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1. The figure shows an electrostatic lens, 
whose purpose is to focus a parallel beam 
of charged particles to a point.   An 
electrostatic field  
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acts in the cylindrical region 0<z<L.   A 
representative charged particle enters the 
lens at a position (r,0) traveling with 
speed V  parallel to the ze  direction.  It is 
subjected to a force q E. 

 
1.1 Show that the r,z coordinates of the particle satisfy the equations 
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Newton’s law gives 
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give the answer stated. 
[2 POINTS] 

 
 

1.2 Use Mupad to find solutions for z and r as functions of time, for the region z<L.   Use as initial 
conditions z=v e , r=r e  at time t=0.   It is best to solve the two equations separately (they are 
independent) 
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(Mupad may give the equations in a different form – anything equivalent should get credit) 
[2 POINTS] 
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1.3 Show that the equations can be re-written in MATLAB form as 
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We introduce 
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Substituting for the accelerations from 2.1 and writing the equations as a vector gives the answer stated. 
 

1.4 Write a MATLAB script that will solve these equations of motion (use a conditional statement in 
your differential equation function to compute the value of c). 

 
See accompanying MATLAB code for solution. 
 

[4 POINTS] 

1.5 Plot (on the same figure) the particle trajectories for 0 5qE
mL

= , L=1, and initial conditions z=v e , 

0.5 , , 1.5r r r=r e e e  .   Make the z axis horizontal and the r axis vertical, as in the sketch, and use a 
time period of about 1.2 units so you can see that the trajectories cross.   Find the focal length of the 
lens (measured from z=0).     

 

 
The focal length is about 0.8m (the distance past the lens where the lines cross).  Reading this off the 
graph is fine – you can get a more accurate solution by using an ‘event’ function to stop the calculation at 
r=0.  
Anything in the right range should get credit. 

  [2 POINTS] 



2. The goal of this problem is to compute the trajectory of a spacecraft 
during reentry.   Assume that  

(i) The air density at a distance h above the earth’s surface is 
given by 0 exp( / )h dρ ρ= −   

(ii) The drag force acting on the vehicle is given by 
1
2D DC AVρ= −F v  

where V is its speed, v is its velocity vector, A is the frontal 
area of the vehicle and DC  is the drag coefficient. 

(iii) The gravitational force acting on the vehicle is given by 
2

3
e

G
Rmg
R

= −F r  

where r is the position vector of the vehicle relative to the 
earth’s center, R is the magnitude of the position vector and eR  is the radius of the earth. 
 

We can assume that the vehicle moves in the (x,y) plane.  We will solve this problem using polar co-
ordinates – so the position of the vehicle is specified by its distance R from the origin and the angle θ  . 
 
2.1 Write down the velocity and acceleration vectors of the vehicle in polar coordinates, in terms of time 
derivatives of R and θ  
 
 The polar coordinate formulas give 
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[2 POINTS] 
 

2.2 Using Newton’s laws, show that the differential equations for R and θ   and their time derivatives 
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F=ma gives 
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Rearranging the two components of this equation and substituting for the density gives the required 
answer. 

[4 POINTS] 
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2.3 Write a MATLAB script that will solve the equations listed in 4.1, using the following parameters 
(representative of the Orion crew module; see also Tigges et al)  

• Capsule mass m=8600 kg 
• Diameter of heat shield (specifies the area A) 5m 
• Drag coefficient DC =  1 
• Earth radius eR  = 6371 km 
• Density decay length d= 5km 
• Air density at sea level 1.2 kg/m3 
• Re-entry altitude 0h  = 122km 
• Velocity at re-entry 0V  = 32000 km/hr 

Start the calculation with initial conditions 0 0 0, 0, sin cos /e rR R h v V V Rθ φ ω φ= + = = − =  where φ  
is the re-entry angle (a parameter that will be changed), and run the calculation for 240 minutes.    
 
See MATLAB code for solution 

[4 POINTS] 
 
2.4 Add an ‘event’ function to your code that will stop the calculation when the vehicle reaches the 
ground.   

[1 POINT] 
 
2.5 Add lines to your code that will use the solution computed by ode45 to calculate the x,y coordinates of 
the position vector. You will need to loop over each point in the solution vector, extract the values of 
( , , , )rR vθ ω  from the solution, and then use the polar coordinate formulas to calculate the (x,y) 
coordinates.  As a check on your calculation, plot the trajectory (x-v-y) for 0DC =  and re-entry angle 

0φ =  .   The trajectory should be an weakly elliptical orbit around the earth.   It is best to get this working 
before proceeding any further…. 
 

 
 

[2 POINTS] 
 

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110013203.pdf


2.6 Add lines to your code that will use the solution computed by ode45 to calculate the magnitude of the 
acceleration of the vehicle, for each value of time.  You will need to use the polar-coordinate formulas to 
calculate the velocity and acceleration components in the { , }r θe e  basis, and then compute the magnitude 
of this vector.  You can use your ‘differential equation’ function to calculate the values of /rdv dt  and 

/d dtω  .    
 
See MATLAB code for solution.  It is not critical to have the code compute all the solutions automatically 
– the values of parameters can be changed by hand and the graphs printed.   Any code that produces 
answers should get credit.    

[4 POINTS] 
 

2.7 Plot graphs that show the variation of (i) the altitude of the vehicle ( eR R−  ); and (ii) the magnitude 
of the acceleration, as a function of time (with 1DC =  ), for 03φ =  (the spacecraft skips off the 
atmosphere and never lands) 04.12φ =  (this gives a skipped reentry) 05φ =  (a normal re-entry) 09φ =  
(this is too steep and gives a very large deceleration) 

 

 

 
 

 



 

 
Graders – note that students may use different units and graphs may change a bit with different tolerances – anything 
reasonably close to the results shown above should get credit. 

 
[2POINTS] 

 
3. The goal of this problem is to investigate the performance of a feedback controller that is intended to 
hold a quadcopter at a prescribed altitude h.   We will assume that the vehicle moves only vertically, to 
keep things simple.   At some instant of time, the aircraft has height y and vertical speed yv . 
 

The magnitude of the lift force is given (very roughly) by 24 ( ) / (v / 2) / ( )L yF P t mg Lπρ = + 
 

 where L 

is the length of the rotor blades, 1.2ρ = kg/m3 is air density and P(t) is the power developed by one of the 
four motors. 
The magnitude of the drag force 2

DF cV=   where V is the speed of the vehicle and c is a constant. Drag 
acts opposite to the direction of motion. 
 
The feedback controller adjusts the engine power according to the difference between the actual height of 
the aircraft and the desired altitude.   (In the general terminology of control theory the engine power is the 
‘input’ to the system; the altitude y is the ‘output’; and e=h-y is the ‘error’).  Specifically, 
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where , ,P D IK K K  are three constants that can be tuned to give the best performance of the system.  This 
type of controller is called a ‘PID’ feedback loop, which stands for ‘Proportional, Integral, Derivative.’ 
 
3.1 Use F=ma to show that the equations for y and yv  can be written in the form 
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Rearranging these equations gives the answer stated. 
[2 POINTS] 

 
3.2 Write a MATLAB script that will calculate y , yv  and Q as a function of time.  Use parameters 
representative of the crazyflie –  

• m=10 grams 
• L=2cm 
• c=0.0012Ns2/m2 
• ρ =  1.2kg/m2 

and initial conditions 0yy v Q= = =   
See MATLAB code for solution 

[4 POINTS] 
 

3.3 Test the performance of the control system by  calculating and plotting the height y(t) as a function of 
time as the aircraft rises to a preset, fixed altitude of h=1m, with the following values for the control 
parameters  (a)   1, 0P D IK K K= = =  ; (b) 1, 0.2 0P D IK K K= = =  (c) 1, 0.2 0.2P D IK K K= = = .   Run 
the simulation for a 20 second time-interval. 
 
The solution is shown below.   The solutions show the effects of the three terms in the controller nicely – 
with the first case, the response is under-damped, and so oscillates about the desired altitude.  Adding the 
KD term fixes this problem, but the altitude settles to the wrong value (because of gravity).   Adding the 
third term fixes the offset.  As an aside, this works well on paper but reality is more complicated (we have 
tried it!) – it’s hard to control motor power directly; in practice one can’t set the motor power very 
accurately; the thrust does not develop instantly because the motors take time to spin up; there are 
complicated transients associated with the down-wash from the props; and the powersupply voltage drifts 
with time as the batteries run down.   It is also not easy to measure the altitude at high rates.  
Nevertheless, with some extensions and a very careful choice of the constants, the PID controller does 
hold altitude quite well. 

 
[2 POINTS] 
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