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1. The ‘Buckingham  Potential’ is used to approximate the 

forces acting between atoms in a diatomic molecule.  The 

potential energy of the force of interaction between the 

atoms is expressed as 

6
( ) exp( )

C
V d A Bd

d
    

The table (from J. Bicerano “Computational Modeling of 

Polymers” Marcel Dekker, 1992) gives values for A,B and 

C for various bonds. 

 

1.1 Plot a graph of the energy as a function of d for the O-O bond.  Use kJoules /mol for the units of 

energy, and the separation d in Angstroms, with 2.5<d<5.    Note that 1 kcal/mol is 4.2 kJ/mol.  Note also 

that the value of A in the table needs to be multiplied by 10
3
    

 

The plot is shown below.  

 
 

[2 POINTS] 

  

1.2 Find an expression for the magnitude of the force acting between two atoms, and plot the force as a 

function of d, for the same range.  Use eV/A (electron-volts per Angstrom – a common unit for atomic 

forces) for the force unit.  Google will tell you the conversion factors from kJ to eV, and recall that one 

mol is 6.02x10
23 

molecules. 

 

The force follows as 

7

6
( ) exp( )

dV C
F d AB Bd

dd d
       



 

The raw numbers give the force in / /kJ A mol  - to convert to N we need to multiply by 1000 (to get 

Joules/A/mol), divide by 1.60 1910  (to get eV/A/mol) and divide by Avogadro’s number 6.02x10
23

 to 

get eV/A. 

 
    

 [3 POINTS] 

 

1.3 Hence, calculate values for the following quantities for the O-O bond: 

 

(i) The equilibrium bond length (the length of the bond when the bond force is zero) 

 

We must just solve for F=0 using Mupad: 
eqsep := solve(F=0,r,Real)[2] 

 
Hence the equilibrium bond length is 3.04r A  

[1 POINT] 

 

 

(ii) The bond strength (the force required to break the bond) 

 

The separation corresponding to the maximum force can be computed by differentiating F with 

respect do d, setting the result to zero, and solving for d.  Substituting this back into the expression for 

F then gives the maximum force.   

 
Fderiv := diff(F,r) 

 
maxFsep := float(solve(Fderiv=0,r,Real)[2]) 

 
Fmax := float(subs(F,r=maxFsep)) 

 

The maximum force is therefore max 0.0063 /F eV A  

[2 POINTS] 

 



(iii)  The binding energy (the total energy required to pull the atoms apart from their equilibrium 

spacing to infinity – you can express this in kJ/mol) 

 

The work of separation is the difference between the minimum energy and the energy when the bond 

length is stretched to infinity.   The energy at infinity is zero by inspection, so 
 

Vmin := float(subs(V,r=eqsep)) 

 
 

The work of separation is thus 0.658 /kJ mol  

[1 POINT] 

 

(iv) The stiffness of the bond (i.e. the slope of the force-separation relation at the equilibrium spacing.  

You can express your answer in eV/A
2
 

 
stif := float(subs(Fderiv,r=eqsep)) 

 
 

The stiffness is thus 0.054 eV/A
2
.   In N/m this is 1.602x10

-19
x10

10
x10

10
x0.054=0.864N/m. 

 

[1 POINT] 

 

 

 

 

2. Japan’s N700I Shinkansen ‘Bullet train’ has the following 

specifications: 

 Max power output: 9760 kW 

 Max weight 365 Tonnes (metric) 

 Cruising speed 330 km/h 

Assume that the air resistance can be approximated as 

21

2
D DF C Av  

with drag coefficient 0.1DC  , air density 31.2kgm   and 

projected frontal area A=10m
2
 

 

2.1 Estimate the power consumption of the train at cruise speed on level grade. 

 

We idealize the train (upstream of its propulsion system) as a particle that is subjected to the air 

drag force; gravity; and vertical reaction forces.   Since the train has no vertical velocity, the rate 

of work done by gravity and the vertical reaction forces is zero.   The air drag force acts in the 

opposite direction to the velocity and so does work 

3 31 1
1.2 0.1 10 (330000 / 3600) 462

2 2
d DW F v C Av kW            

 

Since the train moves at constant speed, its kinetic energy is constant, and so no net work is done 

by the forces acting on the train.   The forces exerted by the propulsion system must do work at 

rate of 462kW (just where these forces act is a bit mysterious – it depends which part of the 

http://www.japantransport.com/seminar/JRCENTRAL.pdf
http://www.japantransport.com/seminar/JRCENTRAL.pdf


propulsion system you regard as part of the particle representing the train, and which part you 

regard as external to the particle).  

 

[2 POINTS] 

 

2.2 Use the energy-power relation to calculate a formula for the acceleration of the train as a function of 

its speed v.   Hence, calculate the shortest possible time that the train can take to accelerate to cruise 

speed.  

 

The energy equation now gives 2 31 1

2 2
D

d
mv P C Av

dt


 
  

 
.  Hence  
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Note that air drag has very little effect on the time – if you set the drag  to zero it takes 157 sec to 

reach full speed. 

 

[3 POINTS] 

 

2.3 Estimate the total energy expended in overcoming air resistance in a 100km trip (you can assume 

constant speed).  Compare the energy expended with the kinetic energy of the train at maximum speed. 

 

 A 100km trip takes 100/330 hours=1091 sec.   The total work done is 462x1091=512MJ  

 

The total KE of the train is  
22 31 1

365 10 330000 / 3600 1533
2 2

mv MJ     .  The KE is very 

significant – if all this energy were lost to heat during braking, it would drastically reduce the 

efficiency of the train.   For this reason the Shinkansen has a fully regenerative braking system – 

most of the KE is recovered during deceleration. 

 

[2 POINTS] 

 

 

 

 

 

 

 

 

 

 

 

 



3. The standards for motorcycle and bicycle helmets are set by the 

Snell memorial foundation.  Their latest motorcycle helmet 

standards can be found here.   Among several other criteria, they 

specify that the helmets must be tested by fitting them to a head-

form with mass 3.1kg, and the head-form/helmet assembly must 

then be dropped onto a flat anvil from a height that leads to a 

7.5m/s impact velocity (see the figure for a representative 

experimental apparatus).   The peak acceleration of the head-form 

during the impact must be less than 275g (where g is the 

gravitational acceleration) 

 

3.1 Use energy methods to calculate the required drop-height. 

 

Energy conservation gives 

0 0 1 1

2 2
21 7.5

0 0 2.87
2 2 2 9.81

V T V T

v
mgh mv h

g

  

      


 

 

[2 POINTS] 

 

 

3.2 The protective effect of the helmet in this impact test comes primarily 

from its padding. Idealize the helmet padding as a spring with stiffness k.  Use 

energy methods to find a formula relating the maximum compression of the 

spring   to the impact velocity 0v , the helmet mass m and the gravitational 

acceleration g (assume that the outer shell of the helmet does not rebound 

from the anvil).  Does increasing the foam stiffness k increase or decrease  ?    

 

Again, energy conservation, but this time between the instant just 

before impact and the time  at which the foam is crushed to its 

maximum depth (where the headform has zero velocity) gives 

0 0 1 1

2 2

2

2

1 1
0 0

2 2

1 1

V T V T

mv k mg

mg kv

k mg

 



  

   

 
    
 
 

 

(Graders – note that solutions  may be given in a different algebraic form) 

 

Increasing the stiffness reduces  . 

 

[3 POINTS] 

 

 

 

 

 

v

m

m

Helmet shell

http://www.smf.org/
http://www.smf.org/standards/m/2010/m2010_final_booklet.pdf
http://www.stockcarracing.com/techarticles/scrp_0206_racing_helmet_standards/photo_02.html


3.3 Find a formula for the maximum acceleration of the head-form in terms 

of the padding stiffness k, the head form mass m and the gravitational 

acceleration g.  

 

A free body diagram for the head-form is shown in the figure.   

Newton’s law gives 

max maxs
k

F mg ma k mg ma a g
m

          

[2 POINTS] 

 

 

3.4 Force-deflection curves for several 

candidate helmet pad foams (from 

Shuaeib et al, JMEP 123, 422, 2002) are 

shown in the figure (ignore the ‘Design 

Point’).  Select the foam that will 

minimize the padding thickness (which 

must exceed  ) while still meeting the 

Snell standard, and find the foam 

thickness required and the maximum 

predicted acceleration of the head-form. 

 

Eliminating   from the 

solutions to the two preceding problems, we can calculate the maximum allowable stiffness 

 

2

max2

2
2 2 2
max2 2

1 1

3.1 9.81
275 1 0.4 /

7.5

mg kv k
a g

k mmg

m
k a g MN m

v

 
 
     
 
 

        
   

 

We can estimate the stiffnesses of the foams shown in the figure (the slope) – starting with the 

one with the largest slope: 

 EPS(68) k=0.66 MN/m 

 EPS(54) and EPS(60) are about the same at k=0.45MN/m and k=0.4MN/m – the latter 

might be just borderline acceptable, but does not leave any safety factor so should be 

rejected.  

 PU(50) is 0.25 MN/m is safe.  

The required thickness is 

2 6 2

2 6 2

3.1 9.81 0.25 10 7.5
1 1 1 1 10

0.66 10 3.1 9.81

mg kv
mm

k mg


     
         
    
   

 

A 1.5 cm thickness of foam would be a good choice, to leave a bit of a factor of safety. 

 

The maximum acceleration is 
6

3 2
max

0.25 10
10 10 9.81 796 / 81

3.1

k
a g m s g

m
 

         

Again, there is a good safety factor. 

(Graders -  you can accept sols with EPS60) [4 POINTS] 

m

FS

mg

http://www.sciencedirect.com/science/article/pii/S092401360200047X


4. One way to measure the restitution coefficient e of an object colliding with a flat surface is to measure 

the total time T taken for the object to stop bouncing (of course, this only works if the object’s shape 

permits it to bounce at all, and if the restitution coefficient is large enough for the object to bounce a fairly 

large number of times).   In this problem you will calculate the relationship between T and e. 
 
 

4.1 Suppose that the object falls from a height h above the flat surface.  Use energy conservation to 

calculate its velocity just before impact. 

 

Energy conservation gives 

1 1 2 2

2
0

0

1
0 0

2

2

PE KE PE KE

mgh mv

v gh

  

  

 

 

[2 POINTS] 

 

4.2 Use the restitution coefficient to determine the velocity just after impact. 

 

Let 1v  denote the upwards speed after the impact, and note that the ground remains stationary 

both before and after impact.  The restitution formula gives 

1 1

1 1

1
1 0

0

B A

A B

v v
e

v v

v
e v ev

v






  

 

 

[2 POINTS] 

 

 

4.3 Use impulse-momentum to find the time between the first and second bounce, in terms of 1v  and g.   

 

This can be done various ways: we could calculate the time between the bounce and the top of the 

trajectory after the bounce (where the velocity is zero) – the momentum at the start and end are 

known, and so we can calculate the impulse using the impulse-momentum formula as 

1 10 /mgt mv t v g    j j  

It must take the same amount of time for the particle to drop back to the ground again so 

12 /t v g  . 

Alternatively we could note that because of energy conservation the magnitude of the velocity 

just before the second bounce must equal to that just after the first one, but the direction has 

changed.  Applying momentum conservation then gives 

1 1 12 /mg t mv mv t v g      j j j  

 

[2 POINTS] 

 

 

 

 



4.4 Assume that the first impact occurs at t=0.  Show that the remaining (infinite) number of bounces 

occur during a total time interval 

1
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n

h
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We can add up all the successive times 
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[2 POINTS] 

 

4.5 Sum the series (mupad will do it for you) and hence find an expression for e in terms of T. 

 

Mupad gives 

1

1
1

1 1

n

n

e
e

e e




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 

  so 
1

1
8

g
e

T h

 
   
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 [2 POINTS] 

 

t=0 t=0.21s

Landing Take-off

Airborne

Landing

On ground

Motion of animal COM

 
 

5. The figure (from Kram et al Comparative 

Biochemistry and Physiology, B120 41-49, 1998) 

shows the variation of the contact force with time 

between the foot and ground of a red kangaroo as it 

hops.  The kangaroo has a mass of 46kg and hops at a 

steady horizontal speed of 3.9 ms
-1

 

 

 

Suppose that the variation of contact force with time 

can be approximated using the equation    



2 2

0

0 0

( ) exp(
t t

F t F
t t

    
     
     

 

where 0 0,t F  are two numbers that can be adjusted to give the best fit to the experimental data. 

 

5.1 Use Mupad to plot ( )F t , for 0 01, 1t F  . 

 

The plot is shown below. 

 
 

[2 POINTS] 

 

5.2 Find a formula for the time at which ( )F t  is a maximum, in terms of 0t , and determine the 

corresponding maximum force, in terms of 0F . 

 

We can find the max in the usual way by differentiating F with respect to t, setting the result to 

zero, and solving.  This can be done trivially by hand but here’s a  Mupad 

 
solve(diff((t/t0)^2*exp(-(t/t0)^2),t)=0,t) 

 
 

The maximum force follows as max 0 0exp( 1) 0.3678F F F    

 

[2 POINTS – Mupad not required, of course] 

 

5.3 Find a formula for the impulse exerted by the force, in terms of 0 0,t F   

 

By definition, the impulse is 

0

( )

T

I F t dt  .   In this case we can take the upper limit T  to be 

infinite.  

 

The integral can be done in Mupad, but if you do the integral blindly you get a nasty answer that 

looks like this . 
simplify(int((t/t0)^2*exp(-(t/t0)^2),t=0..infinity))  



 
 

It is better to change variables and let 0/t t  , in which case 

impulse := t0*int(F0*(tau)^2*exp(-(tau)^2),tau=0..infinity) 

 
 

[3 POINTS] 

 

5.4 Determine values for 0 0,t F  that will approximate the experimental data (ignore the curve labeled 

‘duty factor method – that’s a rough theoretical prediction – see the paper for details). 

 

The peak force occurs at about 0.95ms so 0 0.095t s .  The peak force magnitude is about 

2100N, so  

0 2100 / (0.3678) 5708F N  . 

 

[3 POINTS] 

 

5.5 Hence, use impulse-momentum and energy conservation to estimate how high the kangaroo bounces 

during the jump (neglect air resistance, and assume that the kangaroo’s horizontal speed is constant.  

Don’t forget to include gravity in the impulse-momentum calculation) 

 

We assume steady-state, so the downward velocity of the kangaroo just before impact is equal to 

its upward velocity just after impact.  Impulse-Momentum gives 

0 0 0

0

2 240.3 46 9.81 0.21
4

240.3 46 9.81 0.21
1.58 /

2 46

m v

mv F t mg t Ns

v m s



 

       

  
  



j I

 

Energy conservation during the time interval between just after take-off and the highest point of 

the jump gives 

2 2 2
0

1 1
( )

2 2
x xm v v mv mgh    

where xv  is the constant horizontal speed, and h is the jump height.   Thus 2 / 2 0.128h v g m  . 

 

[Graders – numbers will vary a bit depending on the value selected for t  - not important] 

[4 POINTS] 

 

 

 

 

 

 



5.6 Estimate the time that the kangaroo is airborne during one hop.   

 

The trajectory is symmetric – it takes the same length of time to rise from take-off to the peak of 

the trajectory as it takes to fall from the peak to landing.   Applying impulse-momentum from 

take-off to the peak of the trajectory, and noting the force acting on the kangaroo during flight is 

mg j , we get 

 0

0

( )

/ 1.58 / 9.81 0.161

x xm m v v v mg t

t v g s

      

   

v i i j j
 

The total time is twice this value – 0.322 sec. 

 

Of course, F=ma and the constant acceleration formula gives the same answer – impulse-

momentum is just a different way of writing F=ma. 

 

 [3 POINTS] 

 

5.7 Calculate the length of the jump (the distance traveled while airborne).  

 

0.322 3.9 1.26xx tv m       

 

[2 POINTS] 

 





A B

V0
vA vB

L
(i)

(ii) (iii)

(iv)

 
 

6. The figure (from Durda et al, Icarus 211 849-855, 2011, see also the videos here) shows an experiment 

conducted by planetary geologists to determine the restitution coefficient between large masses of rock.  

Two large granite spheres with identical mass m are suspended from cranes to form large pendula.  One 

pendulum is released from rest at an angle   to the vertical.  It then collides with the second sphere, 

causing it to swing through an angle   before coming to rest.   The goal of this problem is to find a 

formula relating   and   to the restitution coefficient. 

 

http://www.astro.umd.edu/~dcr/reprints/durda_icarus211,849.pdf
http://www.sciencedirect.com/science/article/pii/S0019103510003465


6.1 Using energy methods, find a formula for the speed 0V  of sphere A just before impact, in terms of g 

and  . 

 

Conservative system, so total energy is constant.  This shows that  

2
0

0

/ 2 (1 cos )

2 (1 cos )

mV mgL

V gL





 

  
 

[2 POINTS] 

 

6.2 By considering the collisions, find a formula for the speed Bv  of sphere B just after impact, in terms 

of 0V  and e. 

 

Momentum is conserved during the impact, which yields 0 A BmV mv mv  . 

The restitution coefficient formula gives 0 B AeV v v   

Dividing the first equation through by m and adding to the second gives 0(1 ) / 2Bv e V   

[2 POINTS] 

 

6.3 Find a formula for the angle   in terms of Bv .   Hence, determine the required relationship between 

e, ,  . 

This is 4.1 in reverse - 2 (1 cos )Bv gL   .   From 4.2 we see that 0

1 cos
2 / 1 2 1

1 cos
Be v V






   


 

[2 POINTS] 

 
 

 

7. A recent article in Nature Physics reported observations of the collision 

between two ‘Coronal Mass Ejections’ (huge balls of magnetized plasma 

ejected from the sun).   The authors suggest that the collision between the 

CMEs can be modeled using the classical theory of impact between two 

frictionless spheres. 

 

Table 1 of the article gives velocity components (in km/s) for the two 

colliding CMEs before (0) and after (1) collision as follows: 
0 0

1 1

237 332 205 130

116 332 288 130

A B

A B

   

   

v i j v i j

v i j v i j
 

The direction of contact (n) is parallel to the i direction.  The two masses 

are given as 12 121.8 10 1.2 10B Am kg m kg    .  

 

 

7.1Calculate the total linear momentum vector before and after the collision, and calculate the value of the 

restitution coefficient e.  

 

The linear momentum before impact is  
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 
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After impact 
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B
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v

v
A1 B1

v

n

http://sprg.ssl.berkeley.edu/~liuxying/pubs/2012_nphys_shen.pdf


   

 

12 3 12 3
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657.6 632.4 10 /kgm s
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Momentum is conserved to within experimental error. 

 

The formula for the restitution coefficient is  

 
 

1 1
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288 116
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207 237

B A
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e

e

 
 

 


  



v v n

v v n  

(Table 1 in the paper gives e=5.4 so they evidently did the calculation correctly!) 

 

[2 POINTS] 

 

 

7.2 Suppose that the CMEs have the same initial velocities as those measured experimentally, but e=1.  

Calculate the predicted velocities after impact.   

 

The component of velocity perpendicular to n is not affected by the value of e.  The j component 

of velocity is therefore unchanged.  The component parallel to n is determined by the restitution 

formula and momentum conservation.   These give 
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Thus 
0 0

1 1

237 332 205 130

199 332 230 130

A B
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   

   

v i j v i j

v i j v i j
 

 

It’s possible to do this calculation by just plugging numbers into the long formulas for velocities 

after impact as well 

 
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1 0 0 0

1 0 0 0

(1 )

(1 )
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A A B AB

B A

m
e
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     
 

v v v v n n

v v v v n n

 

 

Another way would be to use the fact that energy is conserved when e=1 
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7.3 The authors of the article suggest that the unusually large value for the 

apparent restitution coefficient is because the two CMEs are expanding at 

the time of collision.  To check this idea, we could try to extend the 

‘standard’ collision formulas by saying that the two points AC and BC 

that collide on the surfaces of the spheres obey 

 
 

1 1

0 0

BC AC

BC AC
e

 
 

 

v v n

v v n
 

(the argument for this is that the energy lost in a collision is determined primarily by deformation in the 

material in the two solids near the point of collision).  We can re-write the equation for the relative 

velocities of the centers of the spheres as 

 

 

1 1

0 0

( )

( )

B A
A B

B A
A B

d
R R

dt e
d

R R
dt

   

 

   

v v n

v v n

 

where ,A BR R  are the radii of the spheres.   The article states that the sum of the expansion speeds of the 

CMEs is 117 km/s.   Calculate the value of the restitution coefficient e with this definition.    

 

We can just substitute numbers into the formula 

 

 

1 1

0 0

( )
288 116 117

207 237 117
( )

0.37

B A
A B

B A
A B

d
R R

dt e
d

R R
dt

e

   
 

  
 

   

 

v v n

v v n
 

 

This is a more usual value for e  - the expansion of the CMEs is very likely to be responsible for the 

strange value of e that was measured.   
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