
EN40: Dynamics and Vibrations

Homework 4: Work, Energy and Linear Momentum
Solutions. MAX SCORE 47 points

School of Engineering
Brown University

1. The figure shows force-extension data for
a human ankle tendon, measured in-vivo
(from J Physiol. 1999 ; 521(Pt 1): 307–313. )

Estimate the total energy stored in the tendon
when extended by 4mm. Compare the
stored energy to the typical kinetic energy of
a runner.

The (x,y) data can be extracted from the plot as x =[0,1.2,2.1,2.75,3.5,3.75,4]mm
Y=[90,200,305,445,550,590]N. MATLAB can integrate this curve (use the trapz command)

So 0.897J is stored in the tendon. The KE of the world record womens 100m sprinter (10.49 sec), ms
Griffith-Joyner weighed 59kg) is 2680J.

[3 POINTS]

2. The figure shows a force-extension curve for a bungee rope (from
J. Engineering Failure Analysis, 11, 857 (2004) ).

2.1 Estimate the energy required to stretch the cable to a tension of
2kN (use the loading curve)

The energy can be estimated from the polygon shown in the figure
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[2 POINTS]
2.2 Hence, estimate the maximum allowable weight of the jumper if
the maximum force in the cable is not to exceed 2kN. Note that the
cable lengt his 15.6m (see fig).

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2269645/


Energy is conserved during the drop. The jumper is stationary before the jump, as well as at the instant of
maximum cable extension. Note that the drop height is 26m (the un-stretched length plus the extension)

16275 / (26.6 9.81) 63.4E mgh h kg    

This is very low – which partly explains why this particular cable failed in use.
[2 POINTS]

3. One procedure for measuring human power output is to ask the test subject to jump repeatedly for a set
period of time (say T=60 sec), count the number of jumps, and also to measure the average time t that the
subject is airborne during each jump (see, e.g. Eur J Appl Physiol Occup Physiol. 1983;50(2):273-82).

3.1 Use impulse-momentum to calculate the vertical speed of the subject at the instant he or she leaves the
ground, in terms of the flight time t and the gravitational acceleration g.

Energy is conserved during the jump, so the magnitude of the vertical velocity at the end of the jump must
be equal to that at the start of the jump. Let j be a vertical unit vector. The total impulse exerted on the
jumper by gravity is mgt j , while the change in momentum is 0 0mv mv j j . The impulse-momentum

equation then shows that

0 02 / 2mv mgt v gt  

[2 POINTS]
3.2 Hence, calculate the subject’s kinetic energy at the instant of take-off, in terms of g, t and the subject’s
mass m.

The kinetic energy is 2 2
0 / 2 ( ) / 8mv m gt

[2 POINTS]
3.3 Assume that the body must supply this kinetic energy for each jump. Calculate the average power
developed, in terms of the test time T, the number of jumps n, as well as g,t,m.

The average power is the total energy expended divided by the total time of the test, i.e 2( ) / 8P nm gt T

[2 POINTS]

4. The longest single-span escalator in the Western
hemisphere is located at the Washington Metro station
in Montgomery County, Maryland. Some technical
specifications for the escalator span can be found on
Wikipedia (we have not checked this data!).
Additional information concerning escalator standards
can be found here.

4.1 Calculate the kinetic energy of a single 80kg rider
standing on the escalator

The KE is 2 / 2mv ; we have that the speed is
27m per minute, so KE is 8.1J.

[1 POINT]

4.2 Calculate the change in potential energy of a single 80kg rider who travels the entire length of the
escalator span.

The change in PE is mgh, where h = 35m , so PE is 27468J
[1 POINT]

http://en.wikipedia.org/wiki/File:Wheaton_escalator_from_bottom_right.jpg
http://en.wikipedia.org/wiki/Wheaton_(WMATA_station)
http://www.scribd.com/doc/33156511/Escalators-Design


4.3 Assuming the escalator operates at its theoretical capacity of 9000 passengers per hour, estimate the
power required to operate the escalator.

The power is the number of passengers per second multiplied by the energy change per
passenger. This gives P=68.7 kW

[2 POINTS]

5. The figure shows an experimental measurement of the impulse exerted by an electrostatic thruster, as a
function of time (from Rev. Sci Instr, 76, 015105 (2005)). Estimate the maximum force exerted by the
thruster.

Force is related to impulse by ( )
dI

F t
dt

 . The max force is therefore the max slope of the impulse-time

curve. From the graph, this is about 31.8 10 N .

[2 POINTS]

6. The figure shows an experiment used by
researchers at Caltech to measure the impulse
caused by detonating a volume of combustible gas
in a tube. The tube is mounted on a pendulum,
which is at rest before the experiment starts. The
gas mixture is then ignited, and the horizontal
deflection x at the instant when the pendulum just
comes to rest is measured. Their paper states that
“From elementary mechanics, the impulse is given
by
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where m is the mass of the tube. Derive this equation.
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http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=RSINAK000076000001015105000001&idtype=cvips&doi=10.1063/1.1834707&prog=normal
http://www.galcit.caltech.edu/EDL/publications/reprints/JPP3812.pdf


There are two steps to this calculation: (i) The velocity of the tube just after the impulse must be
calculated in terms of the displacement x using energy; and (ii) the impulse can be calculated from the
velocity just after the detonation, using the impulse-momentum equation.
Calculation (i) – Energy conservation, and simple geometry to calculate the height h gives
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Calculation (ii) the impulse-momentum equation 1 0( )I m v v  , and noting that the initial speed is zero,

gives
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[5 POINTS]

7. The figure shows a proposed design for a spring-loaded catapult.
It operates as follows: (a) The spring is compressed to a length d
and then released from rest; (b) the spring returns to its unstretched

length, accelerating mass 1m to a speed 0V ; (c) immediately after

this point masses 1m and 2m collide; (d) causing mass 2m to be

expelled from the muzzle with speed 2v

The spring has stiffness k and un-stretched length 0L , and the

collision between the two masses can be characterized by a
restitution coefficient e.

7.1 Write down the potential energy of the system in state (a).

The PE is just the energy of the spring, i.e. 2
0

1
( )

2
V k L d 

[1 POINT]

7.2 Hence, calculate a formula for the speed of mass 1m just before

impact (b), in terms of k, 0L , 1m and d.

This is a conservative system, so PE+KE is constant. At the instant
just before impact, the spring returns to its unstretched length, and
the KE is
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7.3 Deduce expressions for the speeds 1v and 2v of the two masses just after the collision (d), in terms of

k, 0L , 1m , 2m , e and d.

Momentum is conserved during the impact, so 1 0 1 1 2 2
1

( )
k

m L d m v m v
m

  

In addition, velocities before and after impact are related by the restitution coefficient

0 2 1
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These two equations can be solved for the two velocities, with the result
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[3 POINTS]

7.4 Show that the speed of mass 2m is optimized if 1 2m m

From the preceding part,
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We want to find the value of 1m that maximizes this (for a fixed projectile mass 2m ). Differentiate with

respect to 1m and set the derivative to zero
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[3 POINTS]

7.5 Finally, compute a formula for the energy efficiency of the optimal design.

The energy efficiency is the ratio of the KE of the projectile to the initial PE in the spring. With 1 2m m

this is
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[2 POINTS]



8. The figure shows an experiment designed to measure the
restitution coefficient of nanoparticles incident on a surface
(Ayesh et al, Physical Review B 81 195422 (2010)). Bismuth
nanoparticles are fired onto a V groove in a silicon wafer. The
particles bounce once on impact with the sides of the groove, and
then stick to the Si surface on the opposite side of the groove.

8.1 Let i denote the groove angle (which is equal to the angle of

incidence) and r denote the angle of reflection. Neglecting

friction, show that the restitution coefficient is related to i and r by
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Picking i,j coordinates as shown in the figure, we can write the velocity vectors before and after impact as
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If the collision is frictionless, momentum must be conserved in the i direction, so that

0 1cos cosi rV V 

The restitution coefficient formula relates the velocity components in the j direction before and after
impact

1 0sin ( sin )r iV e V   

We can eliminate the velocities by dividing the second equation by the first, which gives
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This can be rearranged to give the answer stated.
[4 POINTS]

8.2 The figure shows an experimental result. The flat surface is
the (100) plane of an Si wafer, while the groove exposes the

(111) planes – this means the angle of incidence is 035i  .

The dashed red line shows the center of the groove; the right
hand edge can be seen as the boundary between the light and
dark gray regions. Use the figure to estimate the coefficient of
restitution for the particles on Si. Neglect gravity

Simple geometry on the figure shown (look for right-
angled triangles) indicates that
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From the figure, ( ) / ( ) 1.8L w L w   , which gives

016.6r  , and 0.42e  .

[4 POINTS]
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http://prb.aps.org/pdf/PRB/v81/i19/e195422


9. Two balls with identical mass collide on a pool
table as shown in the picture. The black ball is at
rest before the collision, and the collision is
frictionless with restitution coefficient e=1.
Calculate the angle 2 between the paths

followed by the two balls after the collision
(idealize the balls as particles) (note – in general
the angle depends on the direction of motion of A
before collision, but e=1 is a special case.)

Momentum conservation gives
1 1 0B A Am m m v v v

The restitution coefficient formula gives
1 1 0 0(1 )[ ]B A A Ae      v v v v n n

Where n is a unit vector parallel to the line connecting the centers of the two balls at the instant of
collision.

These two equations can be solved for the velocities after collision (eg divide the first equation through
by m, add it to the second and divide the result by two), to see that

1 0(1 )
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2
B Ae

 v v n n

Divide the first equation through by m subtract the second and divide by two:

1 0 0(1 )
[ ]

2
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(These equations can also be written down directly from the formulas in the notes)

The paths are parallel to the velocity vectors after collision. Recall that you can calculate the angle
between the two velocity vectors from the vector formula
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2cosA B A B  v v v v

and note that
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Where we have noted that 1 n n since n is a unit vector. Note that if e=1, then 1 1 0A B v v and

therefore 0
2 90  .

[5 POINTS]



i

j
A

B


