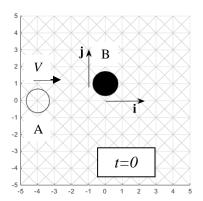
The power expenditure can be calculated as either $P = F_{\text{max}} \cos \alpha V$ or $P = cV^2$ which gives

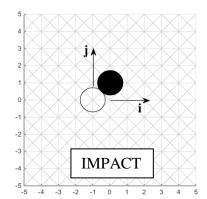
$$P = \frac{F_{\text{max}}^2}{c} \cos^2 \alpha = \frac{F_{\text{max}}^2}{c \left(1 + (m\omega/c)^2\right)}$$

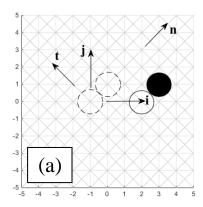
The time to exhaust the energy is therefore $t = E / P = \frac{Ec}{F_{\text{max}}^2} \left(1 + \frac{m^2 \omega^2}{c^2} \right)$

[2 POINTS]

3. Two spheres with identical mass and restitution coefficient e=0 have initial positions shown in the figure below. Before impact sphere B is stationary and sphere A has velocity V**i.** The collision is frictionless. By answering the true/false questions below, identify which of the figures (a-d) shows the correct position of the spheres after collision.





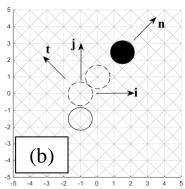


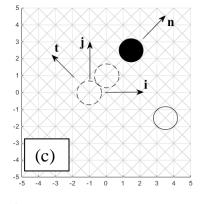
CIRCLE ONE RESPONSE TO EACH STATEMENT BELOW

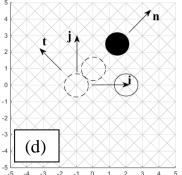
- (a) Total Momentum is conserved in the **j** direction T F Momentum of B is conserved in the **t** direction T F The restitution formula is satisfied in the **n** direction T F
- (b) Total Momentum is conserved in the **j** direction T F Momentum of B is conserved in the **t** direction T F The restitution formula is satisfied in the **n** direction T F
- (c) Total Momentum is conserved in the **j** direction T F Momentum of B is conserved in the **t** direction T F The restitution formula is satisfied in the **n** direction T F
- (d) Total Momentum is conserved in the **j** direction T F Momentum of B is conserved in the **t** direction T F The restitution formula is satisfied in the **n** direction T F

Correct figure: a b c d

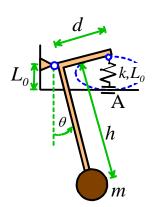
Total momentum in the **j** direction before impact is zero, and must therefore be zero after impact. That means A and B must have equal and opposite vertical velocities (and must travel equal and opposite distances). Momentum of B in the **t** direction is zero before impact and must be zero after impact. B must therefore travel parallel to **n** Since the restitution coefficient is zero, the restitution formula in the **n** direction requires that both spheres have the same velocity in the **n** direction after impact. This means that both spheres must travel the same distance parallel to **n** after impact







4. The figure shows a schematic diagram of a pendulum apparatus designed to measure the stiffness of an intervertebral disk. The disk is idealized as a spring with stiffness k and unstretched length L_0 (the slider at A allows the spring to remain vertical at all times). The goal of this problem is to find the relationship between k and the measured period of oscillation of the pendulum.



4.1 Write down a formula for the speed of the mass m in terms of h and $d\theta/dt$

Circular motion formula: $V = h \left(\frac{d\theta}{dt} \right)$

[1 POINT]

4.2 Hence, write down the total potential and kinetic energy of the system, in terms of k,d,h,m,g and θ and its time derivatives.

$$E = \frac{1}{2}m\left(h\frac{d\theta}{dt}\right)^2 + \frac{1}{2}kd^2\sin^2\theta - mgh\cos\theta$$

[2 POINTS]

4.3 Hence, show that θ satisfies the equation of motion

$$mh^2 \frac{d^2\theta}{dt^2} + kd^2 \sin\theta \cos\theta + mgh \sin\theta = 0$$

$$\frac{dE}{dt} = mh^2 \left(\frac{d\theta}{dt}\right) \frac{d^2\theta}{dt^2} + kd^2 \sin\theta \cos\theta \frac{d\theta}{dt} + mgh\sin\theta \frac{d\theta}{dt} = 0$$

$$\Rightarrow mh^2 \frac{d^2\theta}{dt^2} + kd^2 \sin\theta \cos\theta + mgh\sin\theta = 0$$

[2 POINTS]

4.4 Linearize the equation of motion for small θ and hence find a formula for the natural frequency of vibration of the pendulum, in terms of k, d, h, m, g.

Recall $\sin \theta \approx \theta$ $\cos \theta \approx 1$

$$mh^{2} \frac{d^{2}\theta}{dt^{2}} + \left(kd^{2} + mgh\right)\theta = 0$$
$$\Rightarrow \frac{mh^{2}}{\left(kd^{2} + mgh\right)} \frac{d^{2}\theta}{dt^{2}} + \theta = 0$$

The natural frequency follows as $\omega_n = \sqrt{\frac{kd^2}{mh^2} + \frac{g}{h}}$

[3 POINTS]

4.5 Rearrange the equation in 4.3 into a form that MATLAB could solve using the ode45 function.

The equation must be re-written as two first-order equations

$$\frac{d}{dt} \begin{bmatrix} \theta \\ \omega \end{bmatrix} = \begin{bmatrix} \omega \\ -kd^2 \sin \theta \cos \theta / (mh^2) - (g/h) \sin \theta \end{bmatrix}$$

[2 POINTS]