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1. The figure (from this reference) shows the measured velocity of lateral vibration of an out-of-balance 
rotor.   Calculate 

 
1.1 The amplitude, the period, and frequency of the vibration (give the frequency both in Hertz and in 

radians per second)  
 

• There are 11 peaks in 0.2 secs.  The period is therefore 0.2/11=0.018s 
• The frequency (in Hertz) is 55 ( 1 /f T=  ) 
• The frequency in rad/s is 2 346 /f rad sω π= =   
• The amplitude is about 30 mm/s 

[3 POINTS] 
1.2 The amplitude of the acceleration. 
 

• The amplitude of the acceleration is 210.37A V msω −= =   
[1 POINT] 

1.3 The amplitude of the displacement.   
 

• The amplitude of the displacement is / 86.8X V mω m∆ = ∆ =   
 

[1 POINT] 
 

http://prochema.info/how-to-spot-low-frequency-faults-with-pocket-vibra-c-trend/


2. State the number of degrees of freedo m for each of the systems shown below.  For systems (a), (b) 
and (d) state the number of vibration modes 

                          
 
 
 
 

               
 
 
 
 

 
 

(a): There are 3 angles, and the entire system can move horizontally and vertically, so 5DOF.  Alternatively, 3 rigid 
bodies give 9 DOF, and two pin joints with two constraints at each give 9-4=5DOF.  The system has 3 rigid body 
modes (translation horizontally and vertically, and rotation in the plane) so 2 natural frequecies. 

[2 POINTS] 
(b): There are 3 wheels with 1 DOF (motion perpendicular to the truck body); each piece of the truck has 3 DOF. 
The connection between the two parts of the truck imposes 2 constraints (the x,y, components of velocity are equal 
at the connection).  This 7 DOF.  The system has 1 rigid body mode (translation horizontally) so there are 6 natural 
frequencies. 

[2 POINTS] 
 (c) The bicycle can translate in one direction, can tilt, and the handlebar can be turned.  This gives 3 DOF.   
Alternatively the two wheels plus the two parts of the body have 6 DOF each giving 24 DOF.  Each axle has 5 
constraints (all relative motion and relative rotation about 2 axes are prevented).  The bearing that permits steering 
(just below the handlebar) also has 5 constraints.   The two contact points with the ground have 3 constraints each 
(they allow relative rotation of the wheel and ground, but prevent relative motion of the contact point on the wheel 
and the ground).  This gives 24DOF and 21 constraints, again 3DOF.  (The large number of coordinates used in the 
figure are misleading, because they are not all independent.   They are unavoidable, because the system is ‘non-
holonomic’ – the constraints on velocity at the contact between the wheels and the ground cannot be integrated to 
write them as an algebraic equation relating positions and angles). 

[1 POINT] 
(d) 12 particles, 3 DOF each.  36 DOF in total.   The molecule would have 36-6 =30 vibration modes. 

[2 POINTS] 

(a) Model of a hopping robot (motion 
is confined to the x,y plane. Consider 
the robot in the air only) 

(b) 2D Model of an articulated truck  (the model idealizes the wheels as 
particles, which can only move perpendicular to the truck body.  Assume 
that the connection between the two parts of the body is a pin joint. 

(c) Model of a bicycle The wheels and both links B and H 
are rigid bodies. (A riderless bicycle is usually unstable 
and so has no vibration modes. It is stable for a range of 
speeds, in which case there is one vibration mode. A 
simple explanation has not been found for this behavior). 

(d) Benzene molecule (the spheres are 
particles, the rods are springs) 

http://www.worldscientific.com/doi/abs/10.1142/S0219843610002106
http://jim.sagepub.com/content/25/12/1414.full.pdf
http://rspa.royalsocietypublishing.org/content/463/2084/1955.article-info


 
 

3. Solve the following differential equations (use the Solutions to Differential Equations) 

3.1 
2

2 4 4 0 0 2 0d y dy dyy y t
dt dtdt

+ + = = = =  

 

• The formula sheet gives the solution to 
2

2 2
1 2

nn

d x dx x C
dtdt

ς
ωω

+ + =  with 

0 0 0dxx x v t
dt

= = =  The solution depends on the value of ζ  .   

• Rearrange the equation in the problem into the appropriate form 
2

2 2
1 2 0

22
d y dy y

dtdt
+ + = , so 

here 0 00 2, 1, 0, 2nC x vω ζ= = = = =   
• For this case the solution is [ ]{ }0 0 0( ) ( ) ( ) exp( )n nx t C x C v x C t tω ω= + − + + − −  
• so ( ) 2 exp( 2 )x t t t= −  

[3 POINTS] 
 

3.2
2

2 4 4 16sin(2 ) 2 1 0d y dy dyy t y t
dt dtdt

+ + = = − = =  

• The equation in standard form is
2

2 2
1 2 4sin(2 ) 2 1 0

22
d y dy dyy t y t

dt dtdt
+ + = = − = =  so  

01 2 2 4n KFζ ω ω= = = =   
 

• The formula gives ( ) ( ) ( )h px t C x t x t= + +  with steady state solution 
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• The system is critically damped, so the transient solution is 

{ }0 0 0( ) exp( )h h h
h n nx t x v x t tω ω = + + −   

where  
 

0 0 0 0

0 0 0 0
0

(0) sin 0

cos 1

h
p

ph

t

x x C x x C X

dx
v v v X

dt

φ

ω φ
=

= − − = − − =

= − = − =
 

 

• Thus ( ) 2sin 2 exp( 2 )
2

x t t t tp = − + − 
 

  (of course 2sin(2 / 2) 2cos(2 )t tπ− = −   

[3 POINTS] 

http://www.brown.edu/Departments/Engineering/Courses/En4/Notes/Vibesols.pdf


 
 
  
  
  

 
 
 
 
 
 
 
  
 

4. For the two conservative single-degree of freedom systems shown in the figure (note that in (a) the 
unstretched spring length is 2L ) : 
 

4.1 Derive the equation of motion (use energy methods, and include gravity.  The pulley and cable 
are massless).  State whether the equation of motion is linear or nonlinear. 

 
• The potential and kinetic energy of the first system were calculated in the preceding HW: we 

have that 

{ }2
0

1cos 2 sin( / 4 / 2)
2

V mgL k L Lθ π θ= + + − , 
2

21
2

dT mL
dt
θ =  

 
 

• Taking the time derivative of T+V=constant gives 

 { }
2

2
02 sin 2 sin( / 4 / 2) cos( / 4 / 2) 0d d d dmL mgL k L L L

dt dt dtdt
θ θ θ θθ π θ π θ  − + + − + = 

 
 

 
• The equation of motion is therefore (any of the results below are acceptable – they are simplified 

using various trig formulas).  The equation is nonlinear (because of the trig terms) 

{ }

{ }

{ }

{ }

2

2

2

2

2

2

2

2

sin 2sin( / 4 / 2) 2 cos( / 4 / 2) 0

sin sin( / 2 ) 2 cos( / 4 / 2) 0

sin cos 2 cos( / 4 / 2) 0

sin sin( / 2) cos cos( / 2) 0

d g k
L mdt

d g k
L mdt

d g k
L mdt

d g k
L mdt

θ θ π θ π θ

θ θ π θ π θ

θ θ θ π θ

θ θ θ θ θ

− + + − + =

⇒ − + + − + =

⇒ − + − + =

⇒ − + + − =

 

[3 POINTS] 
 
• For the second system, it helps to define a variable d quantifying the length of the cable.  This 

variable disappears from the final results, but it simplifies the derivation. 
 

• The position vector of the mass on the end of the cable with respect to point A can be expressed 
as 
 

k,L

x

m
m

450
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L
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θ
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k,L0

Assume



( )cos(45) ( )sin(45)

( )( ) / 2

x d x d x

x d x

= + − − −

= + − −

r i i j

i i j
 

 
• The velocity of this mass follows as 

( ) / 2dx dx
dt dt

− −i i j  

• Recall that ( )2 2 21 1
2 2 x yT m m v v= = +v  .  The total KE of the two masses is therefore 

( )

2 22 2 2

2

1 1 1 11
2 2 2 2

1 3 2
2

dx dx dxm m
dt dt dt

dxm
dt

          + − + −                   

 = −  
 

 

 
• We can ignore the gravitational potential energy of the wedge since it does not move vertically.  

The total potential energy of the system (taking A as datum for the mass on the end of the cable) 
is 

2 21 1( ) ( )sin(45) ( ) ( ) / 2
2 2

k x L mg d x k x L mg d x− − − = − − −  

• Take the time derivative of T+V=C to get the following linear equation 
 

( )

( )

2

2

2

2

3 2 ( ) / 2 0

3 2
2

dx d x dx dxm k x L mg
dt dt dtdt

d x mgm kx kL
dt

     − + − + =     
     

⇒ − + = −

 

[3 POINTS] 
 
4.2 If appropriate, linearize the equation of motion for small amplitude vibrations (that means doing 

that Taylor series stuff discussed in class.  “Linearizing” means replacing the nonlinear function 
of the variable with an approximate linear function) 

 
• We only need to linearize the first system.  We can use the approximation sin ,cos 1θ θ θ≈ ≈  (or 

do the Taylor series with Mupad) to see that 
 

2

2 0
2

d k g
m Ldt

θ θ + − = 
 

 

[2 POINTS] 
 
 
 
 
 
 
 
 
 



4.3 Arrange the (linearized) equation of motion into standard form, and find an expression for the 
natural frequency of vibration.    

 
 

• The equations in standard form reduce to 
 

2

2
1 0

2

d
k g dt
m L

θ θ+ =
 − 
 

                ( )
2

23 2
2

m d x mgx L
k dt k

− + = −  

• The natural frequencies are therefore 
 

2 (3 2)n n
k g k
m L m

ω ω = − =  − 
 

[2 POINTS] 
 
5. Replace the system shown in the figure with an equivalent 
spring-mass system consisting of a mass with only one spring 
and dashpot.  Hence, determine a formula for the undamped 
natural frequency and the damping factor for the system. 
 
 
 
 
 
 
• The two end-to-end dampers are in series; and (together) are in parallel with the third damper.  The 

effective dashpot coefficient is therefore 
11 1 3

2
eff cc c

c c

−
 = + + = 
 

 

• Similarly, the two end-to-end springs are in series; these are in parallel with both the other two 
springs.   Therefore 

11 1 52
2

eff kk k
k k

−
 = + + = 
 

 

 
• The natural frequency and damping factor therefore follow as 

5 3
2 4 5 / 22

eff
eff

n eff

k k c c
m m kmk m

ω ζ= = = =  

 
 
 

[3 POINTS] 
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6. The figure shows a MEMS accelerometer (the figure on the left is from this company).   It consists of 
of a proof mass m inside a sealed casing.  The mass is suspended on springs and its motion is damped 
electrostatically.  If the accelerometer accelerates to the right, the spring is compressed.  The capacitative 
combs provide an electrical signal that senses the position x and hence provides a signal proportional to 
the acceleration of the device. 
 
6.1 Show that the equation of motion for the distance x shown in the figure has the form 
 

2 2

2 2 2 2
1 2

nn n

d x dx K d yx
dtdt dt

ζ
ωω ω

+ + = −  

Give formulas for , ,n Kω ζ  in terms of the m,k,c. 
 
 

• The figure shows a FBD for the mass.  The force in the damper is 

D
dxF c
dt

=  , and the force in the spring is 0 0( )SF k x L L kx= + − =  .  

• Note that the position of the mass with respect to a fixed origin is x+y. 
• Newton’s law gives 

2

2
( )d x y dxm c kx

dtdt
+

= − −  

• Rearrange this in the standard form 
2 2

2 2
m d x c dx m d yx
k k dt kdt dt

+ + = −  

• If we define / / (2 ) 1n k m c km Kω ζ= = =   this reduces to the form stated. 
 
 

[2 POINTS] 
 

k,L0

c1

x+L0 
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m
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http://www.sensing-machines.com/memsdesign.html


6.3 Show that 2( ) / nx t a ω→ −   as t →∞  , so (once the transient has died out) x is proportional to a.  This 
means that, once the transient motion has stopped, the signal will correctly measure acceleration. 
 
 

• If the acceleration is constant, the governing equation reduces to 
2

2 2 2
1 2 1

nn n

d x dx x a
dtdt

ζ
ωω ω

+ + = −  

• The term on the right hand side is just a constant, so we can use Solution 2 from the handout.  If 
the system starts from rest at time t=0 then 2

0 0 0, / nx v C a ω= = = −  .  Hence (for the 
underdamped case) 

2 2( ) exp( ) cos sinn
n d d

dn n

a ax t t t tςω
ςω ω ω

ωω ω

 
= − + − + 

 
 

where 21d nω ω ς= −  .     
 

• The second term in the solution goes to zero as t →∞ .  This gives the correct solution. 
• The over-damped and critically damped solutions will have the same behavior…. 

[3 POINTS] 
 
6.4 The accelerometer designed in this publication has a resonant frequency of 41 kHz (don’t forget the 
dreaded 2π factor between frequency and nω  )  and a damping factor of order 0.05ζ ≈ .    Plot x(t) with 
a=1g for this accelerometer (you can do the plot from t=0 to t=0.4 milliseconds).   Use the graph to 
estimate how long it takes for the accelerometer reading to settle to within 5% of the correct value. 
  

• The correct reading is achieved when x reaches its steady state value, which is 
2 10( ) / 9.81 / (41000 2 ) 1.478 10nx t a ω π −→ − = − × × = − ×  

• The plot is shown below, along with the values of x 5% below and above the steady-state value. 

 
 The reading reaches a value within 5% of the steady-state after about 0.23 milliseconds. 

[4 POINTS] 
 
 
 
 
 

http://www.ijens.org/106506-7878%20IJET-IJENS.pdf


7. Determine the steady-state amplitude of vibration for the base excited 
spring-mass systems shown in the figure (you don’t need to derive the 
equations of motion – this is a standard textbook systems and you can just use 
the standard formulas).  The mass m=20kg, the stiffness k=2000N/m  
c=20Ns/m. The base motion is ( ) 0.01sin 20y t t= N. 
 
 

• The natural frequency and damping coefficient are 

10 0.05
2n

k c
m km

ω ζ= = = =  

• The amplitude of vibration is 

( ){ } ( ){ }1/2 1/22 2
0

0 2 2 2 2 2 2 2

1 2 / 0.01 1 2 0.05 20 /10
3.4

(1 / ) (2 / ) (1 20 /100) (0.2)

n

n n

KY
X mm

ςω ω

ω ω ζω ω

+ + × ×
= = =

− + − +
 

 
[3 POINTS] 

 
 
8 The figure shows a simple idealization of a force sensor. Its 
purpose is to measure the force F, by providing an electrical 
signal that is proportional to the length s of the spring. 

At time t=0 the system is at rest, and F=0.    At time t=1s a 
constant force of F=100N is applied to the mass.   The figure 
below shows the variation of s with time for 0<t<5s. 
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8.1 Using the graph provided, calculate values for the following quantities.   

(a) The period of vibration (1 POINT) 

2 cycles takes 1 sec so T=0.5s. 

(b) The damped natural frequency dω  (1 POINT) 

2 4 /d T rad sω π π= / =   

(c) The log decrement of the vibration δ  (be careful to use the correct origin) (1 POINT) 

The first peak has amplitude 0.7; the third has amplitude 0.2 so the formula for log 

decrement gives 1 log(0.7 / 0.2) 0.626
2

δ = =   

(d) The damping factor  of the system ζ  (1 POINT) 

From the formula 
2 2

0.1
4

δζ
π δ

= =
+

  

(e) The undamped natural frequency of the system nω   (1 POINT) 

From the formula 
2 24 12.62 /n rad s
T

π dω +
= =  

(f) The un-stretched length of the spring 0L   (1 POINT) 

The length of the spring must be equal to its unstretched length before the force is 
applied, so 0 1L cm=   

(g) The spring stiffness k (1 POINT) 

After the oscillations die out, the spring has stretched by 1cm after the 100N force is 
applied.   Therefore 100 / 0.01 10000 /k N m= =    

(h) The mass m (1 POINT) 

We know that 2 2/ / 10000 / (12.62) 62.8n nk m m k kgω ω= ⇒ = = =    (this must be the 
world’s heaviest force sensor – don’t design one like this!) 

(i) The dashpot coefficient c. (1 POINT) 

We have / 2 2 158 /c km c km Ns mζ ζ= ⇒ = =   

 



8.2 The sensor is now used to measure a force that vibrates harmonically 0( ) sinF t F tω=  .    The 
figure below shows the steady-state variation of the spring length s with time.  Calculate the 
amplitude of the force 0F  . 

 

 

Note that the frequency of the force is equal to the natural frequency (the period of vibration is 
equal to the period in the first figure).    This means the system is at resonance, and we can use 
the formula for the amplitude at resonance 

0 0 max 0 0 0
1 1 2 2 0.1 10000 0.005 10

2
X KF M F F kX N

k
ζ

ζ
= ≈ ⇒ = = × × × =   

(3 POINTS) 
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