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4. An old pendulum clock is sitting on a table spinning with 
angular speed of   with respect to y axis as shown in the figure; 
the x, y  plane spins with respect to y  axis. The pendulum in 

the clock is attached at the origin of the  coordinate and 

oscillates only in the spinning x, y  plane. The pendulum length 

is denoted by l  and the swing angle in the  plane by  .  

(1) By aligning the spinning coordinate axes  , ,x y z  and the 

inertial frame coordinate axes  , ,X Y Z  at time at 0t  , the 

inertial coordinate position of the pendulum mass m  is given 
by   sin cosX l t  , cosY l    and sin sinZ l t   . 
Using the law, sin cos sinXF T t N t mX       ,    

cosYF mg T mY      and sin sin cosZF T t N t mZ      , show that 

the equation of motion is reduced to   2sin cos sin 0g l      . Here T is the 

tension and N the force normal to  plane, transmitted through the pendulum bar. 

 
(2) Linearize the equation of motion and find the pendulum swing period in terms of l , 

  and the gravitational acceleration g . 
 

(3) At what spin speed   does the clock stop? 
 

(4) Compare the linearized solution of  t   with the solution of the full nonlinear 

equation in (1) numerically solved by MATLAB for 0  t  
6

, for 
1

2

g

l
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5. Consider two pendulums, a  and b , with the same string length l , but with different 
bob masses am  and bm . They are coupled by a spring of spring constant k  which is 

attached to the bobs. 
  

(1) Show that the equations motion (for small oscillations) are  
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2

2

2

2
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a a a b a

b
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m m k

dt l
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(2) Solve these two equations for the two normal modes, showing that 
   1 a a b b a bm m m m      and 2 a b     are normal coordinates.  

 
(3) Find the frequencies and configurations of the modes. What is the physical 

significances of 1 ? Of 2 ? 
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x, y 

x

y



(4) Find a superposition of the two modes which corresponds to the initial conditions 
at time 0t   that both pendulums have zero velocity, that bob a  have amplitude 
A , and that bob b  amplitude zero. 

 
(5) Let   2 2a a aE t m gl   and   2 2b b bE t m gl   be the total energy of the 

pendulum a  and b  respectively, ignoring the spring energy for weak coupling. 
Here a  and b  denote the envelope function of the beat oscillation. Find an 

expression for  aE t  and for  bE t . Does the energy of bob a  transfer 

completely to bob b  during a beat? Is it perhaps the case that if the pendulum 
which initially has all the energy is the heavy one, the energy is not completely 
transferred, but if it is the light one, the energy is completely transferred? 

 
 
 
     
 


