EN40: Dynamics and Vibrations

Homework 5: Free Vibrations
' Due Friday March 22nd

School of Engineering
Brown University

1. In homework 4 Problem 1_3(“/)’ you Table 3 Selected Values® of the Buckingham Potential

used the Buckingham potential Parameters A, B, and C.

C Interaction 107*A* B* cr
V(d)=Aexp(-Bd)-— CC 541.4 459 363.0
d® C 1820 4.59 556.7
N--N 393.2 4.59 547.3
) i . 00 135.8 4.59 217.2

to get the stiffness k’s of the six  s-s 906.3 3.90 3688
molecular bonds with the coefficients A,  H-H 7.323 4.54 47.1

B and C as shown in Table 3. “Taken from Ref. 48.
*Units are such as to give energy in kcal mol~' for r in A.
‘Aliphatic carbon atoms.

Find the frequency @’s of bond  ‘Aromatic carbon atoms.

stretching vibrations of the six molecular

bonds, and corresponding wavelengths of infrared (IR) light that excite the bond-
stretching vibrational mode. The wavelength A of the light is given by 1 =2zc/w, and it

is typically in the range of 2.5—-25um. In chemistry, the spectrum of the wavelength is
traditionally denoted by the reciprocal 1/4 cm™; for example, experimental measurement
of H—H bond IR spectrum is 4111 cm™.

Solution: Use mupad as follows (Oxygen example)
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Cc:=217.2%4.2
912.24

-__'\"_: =n*exp (-B*d) -C/d™6
5703600 _ 31224
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= a




E:= —-L*B¥*exp (—B*d) +6*C/d"7
5473.44 _ 26179524

458 4

') c

egaep := zsolve(F=0,d,Real) [2]
3039843932

Fderiv:=A*B*B*exp (-B*d)-42*c/d"8

12016401.52 _ 38314 .08

E—.}:- o Q,E
=tif := float (subs(Fderiv,d=egsep))

5219333039
S:=(%)*1000/6.02/10"23/10"(-20)
0.8669988437

This is the stiffness of O-O bond in N/m.
Now, we get the atomic mass (m) in kg as follows:

m:=1&/%.02/10"23/10"3

15

2.657807309 107

omega:=sgrt (2*5/m)

17

8.077231146 107

_lambia:=2*3.14*3*1:“8*1:“Efomega

2332482463

This is the wavelength of IR light in zm for the O-O bond vibration.

If you repeat the calculation for the rest bonds, you will get the wavelength for each as,

C-C (aliphatic): 219.8 um
C-C (aromatic): 231.1 gm

N-N : 145.8 um
S-S : 156.5 um
H-H 1 64.99 um

These numbers are about 25 times off the real IR wavelength — why? This may be
because the Buckingham potential is not reliable for stiffness estimation, since it is
primarily designed for potential well depth and equilibrium bond length estimation.



2. Seiches is a phenomenon of harmonic oscillation of contained water in lakes,
reservoirs, swimming pools, bays, harbors and seas when the motion is synchronously
activated by atmospheric pressure variations or seismic waves. “The term was promoted
by the Swiss hydrologist Francois-Alphonse Forel in 1890, who was the first to make
scientific observations of the effect in Lake Geneva, Switzerland. The word originates in
a Swiss French dialect word that means "to sway back and forth”, which had apparently
long been used in the region to describe oscillations in alpine lakes: [wiki]”

Consider an idealized model as follows. Water is contained in a pan of span of 2L and
initially filled up to the depth of H. The level of the water surface is then dynamically

tilted to have the elevation of the water level expressed as y(t)=xh(t)/L as shown in
the figure below.

(1) Show that the center coordinate

(Xe, Y )of the mass of the water is
located at
e
Solution:
Xe = I\il J'M (M) 2pHL p(H + Exjdx_%[LJh

1 1 L1 h 1(h H
yC :MJ-M y(dM)dM :m-“—LE(y_H)p(H +Ixjdng(ﬁjh_?

(2) With a crude approximation of treating the water motion as a rigid body motion of
(Xe, Yc ), show that the water has the total energy as

2
. _Mrt h? + Mg h?+C for n<<1 where C is a constant.
18\ H 6H L

Solution:

1 MJ(LY (hYl. Mg, , MgH
E, ==M (%2 +y2)+ Mgy, = — | 4] —| th*+ h? —
T2 ( yc) e = 18{(HJ (Hj} 6H 2

2
~ ML h? + Mg h?+C for H<<1.
18\ H 6H L

(3) Set up the equation of motion for h(t) and show that the sloshing frequency is

approximately given by o ~ % , /BFQ :



Solution:

2
95, M[ ]hh Mghh ~0 = h+3(Hj
dt 9 \H L

h+w’h=0 :>a)~—,f

(4) When we use a better model to take in to account of the fluid motion with
h o, o . M( LY,
v~ ———(X"—L"), we have the kinetic energy expression as —| — | h“( you
2HL( ) Jy EXPress 15(Hj (y
do not have to derive this result; just use it.). How much error of @ is induced by
the rigid body motion assumption compared to the prediction based on the fluid

mechanics model?

Solution:

2
dE, ZM[ )hh Mghh ~0 = h’+§[ﬂ) Ih~o0
dt 15 \ H 2lL) H

h+w’h=0 :>a)fz—‘/59 =\/§z1.1
2H o; 5

“Lake seiches can occur very quickly: on July 13, 1995, a big seiche on Lake Superior
caused the water level to fall and then rise again by three feet (one meter) within fifteen
minutes, leaving some boats hanging from the docks on their mooring lines when the
water retreated. The same storm system that caused the 1995 seiche on Lake Superior
produced a similar effect in Lake Huron, in which the water level at Port Huron changed
by six feet (1.8 m) over two hours. On Lake Michigan, eight fishermen were swept away
and drowned when a 10-foot seiche hit the Chicago waterfront on June 26, 1954. [wiki]”

3. A mass M hung by three springs is vibrating as h(t) =h, sin wt as shown in the figure.

While it is vibrating the center spring is snapped as the mass was just passing the point
h(t)=h,/2 with h(t)<0. Describe the motion of the mass after the spring is snapped.




Solution:

Before snapping it was vibrating as h(z)=hsin@r with @=./3k/m and the static
deflection is

6=Mg/3k. (1)
At the time of snapping we have
h=hy/2 and h=—-h,d/3/2. )

Now we set these conditions as initial condition of the vibration after the snapping for
which we describe the height location of the mass as y(t). Then, the free body diagram

after the snapping shows as follows

I I 2k (5-y)

l L’ Base line of h=0 and y=0

Mg

+— End point of un-stretched spring

D F, =2k(5-y)—Mg =My this equation can be rearranged as
My + 2ky = 2ko — Mg : (3)

This is the standard form of shifted harmonic oscillation we studied in our class.
Inserting (1) into (3) we have

. 2k g
2Sy=_2 4
V+ Y3 4)

This differential equation has the general solution of

y(t):Csin[\/zﬁTt+¢]—%. (5)

Now we use the initial conditions in (2) to determine C and ¢ as

y(O):Csin¢—%=h—2° orCsin¢5=&+m (6)

2 6k



. 2k J3h . 3h, [3k 3h
0)=C,|—cos¢ =— =— 0 |=— or Ccos¢gp=——2 7
y(0) ,/M ¢ 5 5 ,/M ¢ o (7)

Dividing (6) by (7), we have

tan¢:_ﬂ_@ (8a)
3  9kh,
and (6)"2+(7)"2 will lead to
2 2
C= &+m +% (8h)
2 6k 8
4. An old pendulum clock is sitting on a table spinning with y

angular speed of Q with respect to y axis as shown in the figure;
the (x,y) plane spins with respect to y axis. The pendulum in

the clock is attached at the origin of the (x,y) coordinate and
oscillates only in the spinning (x,y) plane. The pendulum length
is denoted by | and the swing angle in the (x,y) plane by 6.

(1) By aligning the spinning coordinate axes (x,y,z) and the
inertial frame coordinate axes (X,Y,Z) at time at t=0, the

inertial coordinate position of the pendulum mass m is given
by X =IsinfcosQt, Y =-lcosd and Z =-Isin@sinQt.

X
Using the law, > F, =-TsingcosQt—NsinQt=mX, :

> F =-mg+Tcosd=mY and > F, =Tsin@sinQt—NcosQt=mZ, show that
the equation of motion is reduced to é+(g/l)sin 0—Q%coshsin@=0. Here T is the
tension and N the force normal to (x,y) plane, transmitted through the pendulum bar.

Solution:

X =1sin@cos Ot
X =160 cosOcosQt —1Qsin &sin Ot
X =16 cos & cos Qt —16? sin @ cos Qt — 21602 cos Osin Qt —1Q? sin & cos Qt

Y =—lcos@
Y =16sin @
Y =10sin0+16% cos &



Z =—lsin@sin Ot
Z =-l0cosdsin Qt —1Qsin & cos Qt
Z =—16 cosOsin Qt + 162 sin Osin Ot — 21602 cos @ cos Ot + 1Q? sin @sin Qt

Once we plug into the given equations of motion, you get
6+(g/l)sin@—Q cosdsind =0

(2) Linearize the equation of motion and find the pendulum swing period in terms of 1|,
Q and the gravitational acceleration g.

Solution:

Put sin@~ ¢ and cosd ~1 for § <1 to have §+(g/1-Q*)0=0

(3) At what spin speed Q does the clock stop?

Solution:

Q:%

(4) Compare the linearized solution of @(t) with the solution of the full nonlinear

equation in (1) numerically solved by MATLAB for 0 < 4(t)< % ,forQ = % % .

Solution:

Linearized solution: @ = %sin % ) /3Tgt

Full nonlinear solution: MATLAB

5. Consider two pendulums, a and b, with the same string length |, but with different
bob masses m, and m,. They are coupled by a spring of spring constant k which is

attached to the bobs.



(1) Show that the equations motion (for small oscillations) are

d?o, g
maF=—mal—9a+k(9b—t9a)
d?g
m, = :—mblgeb—k(eb—ea) :

Solution:
Draw the free body diagrams of two bobs and use the law of motion as

2
ZFj‘ :—magea+kl(9b—9a):ma%
2
> Fl=-myg6, -k (6,-6,)=m, dd:fb

2
d ea:—malg03+k(0b—6a)

m, % :—mb%ﬁb—k(ﬁb—ea)

(2) Solve these two equations for the two normal modes, showing that
6,=(m,0, +m,6,)/(m, +m,) and 6, =6, -6, are normal coordinates.

Solution:
2
m 3% m 90 k(6-6)
dt I
d?g
b?zbz_mb%eb_k(eb_ga) (2)

Add (1) and (2) to have

d’g, d? g g
i _=—m 20 -m 26
*dt?  dt? S R T
d? o 17
= (mada:[:_mb b):_%(ma9a+mb9b)

Devide it with m_ +m, to have

i{(ma9a+mb9b)} _g{(mﬁﬁmbeb)}

. -2
dt m, +m, m, +m,



Subtract m, x(2) from m, x(1) to have
2

mbma%:—mambgeﬁkmb(eb -6,) :m, x (1)
2
m,m, dd%‘;b =-m,m, %6{) —km, (6,-6,) ‘m, x(2)
2 p—
= mbma% = —{mamb Ig+ k(m, + mb)}(é’a -6,)

(3) Find the frequencies and configurations of the modes. What is the physical
significances of 6,? Of 6,?

Solution:

m,6, +m,6,)

% :Ig for 6, = ( : moving together mode

m, +m,
2_9

o :_+k[i+ij for 6, =(6, -6, ): separation mode
I m, m,

a

(4) Find a superposition of the two modes which corresponds to the initial conditions
at time t=0 that both pendulums have zero velocity, that bob a have amplitude
A, and that bob b amplitude zero.

Solution:

m m
0, = A| —2cos ot + —>cos w,t
m m

m
0, = A—(coswt —cosm,t)
m

where m=m, +m, .

(5) Let E,(t)~m,gl®2/2 and E,(t)~m,gl®;/2 be the total energy of the

pendulum a and b respectively, ignoring the spring energy for weak coupling.
Here ®, and ©®, denote the envelope function of the beat oscillation. Find an

expression for E,(t) and for E,(t). Does the energy of bob a transfer

completely to bob b during a beat? Is it perhaps the case that if the pendulum
which initially has all the energy is the heavy one, the energy is not completely
transferred, but if it is the light one, the energy is completely transferred?

Solution:
After defining the modulation ., =(w,—®)/2 and the average frequency
0, =(w,+,)/2, one finds



m, :
0, = (Acos @, 4t )cos w,t + ( A b sin a)modtjsm o, t

m

m, . :
g, = (ZA—asm a)modthm w,t
m

As o, < o, We have the slow varying envelope function gives the energy variation as

2
E. =(Acosw t) (Ama ™ sinw tj

mod mod
m

Il
>

2{1+cos2a)modt [ma—mbj 1- cosZa)mod}

2
=i{1+(ma mbj +[1_(ma—m j JcosZa)modt}
2 m m

Thus we see that

2 2
E, = A (ma +2m'° j +one M —2-2cos(w, — o, )t
m m?

m,m, m.m
2N AP 2D cos(w, — )t
o s 0, - )

The total energy is E, + E, = A*.



