
 

 

EN 4 Dynamics and Vibrations 

Homework 6: Forced Vibrations 

Solution 

(Maximum Score 45 points + Extra Credit 8 points) 

 

1. When a homogenous bar of mass m is accidentally 

placed on two rotating drums, as shown in the figure, 

it is found that the bar performs periodic oscillation. 

As an engineer, you have been asked to analyze this 

phenomenon.  

 

Neglect the thickness of the bar in your analysis. The 

interface between the bar and the rotating drums has friction coefficient  f. 

 

1.1 Draw a free body diagram showing all the forces on the bar as its center of mass is shifted by a 

distance x toward one of the rotating drums. 

 

Answer: 

 

 

 

 

 

 

(1 point) 

 

 

1.2 Determine the normal and tangential forces acting on the bar as a function of x.  

 

Answer:  

 

Balance of vertical force: 021  mgFF NN   

Balance of moments about center-of-mass:     021  xLFxLF NN   
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The tangential forces are the friction forces: 
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1.3 Derive the governing equation for the horizontal motion of the bar. Determine the natural 
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frequency of the oscillation. 

 

Answer:  

 

From Newton’s law, 

 

xmFF  21  

 

Substituting 1F  and 2F  into this equation,  

0 x
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mgf
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The natural frequency is therefore   

L

gf
n       (2 points) 

      

 

1.4 Suppose that, at t=0, the bar is placed on the drums with its center of mass at x=0.2 m. The length 

of the bar is L=1 m and the friction coefficient is f=0.3. Calculate the position and velocity of the 

bar at t=1 s. 

 

Answer:  

 

Standard solution : 

tctcx nn  sincos 21   

 

Initial condition s: 

Lxx  )0(0,0)0(  

Therefore, 

txx ncos0 , txv nn  sin0  

 

Substituting the parameter values gives ( 71.1n  rad/s)  x=-0.028 m and 34.0v  m/s at t=1 s.  

            (3 points) 

 

 

2. A quick way to estimate the damping coefficient of a machine part is to apply a harmonic force with a 

tunable frequency that can induce the machine part to vibrate in resonance. An inspector applied a 

harmonic force of 2.4 N to an airplane wing and found that the wing vibrates with amplitude of 12 cm 

and a period of 0.1 s at resonance. Estimate the damping coefficient of the wing.  

 

Answer: 

 

 Under excitation by a harmonic force, the amplitude of vibration is: 
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At resonance n  , 
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 Therefore, we can calculate the damping coefficient as follows 
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3. A simple seismograph consists of a pendulum with m=500 g and 

L=20cm attached to a rigid frame, as shown in the figure. Assume 

that the base is excited by a simple harmonic motion tXx sin  

with X=1cm. 

 

     
 

3.1 Given the coordinates shown above, write down the position, velocity and acceleration vectors of 

the mass m. 

 

 

Answer： 

 

  jir  cossin LLx       (1 point) 

 

   jirv  sincos  LLx          (1 point) 

 

   jiira  cossinsincos 22  LLLLx     (1 point) 

)sin( tXx 



 

3.2 Write down the equation of motion of m. Do not linearize with respect to , except to show that the 

natural frequency of the pendulum is  Lgn /  in the case of small  . 

 

Answer:  

 

The projection of the acceleration vector in the direction normal to the pendulum arm is 
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According to Newton’s law,  
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The natural frequency is Lgn /  because the left hand side has the standard form 
L

g
  

for small  . 

(1 point) 

 

 

3.3 Write a MATLAB code to calculate the motion of the pendulum for nnn  10,,1.0  for a time 

period of 0<t<50s. Assume the pendulum is at rest at t=0. 

 

Answer:  

 

The motion of the pendulum for base frequency nnn  10,,1.0  could be plotted as the 

following figures, separately. 
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MATLAB Code: 

 
function oscillation 
L = 0.2; % length of the pendulum, m 
m=0.5;   % mass of the pendulum 
g = 9.81; % gravitational acceleration 
deltX=0.01;  % amplitude of the harmonic motion 
theta0=0; 
omega0=0; 
w0 = [theta0,omega0]; 
options=odeset('RelTol',1e-6); 
% Solution to omega=0.1*omega_n 
figure1 =figure 
axes('Parent',figure1,'FontSize',12); 
box('on'); 
hold('all'); 
title({'\omega=0.1\omega_n'},'FontSize',14); 
xlabel({'Time (sec)'},'FontSize',12,'FontName','Times New Roman'); 
ylabel({'\theta (degree)'},'FontSize',12,'FontName','Times New 

Roman',... 
    'FontAngle','italic'); 
omegaX=0.1*sqrt(g/L); %vibration frequency of the excitation, rad/s 
[times,sols] = ode45(@eq_of_mot,[0,50],w0,options); 
plot(times,sols(:,1)); 

  
% Solution to omega=omega_n 
figure2 =figure 
axes('Parent',figure2,'FontSize',12); 
box('on'); 
hold('all'); 
title({'\omega=\omega_n'},'FontSize',14); 



xlabel({'Time (sec)'},'FontSize',12,'FontName','Times New Roman'); 
ylabel({'\theta (degree)'},'FontSize',12,'FontName','Times New 

Roman',... 
    'FontAngle','italic'); 
omegaX=1*sqrt(g/L); %vibration frequency of the excitation, rad/s 
[times1,sols1] = ode45(@eq_of_mot,[0,50],w0,options); 
plot(times1,sols1(:,1)); 

  
% Solution to omega=10*omega_n 
figure3 =figure 
axes('Parent',figure3,'FontSize',12); 
box('on'); 
hold('all'); 
title({'\omega=10\omega_n'},'FontSize',14); 
ylim([-0.8 0.8]); 
xlabel({'Time (sec)'},'FontSize',12,'FontName','Times New Roman'); 
ylabel({'\theta (degree)'},'FontSize',12,'FontName','Times New 

Roman',... 
    'FontAngle','italic'); 
omegaX=10*sqrt(g/L); %vibration frequency of the excitation, rad/s 
[times2,sols2] = ode45(@eq_of_mot,[0,50],w0,options); 
plot(times2,sols2(:,1)); 

  
function dwdt = eq_of_mot(t,w) 
    theta=w(1);omega=w(2); 
    dwdt = [omega;-

g/L*sin(theta)+deltX/L*omegaX^2*sin(omegaX*t)*cos(theta)]; 
end 
end 

     (5 points) 

 

4. The figure shows a tail rotor of a helicopter used to provide yaw control and torque balance. During a 

flight, a bird of mass m=500 g accidentally hit the rotor blade and got stuck on one of the blades at a 

distance of 15cm from the axis of rotation. This problem can be modeled as an unbalanced rotor with 

stiffness 
5101k  N/m (provided by the tail section) and an equivalent mass of M=80 kg 

(including the bird mass).  

 

               
 

4.1 Calculate the magnitude of the vibration of the tail section of helicopter as the tail rotor rotates at 

1800 rpm. Assume damping factor 01.0 . 

 

Answer: 

 

The natural frequency is: 
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The frequency of the rotation is  

 

rad/s188.5rpm1800   
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For 01.0 , the magnitude of oscillation of the tail rotor is  
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(2 points) 

 

4.2 Calculate the vibration amplitude at the resonance frequency.  

 

Answer: 

At  resonance 1
n


 or rpm 338rad/s4.35  ,    

 

 

the vibration amplitude is 
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(1 point) 

 

 

5.    The oscillation of a ship on rough sea is modeled as a floating cylinder on water, with the water level 

itself also rising and falling in simple harmonic motion tYy sin . Assume the friction between the 

ship and water can be represented as a damper with damping coefficient c=0.4. The cross-section area 

of the ship is 200
2m , the mass of the ship gm k102 5 , and the density of the water is 

1000water 3/ mkg  . d is the draft of this ship in still water. 

 



   
 

 

5.1 Draw a free body diagram showing all the forces on the ship. 

 

 

Answer:  

 

  
 

    (2 points) 

 

mggAdwater  is the buoyancy force at static equilibrium.  

 

5.2 Write down the equation of motion for the ship and determine the amplitude of vibration. 

 

Answer:  

 

Newton’s law: mgyxcyxdgAxm water  )()(    

 

Setting gAk water , this equation can be rearranged in standard form as 
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   (2 points) 

 

The solution is: 

 

)sin()(   tXtx  
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5.3 Suppose the ship is designed to sustain an acceleration of 0.3g without running the risk of 

capsizing and the water level is oscillating with a period of 6s. Determine the maximum 

amplitude of water level oscillation that the ship can sustain.  

 

Answer:  

 

The natural frequency of the vibration is: 
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The damping factor is  
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The acceleration of the ship could be expressed as 

 

)sin()( 2   tXta  

 

where 3/   rad/s. 

 

When the acceleration amplitude reaches gta 3.0)(  , the maximum amplitude of ship 

oscillation is 

 

 2/3.0 gX 2.68 m 

 

This corresponds to the following amplitude of water level oscillation 
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     (3 points) 

 

5.4 During a storm, the water level changes with amplitude  m2Y  and 2 rad/s, determine 

the vibrating amplitude of the ship.  

 

Answer: 

 

The amplitude of vibration of the ship is, 
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6.    The figure shows a mass m=20g attached to the end of a cantilever (whose own weight is negligible 

compared to m). The base of the cantilever is subject to simple harmonic motion tYy sin  and the 

mass is found to vibrate as    tXx sin . It is known that, under static loading, the deflection of 

the cantilever x can be related to an applied force F as 
EI

FL
xst
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3

  where L=10 cm is the length of the 

cantilever and EI is the bending stiffness of the beam.  

 

 
 

 

 

 

6.1 At resonance, it is found that the mass is vibrating at amplitude YX 2  and period 0.2 s. 

Determine the damping coefficient and bending stiffness of the cantilever. 

 

Answer: 

 Given that the mass is vibrating at amplitude YX 2  and period 0.2 s at resonance. 
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where rad/s4.31n . The damping coefficient 0.3632  nmc kg/s                     (1 point) 

 

The bending stiffness of the cantilever is  
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6.2 Plot YX /  as a function of the base excitation frequency   and determine the range of   for 

which 1/ YX . 
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MATLAB Code 
function XY_excitation 
% Function to plot X/Y as a function of excitation frequency 
figure1 =figure 
axes('Parent',figure1,'FontSize',12); 
box('on'); 
hold('all'); 
title({'Solution to problem #6.2'},'FontSize',14); 
xlim([0 200]); 
ylim([0 2.2]); 
xlabel({'\omega (rad/s)'},'FontSize',12,'FontName','Times New Roman'); 
ylabel({'X/Y'},'FontSize',12,'FontName','Times New Roman',... 



    'FontAngle','italic'); 

 
omegan=10*pi; % natural frequency 
zeta=0.289; % damping factor 
for i=1:301 
    r=(i-1)/30; 
    x(i)=r*omegan; 
    y(i)=sqrt((1+(2*zeta*r)^2)/((1-r^2)^2+(2*zeta*r)^2)); 
end     
    plot(x,y) 
for i=2:301 
    if y(i-1)>=1 && y(i)<1 
        x(i) 
    end 
end 
end 

From the MATLAB code, we can determine the range of frequency for X/Y<1 is  >45.03 rad/s. 

 

(2 points) 

 

6.3 Assume the damping factor does not change with the length of the cantilever beam. Plot YX /  

as a function of the beam length L for 20 rad/s. Determine the minimum length of the 

cantilever beam required to isolate vibration such that YX / be kept below 0.1. 

 

Answer: 

 

The stiffness provided by the cantilever is expressed as a function of L  
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MATLAB Code 
function XY_Length 
% Function to plot X/Y as a function of beam length 
figure1 =figure 
axes('Parent',figure1,'FontSize',12); 
box('on'); 
hold('all'); 
title({'Solution to problem #6.3'},'FontSize',14); 
xlabel({'L (m)'},'FontSize',12,'FontName','Times New Roman'); 
ylabel({'X/Y'},'FontSize',12,'FontName','Times New Roman',... 
    'FontAngle','italic'); 
zeta=0.289; % damping factor 
EI=6.57e-3; % bending stiffness of the beam 

omega=20; 
m=0.02; 
for i=1:1000 
    L=0.001*i; 
    k=(3*EI)/L^3; 
    omegan=sqrt(k/m); % natural frequency 
    r=omega/omegan; 
    x(i)=L; 
    y(i)=sqrt((1+(2*zeta*r)^2)/((1-r^2)^2+(2*zeta*r)^2)); 
end     
    plot(x,y) 
for i=2:1000 
    if y(i-1)>=0.1 && y(i)<0.1 
        x(i) 
    end 
end 
end 

 

From MATLAB code, the minimum length to keep  YX /  below 0.1 is L=0.453 m.  

(3 points) 

 



7.   Optional – For Extra Credit. The 

design of an Atomic force microscope 

(AFM) is based on a cantilever as 

discussed in Problem 6. In the tapping 

mode of AFM 

(http://en.wikipedia.org/wiki/Atomic_f

orce_microscopy), the cantilever is 

driven to oscillate up and down at its 

resonance frequency. A simple 

cantilever is used to model an AFM, where the mass m represents the tip which is interacting with the 

surface atoms of a sample. Neglect the mass of the rest of the system in your calculation. The 

interactive force between the tip and sample surface obeys the following interatomic potential 
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where r is the distance between the AFM tip and the surface of the sample. Assume J106.1 19  

and nm3.0 .  

 

7.1 Calculate the interaction force 
r

F
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   and instantaneous stiffness 

r

F
ks




  between the 

sample and the cantilever tip. Plot F   and sk  as a function of r . 

 

Answer: 

 

The first derivative of the potential is: 
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(1 Point) 

the equilibrium stiffness sk  
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MATLAB Code 

function potential 
% Function to plot F and k_s as a function of r 
sigma=0.3e-9; %the finite distance at which the inter-particle 

potential is zero, nm 
ems=1.6e-19; %depth of potential well, J 
figure1 =figure 
axes('Parent',figure1,'FontSize',12); 
box('on'); 
hold('all'); 
title({'Solution to problem #7.1 F '},'FontSize',14); 



xlim([0.2 2]); 
ylim([-2e-9 2e-9]); 
xlabel({'r (nm)'},'FontSize',12,'FontName','Times New Roman'); 
ylabel({'F (N)'},'FontSize',12,'FontName','Times New Roman',... 
    'FontAngle','italic') 
for i=1:200 
    r=0.01*i*1e-9; 
    x(i)=r*1e9; 
    F(i)=4*ems*(6*(sigma^6)/(r^7)-12*(sigma^12)/(r^13)); 
end 
plot(x,F) 
figure2 =figure 
axes('Parent',figure2,'FontSize',12); 
box('on'); 
hold('all'); 
title({'Solution to problem #7.1 k_s'},'FontSize',14); 
xlim([0.2 2]); 
ylim([-12 12]); 
xlabel({'r (nm)'},'FontSize',12,'FontName','Times New Roman'); 
ylabel({'k_s (N/m)'},'FontSize',12,'FontName','Times New Roman',... 
    'FontAngle','italic'); 
for i=1:200 
    r=0.01*i*1e-9; 
    x(i)=r*1e9; 
    k(i)=4*ems*(156*(sigma^12)/(r^14)-42*(sigma^6)/(r^8)); 
end     
    plot(x,k) 
end 

 

(2 Point) 

 

 

7.2 During an AFM scan, the height of the tip is tuned to an appropriate 

distance from the sample so that the tip vibrates in resonance. This 

allows the AFM to detect the surface topography of the sample as 

its tip scan over the entire sample surface. Write down the equation 

of motion for the AFM tip corresponding to the figure on the right.  

 

Answer:  

 

Set the initial position of this oscillation to be the equilibrium 

position, the dynamical equation for the displacement of the cantilever 

is given by 

 

kyxkkxcxm s  )(  

 

The equation could be recast as  
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7.3 At resonance, the mass vibrates at frequency 
61075.0  Hz due to the interaction with the 

sample. Given that the mass of the tip is 
1110

kg, and the stiffness k =200 N/m, determine the 

critical height of the tip when resonance occurs.  

 

Answer:  

 

When the resonance occurs, we have 
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Determine r from MATLAB: 

 
solve('156*(0.3e-9)^12/r^14-42*(0.3e-9)^6/r^8-22.07/4/(1.6e-19)','r')*1e9 

 

nm357.0 r     (2 points) 


