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1. The figure shows a vibration 

measurement from an accelerometer 

attached to a baseball bat (from this 

website).   For the time interval between 
0.02sec and 0.06sec, estimate: 

 

1.1 The amplitude and frequency of the 
acceleration 

 

The acceleration amplitude is about 60 
m/s

2
.   There are about 7 cycles in 0.05 

sec, so the frequency is about 

2 7
880

0.05

 
  rad/s.   

[2 POINTS] 

 

1.2 The amplitude of the displacement of the bat (at the point where the accelerometer is attached).  

 

For harmonic vibrations 
2

0 0( ) sin sina t A t X t      so the displacement amplitude is 260 / 880 0.077mm   

[2 POINTS] 

 

2. State the number of degrees of freedom and the number of natural frequencies of vibration  for each 
of the systems shown below (do not include rigid body modes when counting natural frequencies) 

(The articles linked give some practical examples of vibration).  Note that the first two show the 

coordinates so this is sort of trivial)! 

    
(a) 2D Laser printer wiper     (b) 2D Model of a tuned vibration absorber 

                                    The top mass is a rigid body, 

                                     the bottom mass is a particle 

http://www.vernier.com/innovate/the-sweet-spot-on-a-baseball-bat/
http://www.vernier.com/innovate/the-sweet-spot-on-a-baseball-bat/
http://computationalnonlinear.asmedigitalcollection.asme.org/article.aspx?articleid=1396839
http://vibrationacoustics.asmedigitalcollection.asme.org/article.aspx?articleid=1470819


 

                        
(c) Model of a vibrating pipe in a fluid flow            (d) Water molecule 

 
(a-b) are easy because the figures show the coordinates and have no rigid body modes.  So (a) – 2 DOF, 2 

modes; (b) 3DOF, 3 modes;  

 

(c) – the pipe moves in the plane horizontally and vertically, 2DOF .   (if the cylinder were a rigid body 
there would also be a rotational DOF but no dimensions are given for the cylinder so presumably it is 

idealized as a particle).   There are 2 modes. 

 
(d) There are 3 atoms (which are particles) with 3 DOF each – total of 9 DOF.   The assembly of atoms 

has 6 rigid body modes – 3 translation, 3 rotation.   There must be 3 vibration modes 

 

[6 POINTS] 

 

 

3. Solve the following differential equations (use the Solutions to Differential Equations) 

3.1 
2

2
4 16 16 1 2 0

d y dy
y y t

dtdt
      

 

Rearrange: 
2

2

1
1 1 2 0

4

d y dy
y y t

dtdt
      

This is case I 
2

2 2

1

n

d x
x C

dt
   with solution 0

0( ) ( )cos sinn n
n

v
x t C x C t t 


     

 

So the solution is 1 sin 2y t    

 

 

3.2 
2

2
4 4 16 0 0.1 0 0

d y dy dy
y y t

dt dtdt
       

 

Rearrange 
2

2

1 2 1
0 0.1 0 0

4 2 4

d y dy dy
y y t

dt dtdt
       

 

This is case III 
2

2 2

1 2

nn

d x dx
x C

dtdt




    The damping ratio 1/ 4   so this is an underdamped 

system. 

http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1484298
http://www.brown.edu/Departments/Engineering/Courses/En4/Notes/Vibesols.pdf


The solution is 0 0
0

( )
( ) exp( ) ( )cos sinn

n d d
d

v x C
x t C t x C t t


  



  
     

 
 

with 21d n     

and so substituting numbers gives 15 / 2d  and 

1
0.1exp( / 2) cos( 15 / 2) sin( 15 / 2)

15
y t t t

 
   

 
 

[4 POINTS – 2 POINTS EACH] 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. For the two conservative single-degree of freedom systems shown in the figure: 

 
4.1 Derive the equation of motion (use energy methods).  State whether the equation of motion is 

linear or nonlinear 

 

 
For the first system the total potential + kinetic energy is 

2
21

( )
2

dy
T V m k y a mgy

dt

 
     

 
 

Take the time derivative (which must vanish because this is a conservative system) 
2

2

2

2

2 ( ) 0

2 ( ) 0

dy d y dy dy
T V m k y a mg

dt dt dtdt

d y
m k y a mg

dt

 
      

 

    

 

The equation is linear. 

 

For the second system, note that the speed of the mass is 
d

L
dt


 so 

k,a k,a

m

y

k,a

m

L d

O

a



2
2

2
2

2

2
2

2

1 1
( sin ) cos

2 2

sin cos sin 0

sin cos sin 0

d
T V m L k d mgL

dt

d d d d
m L kd mgL

dt dt dtdt

d
mL kd mgL

dt


 

   
  


  

 
    

 

 
    

 

   

 

This equation is nonlinear (because of the trig terms) 
 

[4 POINTS] 

 
4.2 If appropriate, linearize the equation of motion for small amplitude vibrations 

 

The first equation is already linear. 
 

For the second system we Taylor expand the trig terms sin cos 1      so 

2
2

2

2
2

2

sin cos sin 0

0

d
mL kd mgL

dt

d
mL kd mgL

dt


  


 

  

   

 

[2 POINTS] 

 

4.3 Arrange the (linearized) equation of motion into standard form, and find an expression for the 
natural frequency of vibration.   Identify conditions where the natural frequency cannot be 

calculated and explain what the system will do if disturbed from 0   in this case. 

 

For the first system 
2

2

2

2

2 ( ) 0

2 2

d y
m k y a mg

dt

m d y mg
y a

k kdt

   

   

 

This has the form 
2

2 2

1 2
n

n

d y k
y C

mdt



      

[2 POINTS] 

For the second system 
2

2

2

2 2

2

0

0

d
mL kd mgL

dt

mL d

kd mgL dt


 




  

  


 

The two standard forms for the undamped free vibration problem is 

 



2

2 2

1

n

d y
y C

dt
   

The natural frequency is thus 
2n

kd mgL

mL



   

The natural frequency becomes complex if  mgL kd   and so can’t be found (at least in the conventional 

sense – a complex number for the natural frequency means that the sinusoidal oscillations transform to an 

exponentially increasing solution.   To see what to do in this case rearrange the equation as 
2 2

2
0

mL d

mgL kd dt


 


 

And now the table of solutions shows that we get an exponentially increasing function for  .  This means 

the pendulum topples over – it is unstable. 

 [2 POINTS] 
 

5. A pneumatic vibration isolator works by using a compressed air column as a spring.   The air pressure 

in the piston obeys (approximately) the adiabatic ideal gas law 

0 0

1
p V

p V


 

 
 

 

Where 0 0,p V  are the air pressure and volume in the cylinder 

when it is fully extended (constants), and 7 / 5   for air.   The 

goal of this problem is to derive a formula for the natural 

frequency of vibration of a mass supported by the isolator (the 

specification sheet gives formulas, but it is not easy to see 
where they come from). 

 

5.1 Show that the force exerted by the isolator (air pressure x 

cylinder area) is related to the air cylinder area A and length L 

by 

0 0
1

p V
F

A L



 
  

 

This is simply geometry – the cylinder volume is V AL  and the force is  

0 0
0 0

V V
F pA Ap Ap

V AL

 
   

     
   

 

[1 POINT] 

 
5.2 Suppose that the isolator supports an object with mass m and is in static equilibrium (no motion or 

vibration).  Show that the length 0L  of the actuator satisfies the equation 

0 0
01

p V
mgL

A




 
  

 

This is statics – in equilibrium the force F balances the weight 
 

L0

m

A

V L0

m

x

http://www.fabreeka.com/documents/file/products/fabr_pneumatic_033009.pdf
http://www.fabreeka.com/documents/file/products/fabr_pneumatic_033009.pdf


0
0

0

V
Ap mg

AL


 

 
 

 

and this can be rearranged into the required result 

[1 POINT] 

5.3 Suppose that as the mass vibrates, its length changes to 0L L x   .   Use Newton’s law of motion for 

the mass, and the results of 5.1 and 5.2 to show that x must satisfy the equation of motion 

 

2
0

2
0

Ld x
m mg mg

dt L x




 


 

 

 

A FBD is shown.   Newton’s law gives 

 
2

02

2
0

02
0( )

d
m L x F mg

dt

Vd x
m p mg

A L xdt



  

 
   

 

 

Note that 
 

0 0 0
0 0

0 0 0( )

V V L
p mg p mg

AL A L x L x

  
     

       
      

 

 

which then yields the result. 

[2 POINTS] 

 

5.4 Linearize the equation of motion for 0x L  , and hence show that the natural frequency of vibration 

is 

0
n

g

L


   

In many applications the actuator is pressurized so as to maintain a constant static length 0L  by an 

automatic leveling system.  If this is done, the natural frequency of the system is independent of the mass 

m. 

 
We have to do a Taylor expansion of the nonlinear term (oh, the horror!) 

       

0
0 0 1

00 0 0 00

1 1 1
...

x

L d x x
mg mgL x mgL mg

dx LLL x L L x L


 

    

 




    
          
          

 

 

Thus 
 

2 2

2 2
0 0

1
1 0

/

d x x d x
m mg mg x

L g Ldt dt





 
      

 
 

 

Comparing with the standard form gives the expression for the natural frequency. 

m

mg

F



 

 [2 POINTS] 

 

6. Replace the system shown in the figure with an equivalent spring-mass 

system consisting of a mass with only one spring and dashpot.  Hence, 

determine a formula for the undamped natural frequency and the damping factor 
for the system. 

 

The springs are in parallel so the effective stiffness is 3k. 
 

From the standard results for a spring-mass system we see that 

3

2 2 3

eff
n

eff

k k

m m

c c

k m km





 

 

 

 

[2 POINTS] 

 

 
 

7. The spring-mass system shown in the figure is at rest for time 

t<0.   The mass is then displaced from its equilibrium position 

vertically by a distance 0 10x mm  and released (from rest).   Find 

formulas for the subsequent motion of the mass ( )x t  for each of 

the following cases (you don’t need to re-derive the equations of 
motion, since this is a standard system.  Note also that since x is 

the displacement from equilibrium the constant C in the standard 

equations of motion is zero).    

7.1 20 /c Ns m   

7.2 200 /c Ns m   

 

This is a standard spring-mass system with undamped natural frequency / 10 /n k m rad s     

We can simply write down the known solution. 

 
The damping factor for the three cases is 

 

7.1
20

0.1
2 2 10000

c

km
     (underdamped) 

7.2
200

1
2 2 10000

c

km
     (critically damped) 

 

The damped natural frequencies follow as   
 

7.1 2 1
1 10 1 99

100
d n         

7.2 N/A 

 

k k

m

c

k

k=1000N/m

m=10kg

c



We can get the solution from the list of solutions: 

 

7.1 

0 0
0

( )
( ) exp( ) ( )cos sin

10
exp( ) 10cos 99 sin 99

99

n
n d d

d

v x C
x t C t x C t t

t t t


  



  
     

 

 
   

 

 

 

(x is given in mm) 

7.2 
  0 0 0( ) ( ) ( ) exp( )

[10 100 ]exp( 10 )

n nx t C x C v x C t t

t t

       

  
 

(x is given in mm) 

 

 [4 POINTS – 2 EACH] 
 

 
  

 

8. The figures show the results of (a) a static test and (b) a dynamic test on a shock absorbing pad (details 
here).   In the dynamic test, a mass (with unknown value) was placed on the pad and struck to start the 

mass vibrating on the pad, and the displacement of the mass was measured. 

 

8.1 Use the results of the static test to estimate the stiffness of the pad (you can assume that the deflection 
is less than 1mm). 

 

 
The stiffness is the slope of the curve – approximately 5.6MN/0.001mm = 5600 MN/m 

 

[1 POINT] 

8.2 Use the dynamic test to determine the log decrement, and hence determine the natural frequency n  

and damping factor    

 
We can get the log decrement off the graph – using the first and third peaks (doesn’t matter whether you 

use inches or mm for the displacement since the log decrement is a ratio) 

 

1 0.061
log 0.77

2 0.013


 
  

 
 

http://www.fabreeka.com/documents/file/products/Fabreeka_Pad.pdf
http://www.fabreeka.com/documents/file/products/Fabreeka_Pad.pdf


The period can be estimated by noting that 2.5 cycles occur in about 0.08 sec, which gives T=0.032. 

 
The formulas for damping factor and natural frequency then give 

2 2

2 2

4
0.122 198

4
n

T

  
 

 


   



rad/s 

[2 POINTS] 
 

8.3 Hence, calculate the value of the mass used in the test, and determine a value for the dashpot 

coefficient c that would model the energy dissipation. 

 
The standard formulas for natural frequency and damping factor then give 

6
2 3

2

5600 10
/ 143 10

198

2 5.7 /
2

n n
k

m k kg
m

c
c km MNs m

km

 

 


     

   

 

[2 POINTS] 

 
8.4 What value of mass on the pad would lead to the system being critically damped? 

 

For critical damping 
2

31 1.4 10
4

c
m kg

k
        

[1 POINT] 

 
 

 

 
 


