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1. The figure shows a laser-vibrometry measurement of the velocity of a vocal-fold (from this paper).   

For the time interval 5.26s<t<5.29s, estimate 
 
1.1 The amplitude and frequency of the vibration (give the frequency both in Hertz and in radians per 

second)  
 

The amplitude is about 50 mm/s 
 

There are 4 cycles between 5.26s and 5.28s, so the period is 0.02/4=0.005s.   The frequency is 200 
Hz, or 1257 rad/s 
 

[2 POINTS] 
 
1.2 The amplitude of the displacement. 
 

For harmonic vibrations 2
0 0 0sin cos sinx X t v X t a X tω ω ω ω ω= = = −  so 

  0 50 /1257 0.0398 39.8X mm mm= = =   
 

[1 POINT] 
 
1.3 The amplitude of the acceleration.   
 

Similarly 2 2
0 0 1257 50 / 62.8 /A V mm s m sω= = × =   

 
 

[1 POINT] 
 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606305/


2. State the number of degrees of freedom and the number of natural frequencies of vibration for each of 
the systems shown below  

 

              
 

(a) Model of a human head/neck                            (b) 2D Model of a patient on a wheelchair. 
                                                                           (The seat can only move vertically, and each link 
                                                                             in the chain is a rigid body that is connected to its 
                                                                             neighbors by a pin joint) 

 

 
(c) Model of a MEMS gyroscope (the masses are particles,     (d) Methane molecule (the balls  
     and move in the x,y plane)                                                       are particles, the rods are springs) 

 
 
 

(a) The figure shows that the system can be described by two angles, so 2 DOF.  There are no rigid 
body modes, so 2 natural frequencies. 

(b) We need to specify the height of the seat, the orientation of the seat, and the angles between the 
rigid links at 5 joints, so7 in total.   Or, from the formula, there are 6 rigid bodies, and 11 
constraints (one for the seat, and two at each pin joint), giving 18-11=7DOF.  No rigid body 
modes, 7 nat. freqs. 

(c) 2 particles, no constraints, and 2D, 4 DOF.   No rigid body modes, so 4 natural frequencies. 
(d) 5 particles, so 15 DOF.  There are 6 rigid body modes, so 9 natural frequencies. 

 
 

[4 POINTS TOTAL] 
 
 
 
 

http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=1410554
http://mechanicaldesign.asmedigitalcollection.asme.org/article.aspx?articleid=1447828
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6231524


 
 

3. Solve the following differential equations (use the Solutions to Differential Equations) 

3.1 
2

2 4 0 1 0 0d y dyy y t
dtdt

+ = = = =  

 

The formula sheet gives the solution to 
2

2 2
1

n

d x x C
dtω

+ =  with 0 0 0dxx x v t
dt

= = =  is 

0
0( ) ( )cos sinn n

n

vx t C x C t tω ω
ω

= + − +  

Here 0 00 2, 1, 0nC x vω= = = =  so ( ) cos 2x t t=  
 

[2 POINTS] 
 

3.2
2

2 4 16 16sin(4 ) 0 0 0d y dy dyy t y t
dt dtdt

+ + = = = =  

 
 

The equation in standard form is
2

2 2
1 1 sin(4 ) 0 0 0

44
d y dy dyy t y t

dt dtdt
+ + = = = =  

so  01 / 2 4 4 1n KFζ ω ω= = = =   
 
 
The formula gives ( ) ( ) ( )h px t C x t x t= + +  with steady state solution 

( )

( ) ( )

0

10
0 1/2 2 22 22 2

( ) sin

2 /
1 tan

21 /
1 / 2 /

p

n

n
n n

x t X t

KFX

ω φ

ςω ω pφ
ω ω

ω ω ςω ω

−

= +

−
= = = = −

− 
− + 

 

 

 
The system is underdamped, so the transient solution is 

0 0
0( ) exp( ) cos sin

h h
h n

h n d d
d

v xx t t x t tςω
ςω ω ω

ω

 + = − + 
  

 

where 21 4 1 1/ 4 2 3d nω ω ς= − = − =  
 

0 0 0 0

0 0 0 0
0

(0) sin 1

cos 0

h
p

ph

t

x x C x x C X

dx
v v v X

dt

φ

ω φ
=

= − − = − − =

= − = − =
 

 

Thus 1( ) sin 4 exp( 2 ) cos2 3 sin 2 3
2 3

x t t t t tp   = − + − +  
   

  (of course sin(4 / 2) cos(4 )t tp− = −   

[3 POINTS] 

http://www.brown.edu/Departments/Engineering/Courses/En4/Notes/Vibesols.pdf


 
 
 
  
  
  

 
 
 
 
 
 
 
 
  
4. For the two conservative single-degree of freedom systems shown in the figure: 
 

4.1 Derive the equation of motion (use energy methods, and include gravity.  The pulleys and cable 
are massless).  State whether the equation of motion is linear or nonlinear. 

 
 
The potential energies for the two systems are: 
(a) 2( )V k y L= −   (no gravity because when one mass moves up the other moves down) 

(b) ( ) ( ) ( ) ( )
2 2

2 2 2 23 4 5 3 4 5
2 2
k kV L y L L L y L L   = + + − = + + −   
   

  

The kinetic energies are 

(a) 
2dym

dt
 
 
 

        (b) 
21

2
dym
dt

 
 
 

  

 

The systems are conservative so ( ) 0d T V
dt

+ =   

 
Evaluating the derivatives gives 

(a) 
2 2

2 22 2 ( ) 0d y dy dy m d ym k y L y L
dt dt kdt dt

   + − = ⇒ + =   
   

 

(b) 

( ) ( )
( ) ( )

( ) ( )

2
2 2

2 2 2

2

2 2 2

33 4 5 0
3 4

51 (3 ) 0
3 4

d y dy L y dym k L y L L
dt dtdt L y L

m d y L L y
k dt L y L

+    + + + − =        + +

 
 ⇒ + − + =  + + 

 

 
The first system is linear, the second is nonlinear. 

[4 POINTS] 
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4.2 If appropriate, linearize the equation of motion for small amplitude vibrations (that means doing 

that Taylor series stuff discussed in class.  “Linearizing” means replacing the nonlinear function 
of the variable with an approximate linear function) 

 
 

The first system is already linear, so no need to rearrange.   For the second we need to linearize  
 

( ) ( )2 2

51 (3 )
3 4

L L y
L y L

 
 − +  + + 

.   

Note that the Taylor expansion of the first term is 
( ) ( )

2

32 2

5 151 0 ...
(5 )3 4

L L y
LL y L

 
 − ≈ + +  + + 

 

 

Hence the linearized equation is 
2

2
9 0
25

m d y y
k dt

+ =  

 
You can also do the series in Mupad 

 
[2 POINTS] 

 
4.3 Arrange the (linearized) equation of motion into standard form, and find an expression for the 

natural frequency of vibration.    
 

The first is already in standard form so 
2

2 0 n
m d y ky
k mdt

ω+ = ⇒ =  

 

The second is 
2

2
25 30
9 5n

m d y ky
k mdt

ω+ = ⇒ =  

 
 

[2 POINTS] 
 
 
 
 
 
 



5. A helium balloon with total mass m and volume V is supported by a tether with 
mass per unit length m  .   Part of the cable is coiled on the ground.          

 
5.1 Assuming vertical motion, write down the total potential and kinetic energy of 
the balloon and cable together as a function of its height h.   (The buoyancy force 
acting on the balloon is g Vρ  where ρ  is the mass density of air.  Since the 
balloon floats mg Vgρ<  .  Assume that the air current surrounding a balloon 

moving with velocity v has kinetic energy 2 / 4Vρ v - this comes from a fluid 
mechanics calculation of flow past a moving sphere) 
 

The potential energy is gravity + buoyancy, which gives 
21

2
V mgh gVh ghρ m= − +   

where we have noted that the center of mass of the cable is half way up. 

The kinetic energy is 
2 2 21 1 1

2 2 4
dh dh dhT m h V
dt dt dt

m ρ     = + +     
     

  

[2 POINTS] 
 
5.2 Hence, find the equation of motion for h 
 

( ) 0d T V
dt

+ =  gives 

( )

( )

32

2

22

2

1 1 0
2 2

1 1 0
2 2

d h dh dh dhm V h mg gV h
dt dt dtdt

d h dhm V h mg gV hg
dtdt

ρ m m ρ m

ρ m m ρ m

       + + + + − + =       
       

   ⇒ + + + + − + =   
   

 

[2 POINTS] 
5.3 Find the value of h for which the balloon is in static equilibrium.  
 

The acceleration and velocity are zero in equilibrium so the equation of motion gives  
( )V mh ρ

m
−

=  

[1 POINT] 
5.4 Assuming that the balloon is disturbed by a small distance xδ   from the equilibrium height found in 
5.3, linearize the equation and hence find the natural frequency (to linearize you will need to assume that 
displacement, velocity and acceleration are all sufficiently small to neglect quadratic or higher order 
terms.  Products of xδ and acceleration can also be neglected). 
 

We set ( )V mh xρ δ
m
−

= +  in the equation of motion, and discard high order terms, to get 

2 2

2 2
3 30 0
2 2

d x V d xV g x x
gdt dt

δ ρ δρ m δ δ
m

   + = ⇒ + =  
   

.  The natural frequency follows as 2
3n

g
V
mω
ρ

 
=  

 
 

 
[2 POINTS] 

Notice that the frequency is independent of the balloon mass…. 

V,m

h

http://www.brown.edu/Departments/Engineering/Courses/En221/Homework/2012/HW5_sol.pdf
http://www.brown.edu/Departments/Engineering/Courses/En221/Homework/2012/HW5_sol.pdf


6. Replace the system shown in the figure with an equivalent 
spring-mass system consisting of a mass with only one spring 
and dashpot.  Hence, determine a formula for the undamped 
natural frequency and the damping factor for the system. 
 
The two springs connected end to end are in series, and have a 
stiffness 

1 1 1
2eff

eff

kk
k k k

= + ⇒ =  .  Everything else is in parallel, and 

stiffnesses or dashpot coefficients just add.   The total stiffness is thus 5k/2 and the total dashpot 
coefficient is 2c. 
 

The natural frequency follows as 5
2 2 5 / 2

eff eff
n

eff

k ck c
m m k m km

ω ζ= = = =   

[2 POINTS] 
 
7. The figure (from this paper) shows an instrument that is 
designed to measure the vertical impulse exerted by the 
explosion of a buried charge.  A mass m is supported by springs 
and dampers attached to a rigid frame.   The vertical 
displacement of the mass is measured after the explosion. 
 
 
 
7.1 Derive the equation of motion for the length y. 
 
 
 
 
 
A free body diagram is shown.   We know that 

1 2

1 2

( ) (2 )S S

D D

F k y L F k L y L
dy dyF c F c
dt dt

= − = − −

= = −
  

 
F=ma in the vertical direction gives 

 
 

2 2

2 22 2 ( )
2 2

d y dy m d y c dy mgm c k y L y L
dt k k dt kdt dt

= − − − ⇒ + + = −  

 
 

[2 POINTS] 
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7.2 Calculate a formula for y when the system is in static equilibrium (before the charge is fired). 
 

In equilibrium all the time derivatives vanish, so 
2
mgy L

k
= −  

 
[1 POINT] 

 
7.3The system starts at rest with y at its equilibrium position.  The explosive charge exerts an impulse I on 
the mass m. The system is designed to be under-damped. Write down the velocity of the mass just after 
the explosion, and hence show that   
 

2
( ) exp( )sin

2 2 (1 )
n d

mg Iy t L t t
k km

ζω ω
ζ

= − + −
−

 

and give formulas for ,nω ζ dω  ,  
 
Momentum conservation gives 0I mv=   
 

The equation of motion can be expressed in standard form by setting 2 2
2 2n

k c
m km

ω ζ= =  

 
 
We now can solve the equation of motion – this is a Case III free vibration problem with solution  
 

0 0
0

( )
( ) exp( ) ( )cos sinn

n d d
d

v x Cx t C t x C t tςω
ςω ω ω

ω
 + −

= + − − + 
 

 

 

Here 0x C= , 0 /v I m=  2 21 (1 )d n
k
m

ω ω ζ ζ= − = −   .  Substituting into the solution and simplifying 

gives the answer stated. 
 

[3 POINTS] 
 
7.4 The actual design has the following parameters: 

• k=20 MN/m 
• c=50 kNs/m 
• m=25000 kg  

 
The maximum displacement of the frame (measured relative to its static equilibrium position) was found 
to be 4.63 cm.    Find the values of ,nω ζ  for the instrument and hence determine the magnitude of the 
impulse. 
 

2 240 / 0.05
2 2n

k crad s
m km

ω ζ= = = =  

 
The maximum value of exp( )sinn dt tζω ω− can be found with calculus – differentiating and setting to 
zero to find the location of the maximum 



( )

( ) ( )
( )

2 2 1
2 2

exp( ) sin cos 0

cos sin sin cos 0 sin( ) 0 sin

n n d d d

d
n d d d d

n d

d

t t t

t t t

t

ζω ζω ω ω ω

ω
ζω ω ψ ω ψ ω ω ψ ψ

ζω ω

ω ψ

−

− − + =

⇒ − + − = ⇒ − = =
+

⇒ =

 

and hence 2 1 2exp( )sin 1 exp( sin 1 )n d ntζω ψ ω ζ ζω ζ−− = − − − .  The maximum deflection follows as 
 

1 2
6

6

exp( sin 1 ) exp( / 2) exp( 0.05 / 2)
2 2 10

I 0.0463 exp(0.05 / 2) 10 50

n

d

I I I
km km

kNs

ζω
ζ ζp p

ω

p

−− − ≈ − = −

⇒ = × × =

 

 
You can also do the maximization with mupad using  numbers 
 

 
[3 POINTS] 

 
 
Graders – numbers in this problem are fiddly – as long as the method is correct and the procedure 
is explained clearly deduct ½ point for getting the wrong numbers… 
 
 
 
 
 
 
 
 



8. Determine the steady-state amplitude of vibration for the spring-mass systems shown in the figure (you 
don’t need to derive the equations of motion – these are standard textbook systems and you can just use 
the standard formulas).  In each case the mass m=20kg, the stiffness k=2000N/m  c=20Ns/m. 
 
The force is ( ) 20sin 20F t t= N ;, the length of the rotor is 5cm; the eccentric mass 0 4m kg=  and the 
angular velocity of the rotor is 40ω =  rad/s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For the forced system the natural frequency and damping factor are 10 0.05
2n

k c
m km

ω ζ= = = =   

 
The amplitude of vibration of the forced spring-mass system is 

0
0 2 2 2 2 2 2 2

1 20 1 3.3
2000(1 / ) (2 / ) (1 20 /100) (0.2)n n

FX mm
k ω ω ζω ω

= = =
− + − +

  

 

For the rotor excited system 
0

9.13 0.0456
2n

k c
m m km

ω ζ= = = =
+

 

The amplitude is 
 

2 2
0 0

0 2 2 2 2
0

2 2

2 2 2 2

/

(1 / ) (2 / )

0.05 4 40 / 9.13 8.6
24 (1 40 / 9.13 ) (2 0.0456 40 / 9.13)

n

n n

Y mX
m m

mm

ω ω

ω ω ζω ω
=

+ − +

×
= =

− + × ×

 

 
[4 POINTS] 
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9. A vibration isolation platform can be idealized as a spring-mass-damper 
system as shown in the figure.  In a free vibration test on the table, the 
base is held fixed and the platform is disturbed slightly from its 
equilibrium position.  The subsequent displacement of the table is plotted 
in the figure below as a function of time. 

 

9.1 Use the graph provided to estimate the period of 
oscillation and the log decrement. Hence, calculate 
the natural frequency nω  and damping factor ζ  that 
characterize the vibration isolation table. 

There are two cycles in 0.5 sec so the period is 
0.25 sec 

Using the first and 3rd peaks the log decrement 
is log(4)/2  (use the natural log) is 0.693 

  

The standard formulas then give 
2 2

2 2

40.1 25
4

n T
δ p δζ ω

p δ

+
= ≈ = ≈

+
 rad/s 

 

[2 POINTS] 

 

9.2 The base of the platform is subjected to a harmonic 
displacement 0( ) siny t Y tω=   with amplitude 5mm and frequency 
( 25 / p ) Hz.   Calculate the amplitude of vibration of the 
platform. 

 

 

The angular frequency of the base is 50 rad/s. 

The displacement amplitude follows from the standard formula 

k

m
c

k

m
c

y(t)



2 2

0 2 22 222

22

2 2 501 1
10 25

5 1.8
50 2 502 11

10 2525

n

nn

Y mm

ζω
ω

ω ζω
ωω

  × + +   ×   = =
     × − +− +      ×    

 

[2 POINTS] 

 

9.3 It is necessary to modify the vibration isolation system to further reduce the vibration 
amplitude by a factor of two. Recommend changes to the values of k,m, and/or c necessary to 
achieve this (e.g. recommend that k should be increased by some factor, m should be reduced by 
some factor, etc).  

 

The figure shows the plot of magnification –v- frequency for a base-excited system. 

 

 

 

 

 

 

 

 

 

In the original design / 2, 0.1nω ω ζ= =   and the magnification 1.8 / 5 0.36M = =  . 

 

It is clear that changing only the damping won’t be enough to achieve the necessary reduction in 
amplitude.   A better approach is to reduce the natural frequency.   We can do this graphically – 
we need to reduce the magnification to 0.36/2=0.18, which requires / 2.75nω ω ≈  . 

 

 



Alternatively we can solve  

2

2 22

2

2 501
10

5 1.8 / 2
50 2 501

10

n

nn

ω

ωω

 ×
+  ×  =

   ×
− +   ×  

 

 

Either way we need to reduce nω   below 18 rad/s.   We thus need to scale k
m

  by 18/25.   This can be 

achieved by halving the spring stiffness, or doubling the mass, or if you want to leave the damping 
unchanged, increase the mass by 2  and reduce the spring stiffness by 1/ 2    

Graders – numbers will vary depending on how the graph is read – and any sensible change in k 
and m is fine, it doesn’t have to be exactly a factor of 2. 

[3 POINTS] 
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