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This is the stiffness of O-O bond in N/m. 
Now, we get the atomic mass (m) in kg as follows: 
 

 
 
This is the wavelength of IR light in m  for the O-O bond vibration. 
 
If you repeat the calculation for the rest bonds, you will get the wavelength for each as, 
  
C-C (aliphatic): 219.8 m  
C-C (aromatic): 231.1 m  
N-N  : 145.8 m  
S-S  : 156.5 m  
H-H  : 64.99 m  
 
These numbers are about 25 times off the real IR wavelength – why? This may be 
because the Buckingham potential is not reliable for stiffness estimation, since it is 
primarily designed for potential well depth and equilibrium bond length estimation. 
 



2. Seiches is a phenomenon of harmonic oscillation of contained water in lakes, 
reservoirs, swimming pools, bays, harbors and seas when the motion is synchronously 
activated by atmospheric pressure variations or seismic waves. “The term was promoted 
by the Swiss hydrologist François-Alphonse Forel in 1890, who was the first to make 
scientific observations of the effect in Lake Geneva, Switzerland. The word originates in 
a Swiss French dialect word that means "to sway back and forth", which had apparently 
long been used in the region to describe oscillations in alpine lakes: [wiki]” 
 
Consider an idealized model as follows. Water is contained in a pan of span of 2L and 
initially filled up to the depth of H. The level of the water surface is then dynamically 
tilted to have the elevation of the water level expressed as    y t x h t L  as shown in 

the figure below. 
 

(1) Show that the center coordinate 
 ,C Cx y of the mass of the water is 

located at 

 
1 1
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3 6 2C C

L h H
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H H
        
    .

 

 
Solution:  

 
1 1 1

2 3
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
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           
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(2) With a crude approximation of treating the water motion as a rigid body motion of 

 ,C Cx y , show that the water has the total energy  as 
2

2 2   for 1
18 6T

M L Mg h
E h h C

H H L
    
 

  , where C  is a constant. 

Solution: 

 
2 2

2 2 2 2

2
2 2
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2 18 6 2
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M L h Mg MgH
E M x y Mgy h h

H H H

M L Mg h
h h C

H H L
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     

    
 

 

 

 

 
(3) Set up the equation of motion for  h t  and show that the sloshing frequency is 

approximately given by  
3H g

L H
   . 

2L  

 h t  
y

x  
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Solution: 

Before snapping it was vibrating as   0 ˆsinh h   with ˆ 3k m    and the static 

deflection is  

3Mg k  .      (1) 

At the time of snapping we have  

0 2h h  and 0
ˆ 3 2h h   .    (2) 

Now we set these conditions as initial condition of the vibration after the snapping for 
which we describe the height location of the mass as  y t . Then, the free body diagram 

after the snapping shows as follows  

 

 

 

 

 

 

 2yF k y Mg My      this equation can be rearranged as  

2 2My ky k Mg   :      (3) 

This is the standard form of shifted harmonic oscillation we studied in our class. 
Inserting (1) into (3) we have  
 

2

3

k g
y y

M
          (4) 

This differential equation has the general solution of  

  2
sin

6

k Mg
y t C t

M k


 
    

 
.    (5) 

Now we use the initial conditions in (2) to determine C  and   as  

  00 sin
6 2

hMg
y C

k
    or 0sin

2 6

h Mg
C

k
       (6) 

 

Mg 

 2k y 
End point of un‐stretched spring 

Base line of  0h   and  0y   

 y t  




  0 03 32 3
ˆ0 cos

2 2

h hk k
y C

M M
       or  03

cos
2 2

h
C      (7) 

Dividing (6) by (7), we have  

0

2 2
tan

3 9

Mg

kh
          (8a) 

and (6)^2+(7)^2 will lead to 

2 2
0 09

2 6 8

h hMg
C

k
    
 

    (8b) 

 

4. An old pendulum clock is sitting on a table spinning with 
angular speed of   with respect to y axis as shown in the figure; 
the x, y  plane spins with respect to y  axis. The pendulum in 

the clock is attached at the origin of the  coordinate and 

oscillates only in the spinning x, y  plane. The pendulum length 

is denoted by l  and the swing angle in the  plane by  .  

(1) By aligning the spinning coordinate axes  , ,x y z  and the 

inertial frame coordinate axes  , ,X Y Z  at time at 0t  , the 

inertial coordinate position of the pendulum mass m  is given 
by   sin cosX l t  , cosY l    and sin sinZ l t   . 
Using the law, sin cos sinXF T t N t mX       ,    

cosYF mg T mY      and sin sin cosZF T t N t mZ      , show that 

the equation of motion is reduced to   2sin cos sin 0g l      . Here T is the 

tension and N the force normal to  plane, transmitted through the pendulum bar. 

Solution: 

2 2

sin cos

cos cos sin sin

cos cos sin cos 2 cos sin sin cos

X l t

X l t l t

X l t l t l t l t



  

      

 

    

         


  

 

2

cos

sin

sin cos

Y l

Y l

Y l l



 

   

 



 


 

 

x, y 

x, y 

x, y 

x

y



2 2

sin sin

cos sin sin cos

cos sin sin sin 2 cos cos sin sin

Z l t

Z l t l t

Z l t l t l t l t



  

      

  

     

          


  

 

Once we plug into the given equations of motion, you get 

  2sin cos sin 0g l     
 

(2) Linearize the equation of motion and find the pendulum swing period in terms of l , 
  and the gravitational acceleration g . 

Solution:  

Put sin   and cos 1   for  1   to have   2 0g l   
 

 

(3) At what spin speed   does the clock stop? 

Solution:  

g

l
   

 
(4) Compare the linearized solution of  t   with the solution of the full nonlinear 

equation in (1) numerically solved by MATLAB for 0  t  
6

, for 
1

2

g

l
. 

Solution:  

Linearized solution: 
1 3

sin
6 2

g
t

l

   

Full nonlinear solution: MATLAB 

 
5. Consider two pendulums, a  and b , with the same string length l , but with different 
bob masses am  and bm . They are coupled by a spring of spring constant k  which is 

attached to the bobs. 
  



(1) Show that the equations motion (for small oscillations) are  
 

 

 

2

2

2

2

a
a a a b a

b
b b b b a

d g
m m k

dt l

d g
m m k

dt l

   

   

   

    . 

 
Solution: 
Draw the free body diagrams of two bobs and use the law of motion as  
 

 

 

 

 

2

2

2

2

2

2

2

2

a a
x a a b a a

a b
x b b b a b

a
a a a b a

b
b b b b a

d l
F m g kl m

dt

d l
F m g kl m

dt

d g
m m k

dt l

d g
m m k

dt l

  

  

   

   

    

    


    

    




 

 
 

(2) Solve these two equations for the two normal modes, showing that 
   1 a a b b a bm m m m      and 2 a b     are normal coordinates.  

 
Solution: 
 

 

 

2

2

2

2

         (1)

          (2)

a
a a a b a

b
b b b b a

d g
m m k

dt l

d g
m m k

dt l

   

   

   

   

 

 
Add (1) and (2) to have  
 

   

   

2 2

2 2

2

2

2

2

      

Devide it with   to have

   

a
a a a b b

a a b b
a a b b

a b

a a b b a a b b

a b a b

d d g g
m m m

dt dt l l

d m m g
m m

dt l
m m

m m m md g

dt m m l m m

  

 
 

   

   


   



    
        

 

 



Subtract  2bm   from  1am   to have  

 

 

     

2

2

2

2

2

2

         : (1)

         : (2)

a
b a a b a b b a b

b
a b a b b a b a a

a b
b a a b a b a b

d g
m m m m km m

dt l

d g
m m m m km m

dt l

d g
m m m m k m m

dt l

   

   

 
 

    

    

        
 

 

 
(3) Find the frequencies and configurations of the modes. What is the physical 

significances of 1 ? Of 2 ? 

 
Solution: 

2
1  

g

l
  for 

 
1

a a b b

a b

m m

m m

 






: moving together mode 

2
2

1 1

a b

g
k

l m m


 
   

 
 for  1 a b    : separation mode 

 
(4) Find a superposition of the two modes which corresponds to the initial conditions 

at time 0t   that both pendulums have zero velocity, that bob a  have amplitude 
A , and that bob b  amplitude zero. 

 
Solution: 

 

1 2

1 2

cos cos

cos cos

a b
a

a
a

m m
A t t

m m

m
A t t

m

  

  

   
 

 

 

where a bm m m  . 

 
(5) Let   2 2a a aE t m gl   and   2 2b b bE t m gl   be the total energy of the 

pendulum a  and b  respectively, ignoring the spring energy for weak coupling. 
Here a  and b  denote the envelope function of the beat oscillation. Find an 

expression for  aE t  and for  bE t . Does the energy of bob a  transfer 

completely to bob b  during a beat? Is it perhaps the case that if the pendulum 
which initially has all the energy is the heavy one, the energy is not completely 
transferred, but if it is the light one, the energy is completely transferred? 

 
Solution: 
After defining the modulation  mod 2 1 2     and the average frequency 

 2 1 2av    , one finds 



 mod mod

mod

cos cos sin sin

2 sin sin

a b
a av av

a
b av

m m
A t t A t t

m

m
A t t

m

    

  

    
 

   
 

 

 
As mod av   we have the slow varying envelope function gives the energy variation as  

 

 

 

2
2

mod mod

2
2 mod mod

2 22

mod

2 2
2

2 12 2

mod

cos sin

1 cos 2 1 cos 2

2 2

1 1 cos 2
2

2
cos

2 sin

a b
a

a b

a b a b

a b a b

a
b

m m
E A t A t

m

t m m t
A

m

m m m mA
t

m m

m m m m
A t

m m

m
E A t

m

 

 



 



    
 

        
   

                      
 

   
 



  

  

2

2
2 2

mod

2
2

2 1

2
2 1 mod2

4 sin

2 1 cos

2 1 cos   with  for 

a

a

a b
a b av

m
A t

m

m
A t

m

m m
A t m m

m



 

   

 
 
 

   
 

    
 

    
     

 
Thus we see that  
 

 

 

2 2
2 2

2 12 2

2 2
2 12 2

2 cos

2 2 cos    

a b a b
a

a b a b
b

m m m m
E A A t

m m

m m m m
E A A t

m m

 

 

 
   

 

  

. 

 
The total energy is 2

a bE E A  . 


