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1. The figure (from this publication) shows a vibration measurement from a displacement transducer 
attached to a bridge.   Calculate: 
1.1 The amplitude of vibration 
 
The amplitude is about 0.55mm peak-peak, which gives A=0.28mm amplitude 

[1 POINT] 
 
1.2 The period of the vibration 
 
There are 20 cycles in 10sec so period is 0.5sec 

[1 POINT] 
 
1.3 The frequency (in Hertz) and angular frequency (in rad/s) 
Frequency is 2 Hertz (cycles per sec), or 4π  rad/s 

[1 POINT] 
 
1.4 The amplitude of the velocity 
 
The amplitude of the velocity follows as 3.5 /v X mm sω∆ = ∆ =   
 

[1 POINT] 
1.5 The amplitude of the acceleration. 
 
The amplitude of the acceleration is  2 244 /a X mm sω∆ = ∆ =  

[1 POINT] 
 

http://article.sapub.org/10.5923.j.instrument.20120105.03.html


2. Find the number of degrees of freedom and vibration modes for each of the systems shown in the 
figures 

               
 

Floating wind turbine                                 2D Idealization of an overhead crane 
 
 

                    
 

Stewart platform (the base is fixed)                   TNT Molecule 
 
For (a), the assembly has 3 translational and 3 rotational DOF, and the prop can spin about its axis, so 7 
total.   Alternatively 2 rigid bodies (12 DOF) and 5 constraints at the axle gives 7 DOF.   Counting 
vibration modes for this system is a bit tricky - presumably it is anchored, and the water keeps it upright, 
and something keeps it facing the wind, which means there can’t be any rigid body modes.   This would 
give 7 vibration modes (if the prop is not balanced).   You would get 1 rigid body mode (the prop 
spinning about its axis) if it is balanced – giving 6. (also OK to assume the generator rotates on the mast – 
this would give 1 more DOF and 1 more vibratin mode. 
 
For (b) 3 DOF since the coordinates are drawn on the figure!   Or 3 rigid bodies, 6 constraints, 2D 
problem gives # DOF = 9-6=3 There is one rigid body mode (horizontal translation) so 2 vibration modes. 
 
For (c) 13 rigid bodies (two for each of the members, plus the platform on top,  3 constraints at each 
revolute joint, 4 constraints at each universal joint, 5 constraints at each of the prismatic joints gives 
3*6+4*6+30=72 constraints.   Hence DOF = 6*13-72=6.   The point of the mechanism is to be able to 
position the platform with any orientation or position, which is 6 DOF.  This system has no rigid body 
modes so 6 vibration modes 
 
For (d) we have 21 atoms, so 63DOF.    6 rigid body modes, so 57 vibration modes. 

[4 POINTS] 

https://www.researchgate.net/figure/274967896_fig11_The-degrees-of-freedom-of-an-offshore-floating-wind-turbine-platform
http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=1763524
https://www.youtube.com/watch?v=7zgKDgTIfgk


3. Solve the following differential equations 
 

3.1 
2
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We can re-write this as a case-I equation 
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Comparing the equations shows that 1 / 4 4nC ω= =  .   The solution is  

0
0( ) ( )cos sinn n

n

vx t C x C t tω ω
ω

= + − +  

We are given 0 01 / 4 8x v= = −   so  
1( ) 2sin 4
4

y t t= −  

 
[3 POINTS] 

 

3.2 
2

2 6 9 18sin3 36cos3 0 0 0d y dy dyy t t y t
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+ + = + = = =  

 
We can rearrange this as a Case 5 equation 
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It appears that 3, 2, 3, 1nKω ω ζ= = = =  . 
 
The steady-state solution follows as  
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The homogeneous solution is 

{ }0 0 0( ) exp( )h h h
h n nx t x v x t tω ω = + + −   
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The total solution is therefore ( ) { }5 sin 3 0.4636 1 3 exp( 3 )t t t− + − −  
 

[3 POINTS] 
 

4. Find formulas for the natural frequency of vibration for the systems shown in the figure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the first system we can replace the springs with an equivalent single spring and use the standard result 
for a spring-mass system.   The two springs in series have combined stiffness k/2.  This spring is in 
parallel with two springs with stiffness k so the effective stiffness is 5k/2. The natural frequency is 
therefore 

5
2n

k
m

ω =  

[1 POINT] 
For the second system we can use energy conservation to get the EOM.  Note we can’t directly write 
down the length of the vertical spring, or the height of the mass, but this doesn’t matter (it will not 
influence the natural frequency). 

( )
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221 1 12 ( ) ( )
2 2 2

dxT V m k x L k D x L mg D x
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where D is a constant (the length of the spring when x=0).   We can take the time derivative: 
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Thus /n k mω =   
[3 POINTS] 
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5. The figure shows a schematic diagram of a 
wave energy harvesting device. It consists of 
two cylindrical buoys with cross-sectional area 
A , height H and mass m, attached to a bar with 
total length 2L and negligible mass.  The buoys 
are immersed in water with mass density ρ  .    
 
During operation waves cause the bar AB to 
rock through a time-varying angle θ  as shown. 
When 0θ =  both buoys are half submerged 
( / 2)x H=  . 
 
The goal of this problem is to analyze oscillation of the device in still water (no waves). No torque or 
friction acts at the pivot. Neglect the mass of AB and viscous drag of the water. 
 
 
5.1 The buoyancy force acting (upwards) on one cylinder can be expressed in terms of its height x above 
the water surface as 

( )BF gA H xρ= −  

Show that (for 0 x H< < )  the potential energy of the buoyancy force is 
2

2
xV gA Hx Cρ

 
= − − + 

 
 where 

C is a constant 
 
 

From the definition of potential energy 
2
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[1 POINT] 
 
 
5.2 Write down a formula for the speed of the masses (which is equal to the speed of ends A and B of the 
bar) in terms of , /L d dtθ   
 

A and B describe circular motion about the pivot, therefore dv L
dt
θ

=   

 [1 POINT] 
 

 
5.3 Hence, write down the total potential and kinetic energy of the system, in terms of , , , ,A L m gρ  and θ  
and its time derivatives (assume that 0 x H< <  at all times). 

 
 

The height of the mass attached to B above the water is / 2 sinBx H L θ= +  ; the height of the 
mass attached to A is / 2 sinAx H L θ= −  .  The total potential energy is  
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(not necessary to fully simplify solution to receive credit, and also OK to drop all the constant 
terms since they are arbitrary.  Also OK to use some other datum for gravity) 

 

The total kinetic energy is 
21 2

2
dT m L
dt
θ =  

 
 

[2 POINTS] 
 
5.4 Hence, show that θ  satisfies the equation of motion 

2

2 sin cos 0dm gA
dt
θ ρ θ θ+ =  

 
We can use energy conservation to derive the EOM: 
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[2 POINTS] 

5.5 Linearize the equation of motion in 21.4 for small θ  and hence find a formula for the natural 
frequency of vibration of the energy harvester, in terms of , , ,g A mρ . 
 
We can use sin cos 1θ θ θ≈ ≈  to see that 
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[2 POINTS] 
 
 

 
 



6. When mass A is held fixed, and mass B vibrates, the system shown in 
the figure has a natural frequency nω  and damping factor ζ .  Find 
formulas for the new natural frequency and damping factor (in terms of nω  
ζ  ) when mass B is held fixed, and A vibrates. 
 

If (A) is fixed then 
2n

k c
m km

ω ζ= =   

 

If (B) is fixed, then 1
2 2 2 2 2n
k c
m k m

ζω= =  

 
[2 POINTS] 

 
 

7. In this problem, we will estimate the contact stiffness and damping of 
the baseball that you analyzed in Homework 4.   During impact, the 
baseball can be idealized as a spring-mass-damper system: the mass 
represents the interior core of the baseball; and the spring and damper 
represents the deformed part of the ball that is in contact with the steel 
plate.  We can characterize the system using the natural frequency nω  
and damping factor ζ  in the usual way. 
 
 
7.1 Assume that the center of the ball (i.e. the mass) is at position 0x =  and has velocity 0/dx dt v= −  
just before impact.   Write down an equation for the displacement x(t) and velocity ( )v t  of the center of 
the ball (represented by the mass in the figure) during the impact, in terms of the natural frequency nω  
and damping factor ζ  for the system. 
 

From the solutions to vibration EOM (using the underdamped case – the other two could be given 
two, but of course they would not rebound from the wall) 
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 [2 POINTS] 
 
 7.2 If ζ is small, we can assume that the rebounding ball loses contact with the plate when ( ) 0x t ≈  after 
the first cycle of vibration.   With this approximation, show that the restitution coefficient for the collision 
is exp( )e pζ≈ − . 
 

The formula for x(t) from 7.1 suggests that  
2
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The velocity at the point where the ball loses contact follows as 
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The restitution coefficient is 1 0/e v v= −  = 
2

exp exp( )
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pζ ζp
ζ
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[2 POINTS] 

 
7.3. Use the data from Homework 4 problem 4 to estimate values of ,nω ζ (you can use your plot of 
acceleration –v- time to estimate the time that the ball is in contact with the plate) .   Use the known mass 
of the ball to calculate values for the effective spring stiffness k and dashpot coefficient c . 
 
There is no need to submit Matlab code for this problem, just explain how you did the calculation in 
enough detail that the TAs can follow your procedure. 

0 0.5 1 1.5 2

Time (seconds) 10 -3

-2

-1

0

1

2

3

4

Ac
ce

le
ra

tio
n 

(m
/s

2
)

10 5 Acceleration -v- time

 
The acceleration –v- time plot from HW4 suggests that the ball is in contact with the plate for 
about 0.0004 seconds.  We also estimated 0.6e ≈  in HW4.   Thus 

1 log(0.6) 0.16

2500 7850 /n
contact

rad s
T

ζ ζ
π
πω π

≈ − = ≈

≈ = =
 

The baseball mass is 0.145kg, so 2 1.14 /n n
k k m kN m
m

ω ω= ⇒ = =   

 

2 4.2 /
2

c c km Ns m
km

ζ ζ= ⇒ = =  

 
 

[2 POINTS] 
 
 



 

 
 
 
8. In this publication, professor K-S Kim’s group at Brown describe a new approach to measure the 
stiffness of an atomic force microscope tip.  Their approach is to push on a very soft spring with the AFM 
tip.   If the spring stiffness is known, the force on the AFM tip can be calculated.    Their ‘spring’ actually 
consists of a thin sheet of graphite suspended over four magnets (see the figure): the magnets exert 
restoring forces that keep the sheet centered over the magnets, and so act like a spring.   The spring 
stiffness can’t easily be calculated, so instead, they measured it by doing a vibration experiment.    The 
figure shows the free vibration response of the graphite sheet (measured using a laser interferometer). 
 
8.1 Estimate the period and the log decrement from the vibration response. 
 
The first peak has amplitude 4.3V; the 6th peak has amplitude 2V.   The formula for log decrement is 

1 4.3log 0.15309
5 2

δ = =   

There are 15 cycles in 4 secs, so the period is 4/15=0.2666sec 
[2 POINTS] 

 
8.2 Hence, calculate the natural frequency nω  and damping coefficient ζ  for the system 
 

The formulas give 
2 2

2 2

0.024
4

4 23.5rad/sn T

dζ
π d

π dω

= =
+

+
= =

  

[2 POINTS] 
 
8.3 The graphite sheet has mass m=15.052 milligrams.   Calculate the effective spring stiffness of the 
magnetic levitation system. 
 

We know that 2 38.33 10 /n n
k k m N m
m

ω ω −= ⇒ = = ×   

[1 POINT] 
 

http://www.brown.edu/Departments/Engineering/Labs/Nanomicro/papers/RSI06lkr.pdf
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