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1. In a representative stride, a runner has a foot in contact with the ground for 0.1sec and is 
airborne for 0.2 sec. (see, e.g. Weyand et al ‘Ambulatory estimates of maximal aerobic 
power from foot-ground contact times and heart rates in running humans,’ J. Appl. 
Physiol, 91, 451-458 (2001).   Use the impulse-momentum equation to estimate the 
average vertical contact force that acts on your feet during the time that they are in contact 
with the ground.  
 
 
The linear momentum of the runner is mvi  where v is her speed, and m is her mass.  We can idealize the 
runner as a particle. The impulse-momentum equation states that the change in linear momentum Δp  
during a time interval tΔ  is equal to the total impulse exerted by the forces acting 
on the particle 
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Since the linear momentum is constant, we have that 
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A free body diagram for the runner is shown in the figure.  Note that N=T=0 during the time that the 
runner has no foot in contact with the ground.   
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For a person with mass 80kg, the average vertical force comes out to be 7.8kN. 
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2. As background to this problem, read Koizumi, Komurasaki and Arakawa, 
(2004)  ‘Development of thrust stand for low impulse measurement from 
micro-thrusters,’ review of scientific instruments 75 (10), 3185-3190. The 
goal of this problem is to illustrate the principle of their instrument using a 
simplified idealization, shown in the figure. Assume that 

1. The system starts at rest, with 0x L= , where 0L  is the unstretched 
length of the spring. 

2. At t=0 the thruster is fired.  The thruster exerts a force on the mass 
for only a very short time, so the mass can be assumed to be stationary during firing. 

3. The thruster starts the mass moving to the right.  The length of the spring ( )x t  is recorded, and in 
particular the length d at the instant of maximum spring compression is measured. 

 
a. Use energy conservation to write down a 

relationship between the displacement of the mass 
at the instant of maximum compression of the 
spring to its speed just after the thruster fired. 

 
We consider the thruster, mass and spring together as 
a conservative system.  Equating the kinetic and 
potential energy just after the thruster is fired, and at 
the instant that the mass comes to rest, we have that 
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b. Hence, calculate a formula for the impulse of the thruster, in terms of d, 0L , k and m. 
 
The impulse can be calculated from the momentum of the mass just after the thruster is fired, as 

0( )I mv mk L d= = −  
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3. The figure shows an experimental apparatus for measuring the restitution coefficient of, e.g. a golf-ball 
or a bowling ball.  It uses the following procedure 

• A pendulum (a golf-club head, e.g.) is swung 
from a known initial angle 0α  and dropped 
from rest so as to strike the ball.   

• The angle of follow-through 1α  of the 
pendulum is recorded 

• The distance traveled by the ball d is 
measured 

Your goal is to derive a formula that can be used to 
determine the restitution coefficient e from the 
measured data. 
a. By considering its trajectory, derive an 

expression for the velocity of the ball just after it 
is struck, in terms of the height h, the measured distance d and the gravitational acceleration. 

 
Let 0 bv=v i  denote the velocity of the ball just after impact.  The position vector as a function of time 
follows from the equations governing motion of a projectile under gravity 

21
2bv t gt= −r i j  

At impact with the ground the position vector is d h= −r i j   This gives two equations for the unknown 
time of impact and the speed v 

21
2bv t d h gt= =  

These can be solved for d, with the result 
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b. Derive an expression for the speed of the mass on the end of the pendulum just after it strikes the ball, 

in terms of 1α , l and the gravitational acceleration. 
 
The pendulum can be idealized as a conservative system.  Equating the kinetic and potential energies at 
the instant just after the collision and at the point when the pendulum comes to a stop at the top of its 
swing gives 
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c. Derive an expression for the speed of the mass on the end of the pendulum just before it strikes the 

ball, in terms of 1α , l and the gravitational acceleration. 
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d. Hence, deduce a formula for the coefficient of restitution. 
 
The restitution coefficient is 
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5. Virtual Snooker.  The figure shows 
three balls on a snooker table.  All 
balls have radius R. The impact of the 
cue ball (white) with the cushion has a 
restitution coefficient of 0.8; the 
impact of two balls has a restitution 
coefficient of 0.9.  Your goal is to 
calculate an initial velocity for the 
(white) cue ball that will pot the black  
ball. Note that you are not allowed to 
hit the red ball, and so can’t make a 
direct shot – you will have to play the 
shot off the cushion.   
a. Write down the coordinates of the cue ball at the instant that it strikes the black ball, assuming that it 

is on a trajectory to knock the black ball directly into the pocket. 
 
The direction of motion of the black ball after impact is parallel 
to the line connecting the centers of the two balls at impact, as 
shown in the figure.  Straightforward geometry gives the position 
vector at impact as 
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b. Consider the rebound of the cue ball off the cushion, as 

shown in the figure.  Show that the angle of incidence is 
related to the angle of rebound by 2 1tan taneθ θ= . 

 
Let 0 0x yv v= +v i j  denote the velocity just before impact.  Clearly 1 0 0tan /y xv vθ =  
 
After impact, the velocity components are 1 1 0 0x y x yv v v ev= + = −v i j i j , and furthermore 

2 1 1tan /y xv vθ = − .  Therefore 

2 0 0 1tan / tany xev v eθ θ= =  
as required. 
 
 
c. Hence, calculate the initial direction of motion of the cue ball in order to make the shot. 
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Geometry shows that 
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d. To check your calculation click here to download a MATLAB simulation of the shot.  Save the code 

in a file called snooker.m and then run it with 
>>snooker(Vx,Vy)  

where Vx, Vy are the initial velocities of the cue ball (the magnitude is arbitrary – in fact the code 
will scale your velocity to have unit magnitude for convenience in doing the animation).   
 

e. Set up a trick shot of your own design, and edit the MATLAB code to animate it.  The code is a bit 
flakey – MATLAB will occasionally miss a collision, for example – so don’t be too ambitious.  If you 
email your MATLAB code to Stephanie_Gesualdi@brown.edu we will web post your shot… 

 
 
 
6. A ‘Hohmann Transfer’ is a maneuver for changing the radius 
of a satellite orbit.  It uses the following procedure: 

• The satellite typically starts in a low circular orbit, with 
radius 1R  

• At some convenient time, a rocket is fired to increase the 
speed of the satellite, without changing its direction of 
motion.  This places the satellite on an elliptical orbit, 
with perigee 1R  and apogee 2R  

• The satellite is allowed to complete one half of the 
elliptical orbit.  When it reaches its apogee, a rocket is 
fired again, to increase its speed a second time, without 
changing its direction.   This places the satellite in a 
circular orbit, with radius 2R  

a. By drawing a free body diagram for the satellite, and using Newton’s 
law of motion, calculate a formula relating the speed of a satellite v  
to the radius of its orbit, in terms of the gravitational parameter 

GMμ = .   
 
Following the usual procedure, the position, velocity and acceleration 
vector of the satellite are 
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Newton’s law gives 
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b. Consider the satellite in its elliptical transfer orbit. Use energy conservation and angular momentum 

conservation to calculate a formula for the speed of the satellite pv  at the perigee of the satellite orbit, 

and the speed av  at the apogee of the satellite orbit, in terms of GMμ = , and  1R , 2R  
 
Energy conservation relates av , pv ,  GMμ = , and  1R , 2R  as follows 
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Angular momentum conservation relates  av , pv  and  1R , 2R  as follows 

a a p pmv R mv R=  
 
These two equations can be solved for av , pv  
> eq1 := va^2/2 - mu/Ra = vp^2/2-mu/Rp; 
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> eq2 := va*Ra = vp*Rp; 
:= eq2  = va Ra vp Rp  

> solve({eq1,eq2},{va,vp}); 
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so that 
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c. Hence, calculate formulae for the changes in speed of the satellite during the two rocket burns 
 
It follows that 
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d.  A satellite in `Geo-synchronous’ orbit around the earth completes one orbit in 24 hours.  Calculate 

the radius of this orbit. 
 

For this orbit, we know that 2
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d
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 radians per second.  

We also know that dv R
dt
θ

=  and 2
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= , which shows that 
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With numbers 5 3 23.986012 10 km sGMμ −= = ×  we find v=3.07km/s.  The radius of the orbit follows 
as R=42241 km. 
 
e. Hence, calculate the changes in speed required to raise a satellite from low earth orbit (250km above 

the earth’s surface) to geosynchronous orbit. 
 
Taking the earth’s radius as 6378.145km, we find 

2.44 / sec 1.47 / secp av km v kmΔ = Δ =  
 
 
 


