
EN40: Dynamics and Vibrations

Homework 4: Work, Energy and Linear Momentum
Due Friday March 2nd

MAX SCORE: 76
School of Engineering

Brown University

1. The ‘Morse Potential’ is often used to approximate the forces acting between atoms in a diatomic
molecule. The work done to separate two interacting atoms from the equilibrium distance between atoms
( er ) to a distance d apart has the following form

 
2

0( ) 1 exp ( )eV d E a d r     
1.1 Find an expression for the magnitude of the force acting between the atoms, and plot the force as a

function of d, for 0 1, 1, 5eE r a   , with 0.9<d<3

The force follows as

   0( ) 2 1 exp ( ) exp ( )e e

dV
F d aE a d r a d r

dd
         

Here’s the plot

(OK to plot graph upside down as well – that just uses a different sign convention for positive forces. In
the plot shown, attractive forces acting between the atoms are taken to be positive.

[3 POINTS]



1.2 Hence, express the following physical quantities in terms of the parameters in the potential

(i) The bond strength (the force required to break the bond)

The separation corresponding to the maximum force can be computed by differentiating F with
respect do d, setting the result to zero, and solving for d. Substituting this back into the expression for
F then gives the maximum force. Here’s the whole calculation in Mathematica

The maximum force is therefore max 0 / 2F aE

[2 POINTS]

(ii) The binding energy (the total energy required to pull the atoms apart from their equilibrium
spacing to infinity)

The work of separation is 0( ) ( )eV d V r E   .

[1 POINT]

(iii) The stiffness of the bond (i.e. the slope of the force-separation relation at the equilibrium spacing.

The stiffness is 2
02

ed r

dF
a E

dd 



[1 POINT]



1.3 A hydrogen molecule has bond spacing 0.74A, binding energy 4.72eV (electron-volts), and stiffness
33.72 eV/A2. Estimate the force required to break the bond. Express your answer in eV/A.

The bond stiffness and binding energy can be solved for a, giving 11.89a A . The force follows as

max 0 / 2 4.46 /F aE eV A 

Note that 1 eV/A is 1.602 10-9Newtons.

[2 POINTS]

2. The figure shows the force-v-strain relation for a
specimen of spider-silk (from Biophys J. 2007 December

15; 93(12): 4425–4432. ). Estimate the total energy per
unit length required to stretch the silk to its breaking point
(use the 44% relative humidity (RH) curve).

The energy required to beak a fiber is

0

( )
fL

E F x dx  so the energy per unit length is

0/

00 0

( ) ( )
f fL L L

dx
E F x F d

L
    . We can

evaluate the integral by getting a few points off
the curve. For example:

The integral can be evaluated using the ‘Trapz’ command in MATLAB
>> e = [0,2,6,7.5,10,15,26]/100;
>> F = [1.5,8,8,9,10,21.5,40]/1000;
>> trapz(e,F)

ans =

0.0050

Giving 0.005 J/m
It’s OK to do a more crude estimate by just approximating the area under the curve as a triangle.

[3 POINTS]

2.2 Consider an idealized spider-web made from three radial threads, as
shown in the figure. Take the length of threads to be 15cm. (A detailed
study of spider-web dimensions and their correlation with the spider’s
diet can be found here
http://deepblue.lib.umich.edu/bitstream/2027.42/31447/1/0000367.pdf ).
Suppose that the center of the web is impacted by (a) a house-fly, with
mass 12mg and speed 4.5mph; or (b) a horse-fly with mass 12mg and
speed 90mph (!! – the reference for this is

 (%) F (mN)

0 1.5
2 8
6 8
7.5 9
10 10
15 21.5
26 40

15cm

http://deepblue.lib.umich.edu/bitstream/2027.42/31447/1/0000367.pdf


http://www.speedofanimals.com/animals/housefly, which may not be trustworthy…).

Using energy conservation, estimate whether the flies will break the web. Assume that the flies move
perpendicular to the plane of the web. Spiral threads (shown dashed in the figure) can be ignored.

The kinetic energy of a house-fly at 4.5mph (2.011m/s) is mv2/2= 2.428x10-5 J
For a horse-fly the same calculation gives 0.0096 J

The maximum energy that the web can absorb is the total length of the radial fibers multiplied by
the energy per unit length at fracture, i.e. 3x0.15x0.005=0.00225 J

Thus the web will trap the house-fly, but the horse-fly will break the web.

[3 POINTS]

2.3 If the web remains intact, estimate the deflection of the web and the maximum force in the threads.
Approximate the force-deflection curve as a straight-line for this calculation.

We can do this calculation by making use of three ideas:
 The web and fly together make up a conservative system. This means that the sum of the

kinetic and potential energy in the system is constant.
 If the threads have a straight-line force-extension relation, the potential energy in each of

the threads after extension is 2
0

1
( )

2
V k L L  , where L is the stretched length of the

thread, and 0L is its initial length, and k is its stiffness.

Just before the fly impacts the web the total energy of the system is 2 / 2T V mv  .
At the maximum deflection of the web, the fly comes to rest. The total energy is therefore

2
0

3
( )

2
T V k L L   . Since energy is conserved, the length of the threads follows as

0
3

m
L L v

k
 

The length is related to the out-of-plane deflection of the center of the web by
2

2 2 2
0 0 0

3

m
L L z z L v L

k

 
       

 
The stiffness can be estimated from the given force-strain curve. For a 15cm thread, the
extension at fracture is approximately 0.15cmx27%=0.04m. The corresponding force is about
40mN, so the stiffness is about 1N/m.

Substituting numbers into the formula then gives z=0.035m or 3.5 cm.

The force in the web follows as 0( ) 0.004
3 3

m km
F k L L kv v N

k
    

[5 POINTS]

http://www.speedofanimals.com/animals/housefly


3. Reconsider the ski-jump problem analyzed in HW 3. During flight, three forces act on the skier: lift,
weight, and drag.

3.1 For each force, state whether the force is conservative, non-conservative, or workless. Explain your
reasoning briefly (one or two sentences for each).

Drag: Non-conservative. The work done by the force during motion is monotonically increasing
regardless of the path, and consequently must be path dependent.
Lift: Acts perpendicular to the direction of motion of the force. Therefore F.v=0 and the force is
workless.
Weight: Conservative – the potential energy is mgh.

[3 POINTS]

3.2 Write down an expression for the rate of work done by each force acting on the skier, as functions of
the angle of attack  and the velocity components (or, if appropriate, the velocity magnitude).

 

 

 

4 2

4 2 3

0

1
0.5072 + 0.04398 - 2.861 10

2

1
0.5072 + 0.04398 - 2.861 10

2

gravity x y y

Lift L

Drag

P mg v v mgv

P F V

P V

V

  

  





     

  

    

   

j i j

n t

v v

[3 POINTS]

3.3 Write down the energy conservation equation relating the skier’s kinetic energy to the work done by
the forces acting on the skier. Either the power or total work expression can be given…

1 0

gravity Drag

gravity Drag

dT
P P

dt

W W T T

 

  

(T is the kinetic energy, P is the rate of work, and W is the total work)
[1 POINT]

3.4 Write down two expressions for the work done on the skier by air resistance (one in terms of a time
integral, the other in terms of the kinetic and potential energy of the skier at the start and end of the jump).

By definition, the work done by the drag force is DragW P dt   . This can also be expressed in the

form

( )
( )Drag gravity

dT dT d PE
P dt P dt dt T PE

dt dt dt

   
           

   
  

[2 POINTS]

3.5 Use the MATLAB code you wrote for the ski-jump problem in HW3 (or see the solutions if you
weren’t able to get the code to work) to calculate the total energy dissipated by air resistance. Use both
approaches in step 4, and use parameter values given in Problem 1.5 or HW3. Note that you can use the
MATLAB ‘Trapz’ command to do the time integral. Why are the two answers different? What would



you need to do to make them closer together? You do not need to submit a full MATLAB code with your
solution – just report the lines of code you added to your solution to HW3 to solve this problem.

Here’s a MATLAB script to do both calculations added after the ODE solver
options = odeset('Events',@event);

[times,sols] = ode45(@eom,[0,8],initial_w,options);

% This loop computes the rate of work done by drag at each time
for i =1:length(times)

x = sols(i,1); y = sols(i,2);
vx = sols(i,3); vy = sols(i,4);
phi = atan(-vy/vx)*180/pi;
alpha = psi + phi;
Fd = 0.5*rho*(-0.5072 + 0.04398*alpha - 2.861e-4*alpha^2);
V = sqrt(vx^2+vy^2);
Wdrag(i) = -Fd*V^3;

End
% The trapz command integrates Wdrag with respect to time
totwork_integrated = trapz(times,Wdrag)

startke = m*(vx0^2+vy0^2)/2;
endke = m*(sols(end,3)^2+sols(end,4)^2)/2;
endpe = m*g*sols(end,2);
totwork_conservation = endke-startke + endpe

The integral gives the total work done as -60.143kJ
The conservation equation gives the total work done as -60.167kJ

GRADERS – note that people may get different numbers depending on the skier mass they chose –
grade based on process rather than numbers.

There are two possible reasons for the discrepancy: (i) the ODE solver may not be giving a sufficiently
accurate solution, and (ii) the approximation to the time integral returned by ‘trapz’ may not be
sufficiently accurate, because there are not enough (time,work) points to describe the time variation
accurately.

To improve the accuracy of the ODE solver, you can use the ‘RelTol’ option, as
options = odeset('Events',@event,'RelTol',0.00000001);

This changes the integrated work done to -60.165kJ but does not change the value obtained from the
conservation equation. To improve the accuracy of the ‘trapz’ function, you can increase the number of
time values in the solution vector, e.g. by

[times,sols] = ode45(@eom,[0:0.001:8],initial_w,options);

Both methods then yield -60.167kJ
[4 POINTS]



4. The background to this problem can be found in Leconte et al
Applied Physics Letters, 89, 243518 (2006). Both figures shown
above are from this source. This paper describes an experimental
method for measuring restitution coefficient of mm sized particles.
The apparatus confines a particle of interest between two flat platens.
The upper platen is stationary, while the lower vibrates vertically at a
fixed frequency. An accelerometer is mounted to the vibrating
platen, and a force sensor is mounted on the fixed platen. The ball
bounces between the two surfaces, and the sensors detect the times at
which impacts occur. The entire experiment is conducted in zero-g
(using an aircraft in parabolic flight). A representative experimental
result is shown in the figure above. In the test shown, the ball had a
radius of 1mm, and mass 32.7x10-6 kg

GRADERS – Note that there is likely to be considerable variation in numbers in this problem
because it is not easy to read times, etc off the graphs very accurately. Anything where the working
is clearly explained and the process is correct should receive credit.

4.1 Note that the lower platen vibrates with simple harmonic motion. Use the experimental data
provided in the figure to calculate the period and frequency of the vibration, the amplitude of the velocity

0V and the amplitude of the displacement 0X of the platen.

Simple harmonic motion formulas give 2
0 0 0( ) sin ( ) cos ( ) sinx t X t v t X t a t X t       

The period of vibration can be read off the graph – roughly T=0.0084sec.
The angular frequency of vibration follows as 2 / 748 /T rad s  
The amplitude of the acceleration is about 30m/s2. The amplitude of the velocity follows as
30/748=0.0401 m/s. The amplitude of the displacement follows as 0.0401/748=5.36x10-5m.

[2 POINTS]

4.2 Use the experimental data provided to estimate the value of x at the time that the particle impacts the
lower platen. Also, determine the velocity of the platen at the instant of impact.

x

m
L

V1
V2

2R



The impact occurs about t=0.003s after a zero-crossing of the acceleration. Note also that the
acceleration is positive at the instant of impact, which means that x must be negative. Therefore

5 5
0( ) sin 5.36 10 sin(748 0.003) 4.19 10x t X t m         

The velocity at impact follows as 0( ) cos 0.0401cos(748 0.003) 0.025 /v t V t m s    

[2 POINTS]

4.3 Use the results of 4.2, together with the experimental data, to determine the velocities 1 2,V V of the

particle moving between the platens.

The total distance traveled by the ball is L-x-2R=8.0419mm

The time for the ball to travel from the bottom platen to the top is 0.004ASt s 

The time for the ball to travel back from the top platen to the bottom is 0.0044SAt s 

The velocities follow as V1=2.011m/s V2=1.83m/s

[2 POINTS]

4.4 Find the restitution coefficient of the ball with both the upper and lower platens.

The upper platen is stationary. The restitution coefficient formula gives 2

1

0.91
V

e
V

 

The lower platen is moving – its velocity may be assumed to be constant during the impact. The
restitution coefficient formula gives

1

2

1.072
V v

e
V v


 



The restitution coefficient exceeds 1 because the platen is moving at constant speed during the
impact –the impact takes place over a finite (albeit short) time, and energy is supplied by the
actuator to the ball.

[2 POINTS]

5. The figure (from Kilcast “Solid Food”) shows
the variation of force with time when tomatoes are
dropped onto a flat, stationary surface. Suppose
that the variation of impact force with time can be
approximated by the following function

3

0

0 0

( ) exp(
t t

F t F
t t

    
          

where 0 0,t F are two numbers that can be adjusted

to give the best fit to the experimental data.



5.1 Use Mathematica to plot ( )F t , for 0 01, 1t F  .

[2 POINTS]

5.2 Find a formula for the time at which ( )F t is a maximum, in terms of 0t , and determine the

corresponding maximum force, in terms of 0F .

We can find the max in the usual way by differentiating F with respect to t, setting the result to zero, and
solving. This can be done by hand but here’s a Mathematica solution

Only the second root given here is physically relevant. Here’s how to substitute this value into the
expression for force in Mathematica

[2 POINTS – Mathematica not required, of course]

5.3 Find a formula for the impulse exerted by the force, in terms of 0 0,t F (use Mathematica to do the

integral – you can use Assuming[assumption,expression] to remove the annoying conditional in the result.
Check the Mathematica help for more information the Assuming[] command).



By definition, the impulse is
0

( )
T

I F t dt  . In this case we can take the upper limit T to be

infinite.

The integral can be done in Mathematica.

Here Gamma is a special function – it’s a sort of generalized factorial (specifically ( ) ( 1)!n n  

– it is defined as ( 1)

0

( ) z xz x e dx


    . For integer z you can evaluate the integral by successive

integrations by parts, which will show the connection to a factorial)

[3 POINTS]

5.4 Determine values for 0 0,t F that will approximate the three sets of experimental data.

We can read off the peak and the time at which the peak occurs for each curve, and use the result to

estimate 0 0,t F . Roughly

 Green tomatoes:
1/3 1/3

max max 0 max 0 max85 , 2 3 2.88 (3exp(1)) 171.1F N t ms t t ms F F N       

 Pink tomatoes
1/3 1/3

max max 0 max 0 max60 , 2.8 3 4.03 (3exp(1)) 120.8F N t ms t t ms F F N       

 Red
tomatoes

1/3 1/3
max max 0 max 0 max40 , 4.2 3 6.06 (3exp(1)) 80.51F N t ms t t ms F F N       

[3 POINTS]

5.5 Hence, estimate the value of the restitution coefficient for red, pink and green tomatoes.

The tomatoes are dropped onto a flat horizontal surface from a 10cm height. We can use energy
conservation to calculate the velocity just before impact

2
0 0

1
2 1.4 /

2
mgh mv v gh m s    (downwards)

We can use the impulse-momentum relation to calculate the velocity of the fruit just after impact. Take j
to be positive upwards, then



0 0
1 0 1 0 0

0 0

1
( ) ( ( ) ) ( ) 0.45137

T T
F t

F t dt m v v v F t dt v v
m m

        j j j

The restitution coefficient follows as 1 0 1 0/ ( ) /e v v v v   

The three cases give
 Green tomatoes (m=103 gram) 0.759 m/s 0.5421e 

 Pink (m=103 gram) 0.7338m/s 0.5235e 

 Red (m=101 gram) : 0.780m/s 0.557e 
There are likely to be some variations in the predictions in student solutions, depending on what numbers

are used for 0 0,t F

[3 POINTS]

6. The figure shows an apparatus to measure the impulse exerted by a sub-surface explosive device. It
consists of a piston with mass m supported by a frame. The system is initially at rest. The explosion then
propels the piston vertically, and its maximum height h is measured. Derive an expression that relates
the piston mass m and the height h to the impulse I exerted on the piston by the explosion. Friction can
be neglected.

(Figure from Ehrgott, et al Experimental Techniques, doi: 10.1111/j.1747-1567.2009.00604.x)

Just after the explosion, the mass is traveling vertically with speed V. During subsequent flight,

energy is conserved, so 2 / 2 2mV mgh V gh   .

The impulse-momentum equation then gives 1 0 2I mV I m gh     I p p j j .

[5 POINTS]

h



*
m

m



7. The figure shows two masses which roll freely on
the surfaces of a wedge. The two masses are tethered
by a massless cable that passes over a frictionless
pulley. The wedge rolls freely over a horizontal
surface. At time t=0 the system is at rest and mass A
is a distance d from the top of the wedge. The goal of
this problem is to calculate the time taken for the
mass at A to reach the top of the ramp. (Why anyone
would care about this is beyond me, but I spent many
years solving problems like this as a student… Now I
have a wonderful family, many cats, and a substantial job, so you might like to see if it works for you…)

Graders – it’s very fiddly getting the numbers correct on this problem – it needs very organized
and systematic calculations (or Mathematica). Deduct a point or two if the final answer is not
correct, but don’t worry too much about the numbers. Solutions that are procedurally correct
should get mostly full credit. Anyone submitting kittens, spouses, or children (or pictures thereof)
should get an extra credit point.

7.1 Suppose that the wedge has horizontal speed v. Write down the velocity vectors of each small mass in
terms of v and the time derivative of the distance s of the lighter of the two masses from the top of the
wedge

If you have trouble writing down the velocities by inspection, try writing down the position vector of each
mass and differentiating the position vector with respect to time. For example, if the tip of the wedge has
position xi+hj, the position of mass A is r = xi-scos(45)i+(h-ssin(45))j

cos 45 sin 45

cos 45 sin 45

A

B

ds ds
v

dt dt

ds ds
v

dt dt

  

  

v i i j

v i i j

[2 POINTS]

7.2 Hence, write down the total momentum, and energy of the system

The momentum is

cos 45 sin 45 2 cos 45 sin 45
ds ds ds ds

mv m v m v
dt dt dt dt

   
         

   
p i i i j i i j

The total energy (kinetic+potential) is

2 2 2 2

2

sin 45 2 ( )sin 45

1 1 1
cos 45 sin 45 cos 45 sin 45

2 2 2

T V mgs mg d s

ds ds ds ds
mv m v m m v m

dt dt dt dt

    

       
             

       
Other results are possible depending on the datum used to measure the heights of the various masses. It
doesn’t matter what is chosen (and you can even use a different datum for each mass), as long as
everything is consistent.

[2 POINTS]

s

i

k



m

m

2m
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A
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7.3 Use momentum and energy conservation to obtain a differential equation for s. Your equation should
have the form

2

2

d s
nasty formula

dt


The system is at rest at time t=0 and therefore its momentum is zero. Since no external forces act on the
system in the i direction, momentum must be conserved in the i direction. This means that

0 cos 45 2 cos 45
ds ds

mv m v m v
dt dt

   
       

   
We can solve this equation for v, with the result

3

4 2

ds
v

dt


The initial total energy is -mgd sin(45), and remains constant. Therefore

2 2 2 2

2

sin 45 sin 45 2 ( )sin 45

1 1 1
cos 45 sin 45 cos 45 sin 45

2 2 2

mgd mgs mg d s

ds ds ds ds
mv m v m m v m

dt dt dt dt

    

       
             

       
Substituting for v in this equation and simplifying gives

2

2

15
0 ( )sin(45)

16

16
( )

15 2

ds
mg d s m

dt

ds g
d s

dt

 
     

 

 
  

 
(anything algebraically equivalent should get credit, of course, and other solutions with a different datum

for the potential energy may have a constant added to the RHS)

To get the differential equation in the form requested, differentiate both sides with respect to time
2 2

2 2

16 8
2

15 2 15 2

ds d s g ds d s
g

dt dt dt dt

 
     

 
[4 POINTS]

7.4 Solve the result of 7.3 to calculate the time. Then go off and start a family, get some kittens, etc.

You could do this two ways – the differential equation from the previous part just says that
2 2/d s dt const - this is therefore just a constant acceleration problem. We can write down the formula

for s as a function of time by noting that at time t=0 the system is at rest (no velocity) and at time t=0
s=d. Therefore

21 8

2 15 2
s d t 

From the constant acceleration formula. (x=x0+v0t-a t^2/2). The time to reach s=0 follows as

15 2 15

4 2 2

d
t d

g g
 



If you prefer, you can also use the preceding formula for ds/dt, separate variables and integrate, noting
that s=d at t=0, and s=0 when the mass reaches the top of the ramp

2

0

0

16 16
( ) ( )

15 2 15 2

16 16 15 2
2

415 2 15 2

t

d

ds g ds g
d s d s

dt dt

ds g g
dt d t t d

gd s

 
     

 

    
 

The whole calculation can also be done in Mathematica (but some of the syntax involved in extracting
solutions into a useable form is painful)

[2 POINTS]



V *
n

vC

vD

i
j

8. The figure shows a plan view of a vehicle with mass M and initial speed V colliding with one of the
sand-filled drums in a ‘Fitch Barrier’
http://www.google.com/patents?hl=en&lr=&vid=USPAT3880404&id=3YoyAAAAEBAJ&oi=fnd&dq=f
itch+barrier&printsec=abstract#v=onepage&q&f=false. The drum has mass m.

The car rolls freely, so the combined momentum of the car and drum is conserved in the i direction
(parallel to the vehicle’s motion) during impact. Friction forces between the car’s wheels and the road
ensure that the car continues to move in the i direction after impact. Friction between the drum and road

during the impact may be neglected. After the impact, the car has velocity vector cv i , while the drum

has velocity vector Dv n , where n is the normal to the plane of contact.

8.1 Assume that the impact occurs with the normal vector to the contact plane at 45 degrees, and is
frictionless. Write down the unit vector n as components in the {i,j} basis. Hence, determine the
components of velocity in a direction parallel to n of the car and drum before and after impact, in terms of

V, Dv and cv

This is simple vector stuff ( ) / 2 n i j

The velocity components along n are / 2 / 2c c D DV V v v v v     i n i n n n
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8.2 Assume that the collision has restitution coefficient e. Write down the restitution coefficient formula

relating V, Dv and cv

The normal components of velocity are related by the usual restitution coefficient formula – so

/ 2

/ 2
D Cv v

e
V



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8.3 Use momentum conservation and 8.2 to determine a formula for the speed of the car cv after

collision, in terms of V, e, and the masses of the car and drum.

Momentum is conserved in the i direction, which requires

/ 2c D c DMV Mv mv Mv mv    n i

http://www.google.com/patents?hl=en&lr=&vid=USPAT3880404&id=3YoyAAAAEBAJ&oi=fnd&dq=fitch+barrier&printsec=abstract#v=onepage&q&f=false
http://www.google.com/patents?hl=en&lr=&vid=USPAT3880404&id=3YoyAAAAEBAJ&oi=fnd&dq=fitch+barrier&printsec=abstract#v=onepage&q&f=false


From 8.2, we see that / 2 / 2D Cv v eV  , and substituting this into the preceding formula gives

  / 2 ( / 2) / ( / 2)c c cMV Mv m v eV v M em V M m      

[2 POINTS]

8.4 Suppose that the car hits a series of drums with mass m=M/5 and e=1/2. How many drums are
required to reduce the car’s speed by a factor of 10?

1 1/10 9

1 1/10 11
cv V V


 



The number of drums to reduce the car’s speed by a factor of 10 satisfies the equation

9
log(1/10) / log(9 /11) 12

11 10

n
V

V n
 

    
 
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