School of Engineering Brown University

EN40: Dynamics and Vibrations

Midterm Examination
Thursday March 92017

NAME: \qquad

General Instructions

- No collaboration of any kind is permitted on this examination.
- You may bring 2 double sided pages of reference notes. No other material may be consulted
- Write all your solutions in the space provided. No sheets should be added to the exam.
- Make diagrams and sketches as clear as possible, and show all your derivations clearly. Incomplete solutions will receive only partial credit, even if the answer is correct.
- If you find you are unable to complete part of a question, proceed to the next part.

Please initial the statement below to show that you have read it
`By affixing my name to this paper, I affirm that I have executed the examination in accordance with the Academic Honor Code of Brown University. PLEASE WRITE YOUR NAME ABOVE ALSO!

1. (10 points)

2. (12 points)
3. (3 points)
4. (10 points)

TOTAL (35 points)

1. A bottle with mass m rests on a table-cloth. The contact between them has friction coefficient μ. At time $t=0$ the object and cloth are both stationary. For time $t>0$, the cloth is pulled with constant acceleration $a_{\text {cloth }}=5 \mu \mathrm{~g}$ the right. Note that since $a_{\text {cloth }}>\mu g$, slip must occur at the contact just after $t=0$.
1.1 Draw a free body diagram showing the forces acting on the object on the figure below.

[3 POINTS]
1.2 Find a formula for the horizontal acceleration of the bottle. Assume that the bottle does not tip over.
1.3 Find a formula for the horizontal distance moved by the bottle as a function of time.
[1 POINT]
1.4 Find a formula for the distance moved by the cloth as a function of time
[1 POINT]
1.5 At time $t=0$ the bottle is a distance L from the edge of the cloth. Calculate the distance that the bottle has moved in the \mathbf{i} direction at the instant that the edge of the cloth reaches the edge of the bottle ($L=0$ at this instant). Express your answer in terms of L and any other parameters you think are relevant.

2. The figure shows the trajectory of a flying squirrel, which is measured (in polar coordinates) to be

$$
r=(1+t) \text { (meters) } \quad \theta=\frac{\pi}{2(1+t)^{2}} \quad(\text { radians })
$$

(Note that $\theta=\pi / 2$ at time $t=0$, and decreases as t increases, so the squirrel flies to the right).
2.1 Find a formula for the velocity vector of the squirrel (in polar coordinates $\left\{\mathbf{e}_{r}, \mathbf{e}_{\theta}\right\}$) terms of time
2.2 Find a formula for the acceleration vector in polar coordinates $\left\{\mathbf{e}_{r}, \mathbf{e}_{\theta}\right\}$ as a function of time
2.3 Find unit vectors normal and tangent to the path of the squirrel AT TIME $\mathbf{t}=\mathbf{0}$, in the $\left\{\mathbf{e}_{r}, \mathbf{e}_{\theta}\right\}$ basis. Choose the sign of \mathbf{n} so that the \mathbf{n} has a positive \mathbf{e}_{r} component.
2.4 Draw the unit vectors $\left\{\mathbf{e}_{r}, \mathbf{e}_{\theta}\right\}$ AT TIME $\mathbf{t}=\mathbf{0}$ on the figure provided below

[1 POINT]
2.5 Draw a free body diagram showing the forces acting on the squirrel at time $\boldsymbol{t}=\boldsymbol{0}$ on the figure provided. Include lift and drag forces, and any other forces you think are relevant.

[2 POINTS]
2.6 If the squirrel has mass 100 grams, calculate the magnitude of the lift and drag force acting on the squirrel at time $\boldsymbol{t}=\mathbf{0}$ (you can use the approximation $g \approx 10 \mathrm{~m} / \mathrm{s}^{2}$ and leave your answer in terms of π there is no need to get a number for the answer)
3. The attractive force between two atoms in a diatomic molecule is related to the distance r between them by

$$
F=8 F_{0}\left(\left(\frac{a}{r}\right)^{5}-\left(\frac{a}{r}\right)^{9}\right)
$$

where F_{0} and a are constants. (NB: the spring in the figure is used to indicate the atomic bond - it does not obey the usual force-v-length relation for a linear spring)

Show that the potential energy of the interatomic bond is (to within an arbitrary constant)

$$
V(r)=F_{0} a\left(1-2\left(\frac{a}{r}\right)^{4}+\left(\frac{a}{r}\right)^{8}\right)
$$

4. The figure shows a straight-line collision between an ion (A) and a (neutral) diatomic molecule (B-C)

- The ion and each atom are idealized as hard spheres with mass m.

- The bond between atoms B and C has potential energy given in problem 3

$$
V(r)=F_{0} a\left(1-2\left(\frac{a}{r}\right)^{4}+\left(\frac{a}{r}\right)^{8}\right)
$$

- For time $t<0$ atoms the bond between B and C has zero force (i.e. the distance between atoms $r=a$); and the ion A is moving to the right with speed V_{0}.
- The ion A collides with atom B at time $t=0$. The collision has restitution coefficient $e=1$.

Just after impact

A

Max stretch
NB: the spring in the figure is used to indicate the atomic bond - it does not obey the usual force-v-length relation for a linear spring. Use the potential energy relation from problem 3, not the potential energy for a spring!)
4.1 Calculate the velocity V_{1} of atom B just after the collision, in terms of V_{0} (note that the bond between B and C exerts no forces during the collision, and recall that $e=1$ and A and B have the same mass)
4.2 What is the total linear momentum of the molecule with atoms (BC) just after the impact, in terms of m and V_{0} ?
[1 POINT]
4.3 What is the total kinetic energy of the molecule with atoms (BC) just after the impact, in terms of m and V_{0} ?
4.4 Using energy and momentum conservation, show that the maximum separation between atoms in molecule BC following the collision is

$$
r=a \frac{1}{\left(1-\frac{1}{2} \sqrt{\frac{m V_{0}^{2}}{F_{0} a}}\right)^{1 / 4}}
$$

(Hint: at the instant of maximum separation both atoms B and C have the same velocity).
4.5 Determine the critical value of V_{0} that will just break the bond between the atoms (assume that the bond breaks if $r \rightarrow \infty$ after the collision).

