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Homework 5: Free and damped vibrations---solutions 
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Warm-up problems: 
1. Complex numbers 
1.1 Show that  

                                    cos! + isin!( )
n
= cos n!( )+ i sin n!( ).  

solution [1 point]:  

ei!( )
n
= ei!n = cos(n! )+ isin(n! )

 
 
1.2 Use Euler’s formula to show that  

                                                   cos3! = 3
4
cos! + 1

4
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solution [1 point]: 
ei! = cos! + isin!

 implies that  
cos! = (ei! + e!i! ) / 2.

 Thus,  

cos3! = ei! + e!i!

2

"

#
$

%

&
'

3

=
e3i!

8
+
3ei!

8
+
3e!i!

8
+
e!3i!

8
=
1
4
cos3! + 3

4
cos!.

 

1.3 Calculate all the values of ii . 
solution [1 point]: 
Using, Euler’s formula, we can write i as a phase: i = ei! /2.

 Note that we can multiply i by one by multiplying by any integer power of 
ei2!k =1,

  where k is an integer. Thus,  
ii = e!(! /2+2!k ) .

 Note that there are infinitely many values, one corresponding to each k. All the values are real. 
 

 
2. An automobile having a mass of 2000 kg deflects the suspension springs 0.02 m under static 
conditions. Determine the natural frequency of the automobile in the vertical direction, assuming damping 
to be negligible.  
solution [1 point]: 
In static equilibrium, kδ=mg, where k is the effective spring constant of the springs, mg is the car weight, 
and δ is the static deflection. Thus  

!n = g / ! ! 9.81/ 0.02 rad/s ! 22.15 rad/s ! 3.525 Hz
 

 



 
3. The radio station AM 1290 WRNI in Providence transmits at a carrier frequency fc=1290 kHz. The 
amplitude of this signal is modulated with a sinusoidal oscillation fm=1200 Hz:  

                                 E(t) = E0 1+
1
2
cos 2! fmt( )

!

"
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%
&cos 2! fct( ).  

 
3.1 Plot E(t) as a function of time. 

solution [1 point] 
There is about a 1000-fold difference in the carrier frequency and the modulation frequency. The 
carrier frequency oscillates extremely rapidly compared to the modulating signal. If we try to plot the 
signal without thinking carefully about how fast the carrier signal oscillates, we will get a misleading 
plot. Here is some MATLAB code and the output for the E(t)/E0 vs time for one period of the 
modulating signal: 

fc=1290000;fm=12000; 
t=linspace(0,1/fm,100); 
y=(1+1/2*cos(2*pi*fm*t)).*cos(2*pi*fc*t); 
plot(t,y) 

 

 

 



 
The problem here is that linspace by default sets up a vector of 100 points. The graph above is 
misleading because the carrier signal has a period that is comparable to the spacing between the 
points in the vector t. The solution is to add more points: 

fc=1290000;fm=12000; 
t=linspace(0,1/fm,1000); 
y=(1+1/2*cos(2*pi*fm*t)).*cos(2*pi*fc*t); 
plot(t,y) 

 

 
We could add even more points to make this more accurate, but at least this figure realistically 
conveys the discrepancy in frequencies. 
 

3.2 Show that E(t) is equivalent to the superposition of three constant-amplitude signals.  
solution [1 point] 

cos(! +!)+ cos(! !!) = 2cos! cos".
 Thus, 

E(t) / E0 = cos 2! fct( )+ cos 2! fc + fm( ) t!
"

#
$+ cos 2! fc % fm( ) t!

"
#
$  

 



3.3 Using the Play command in Mathematica (and a computer with a speaker!), determine the audible 
range of frequencies for humans. What bandwidth (range of frequencies) is required to transmit the 
complete audible range? 
solution [1 point] 
The human auditory range is from about 20 Hz to 20 kHz. Thus, the bandwidth is about 40 kHz, or 
from about 1250 kHz to 1330 kHz. 

 
More involved problems: 
4. An object of mass M rests on a frictionless horizontal surface. Two identical springs of spring constants 
k and relaxed length l0 are attached to the mass as shown below.  The object is at rest in static equilibrium 
when each spring is of length d (d>l0).   

                                             
 
4.1 The mass is given a displacement of x0 to the right. Give equations for F1 and F2, the forces exerted by 
the two springs. Use the sign convention that a positive force acts toward +x. 
solution [1 point] Label the spring on the left by 1 and the spring on the right by 2.  
F1 = !k d + x0 ! l0( ),
F2 = k d ! x0 ! l0( ).

 

 
4.2 The mass is released from its position at x=x0. The initial velocity is zero. Write the differential 
equation of motion for the mass moving in the x direction.  
solution [1 point] 
m!!x = !2kx.  
4.3 Solve the equation of motion, using the initial conditions.  
solution [1 point] 

x = x0 cos
2k
m
t

!
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4.4 Now suppose the mass again brought to its equilibrium position, and given a small displacement y0 in 
the y direction. The displacement is so small that the lengths of the springs may be considered to be d. 
What is the net force acting on the mass? Give both magnitude and direction.  

solution [1 point] 
The springs now make a small angle θ with the x-axis. Thus, within an accuracy of order θ, the length of 
each spring does not change. Thus, the tension in each spring acts parallel to the spring, directed away 
from the central mass, and with the same magnitude  F=k(d-l0) (to accuracy of order θ) as when 
θ=0. Since θ∼y0/d, the net force is Fnet=-2k(d-l0)y0/d.  



 
 

4.5 What is the natural frequency of the small oscillations along the y axis? 
solution [1 point] 

!n =
2k
m
d ! l0
d
.  

 
4.6 Now redo 4.2 using energy methods. Assume the mass only moves along the x direction. 
solution [1 point] 

E = 1
2
m!x2 + 1

2
k d + x ! l0( )

2
+
1
2
k d ! x ! l0( )

2

!E = m!!x + k d + x ! l0( )! k d ! x ! l0( )"
#

$
% !x

But !E = 0 so
m!!x + 2kx = 0

 

 
 
5.  In this problem we will get some experience with using complex numbers to solve the damped free 
oscillator problem. Writing z=x+iy, suppose z satisfies the damped oscillator equation in standard form, 
                                                      !!z + 2!"n !z +!n

2z = 0.  
Assume 0 ! ! <1.  
5.1 Set z = Aexp(ipt) , where A is a complex constant (with magnitude and phase), and solve the 
resulting quadratic equation for p.  
solution [1 point] 
The differential equation becomes  
!p2 + 2i!"n p+!n

2( ) z = 0.  
The quantity in parentheses must vanish. Therefore, 

p =
!2i!"n ± 4" 2

n ! 4!
2" 2

!2
p = i!"n ±" n 1!!

2

p = i!"n ±" d

 

 
 
5.2 Take the real part of z to find 
                                                   x = Bexp(!!"nt)cos(!dt +!),  



where B and φ are undetermined (real) constants, and !d =!n 1!!
2  . 

solution [1 point] 
z = Aeipt = Aexp !!"nt( )exp ±i!dt( ) . 

Since A is complex, we may write A= Bexp i!( ) , where B and φ are real. Thus,  

x = Bexp(!!"nt)cos(!dt +!).  

5.3 Supposing x(0) = x0  and !x(0) = 0 , show that 

                                                  x =
x0
1!! 2

exp(!!"nt)cos(!dt +!),  

with tan! = !! / 1!! 2 . 
solution [1 point] 
x(0) = x0 ! x0 = Bcos!.  
Also, 
!x(0) = 0!"!"n cos# ""d sin# = 0.  

Thus,  

tan! = ! !

1!! 2
.  

You can draw a right triangle with angle φ to convince yourself that  

cos! = 1!! 2 .  
Putting it all together yields the result to be shown. 

5.4 The logarithmic decrement  
                                           ! = log x(tk ) / x(tk+1)!" #$  

is a measure of the damping. Show that  

                                           ! =
!

4" 2 +! 2
.
 

solution [1 point] 
The times tk are the times of the peaks in x. Although the presence of damping makes x a non-periodic 
function, the peaks occur regularly, with spacing 2π/ωd. Thus, ωd(tk+1-tk)=2π, and 

! = log x(tk ) / x(tk+1)!" #$= !"n (tk+1 ! tk ) = 2!
"

1!! 2
.  

Solving for !  yields the desired result.  
 
 
 
 
 
 
 
 
 



6. Using MATLAB, calculate how the period of an undamped pendulum depends on the initial amplitude 
θ0 of the angle of the pendulum. Assume the pendulum starts from rest. Plot your answer for the period 
using appropriate dimensionless variables.  
solution [5 points] 

function  pendulumperiod 
% calculate the period of a pendulum as a 
% function of amplitude 
  
npoints = 50; % number of amplitudes to 
compute 
initial_amp = zeros(npoints,1); 
%preallocating 
period = zeros(npoints,1); 
for ii=1:npoints 
     
    %be careful at the endpoints; theta0=0 
would not 
    %lead to an oscillation, and theta0=pi 
would have 
    %an infinite period! 
    theta0=ii/(npoints)*0.9*pi;  
    initial_amp(ii)=theta0; 
     
    % time interval to solve the equations 
    tstart = 0; 
    tstop = 10*pi; %this has to be pretty 
big as 
                   %the initial theta gets 
close to pi 
     
    % initial value for [theta; thetadot] 
    w_init = [theta0; 0]; 
     
    % solve 
    options = odeset('Events',@events); 



    [t_vals, sol_vals] = ... 
        
ode45(@pend,[tstart,tstop],w_init,options); 
    period(ii)=2*t_vals(end); 
end 
  
plot(initial_amp,period); 
xlabel({'\theta_0'},'FontSize',18,'FontName
','Arial'); 
ylabel({'\omega_n 
T'},'FontSize',18,'FontName','Arial'); 
  
    function dwds = pend(t,w) 
        dwds = zeros(2,1); 
        dwds(1)=w(2); 
        dwds(2)=-sin(w(1)); 
    end; 
     
    function 
[eventvalue,stopthecalc,eventdirection]=eve
nts(t,w) 
        eventvalue = w(2); %we'll just stop 
it at half the period 
        stopthecalc = 1; 
        eventdirection = 1; 
    end 
  
end 
 
 
The output is on the next page. Note that for small angles, we recover the independence of the period with 
respect to initial amplitude; the period is independent of the initial amplitude with errors of the order of 
the initial amplitude squared for small initial amplitude.  



 
 

7. The figure below shows a pendulum in which the support point, with mass m1, is free to slide back and 
forth without friction along a horizontal bar. The mass at the end of the pendulum is m2. There is no initial 
velocity in the system, and there is no damping. The goal of this problem is to find the natural frequency.  
 
7.1 Write down the total energy as a function of x and θ, and/or their time derivatives. 
7.2 What principle relates !x  to !  and !! ? Use this principle to find !x  in terms of !  and !! . 
7.3 Write the total energy as a function of !  and !! . 
7.4 Expand the energy for small angle. You need to go to second order in the small quantities.  
7.5 Using the fact that the energy is constant for this conservative system, derive the equation of motion 
for small oscillations. What is the natural frequency? 
7.6 Consider your answer in two different limits, m1>>m2, and m1<<m2. Can you explain why the natural 
frequency takes the value it does in these two limits? 
 



 
 












