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1. The figure (from this publication) shows a vibration 
measurement from a vibration isolation system.  Use the 
figure to estimate 
 
1.1 The amplitude of the acceleration  

 
The amplitude is about 0.18*9.81 m/s2 peak-peak, which 
gives A=1.7658m/s2 amplitude 

[1 POINT] 
 
1.2 The period of the vibration 
 
There are 4 cycles in 0.5 sec so period is 0.125 sec 

[1 POINT] 
 
1.3 The frequency (in Hertz) and angular frequency (in rad/s) 
 
Frequency is 8 Hertz (cycles per sec), or 16π  rad/s 

[1 POINT] 
 
1.4 The amplitude of the velocity 
 
The amplitude of the velocity follows as / 35.1 /v A mm sω∆ = ∆ =   
 

[1 POINT] 
1.5 The amplitude of the displacement 
 
The amplitude of the displacement is  2/ 0.699X A mmω∆ = ∆ =  

[1 POINT] 
 
 
 
 
 
 
 
 
 
 

http://www.sciencedirect.com/science/article/pii/S0022460X12003860


2. Find the number of degrees of freedom and vibration modes for each of the systems shown in the 
figures 

                                          
 
 
 
 
 

                 
 
 

                    
 
For (a), there are three storeys idealized as particles that can only move vertically.   This is 3DOF.  No 
rigid body modes, so 3 vibration modes. 
 
For (b) C is fixed so we don’t count it at all.   The two parts (foot and ankle) are two rigid bodies.  There 
is one pin joint (2 constraints) and one slider joint (2 constraints)   The formula gives 

# 3 6 4 2dof r c= − = − =  
No rigid body modes because C is fixed; so 2 vibration modes. 
 
For © each leg is 2 rigid bodies; the platform is a third.  
 There are 5 constraints at each revolute joint; 5 at each prismatic joint, 3 at the spherical joint, and 3 for 
each member joining at the complex universal joint.   This is a total of 3x5+3x5+3x3=39 constraints. 
The formula gives  

# 6 42 39 3dof r c= − = − =  
 
For (d) we have 27 atoms, so 81DOF.    6 rigid body modes, so 75 vibration modes. 

[4 POINTS] 

(b) Model of a 3 storey building 
with vibration suppression 

 

(a) 2D Model of an artificial joint 
Assume C is fixed, and count 
only the foot (pink) and ankle 
(blue) 

 

(d) Model of an articulated 
platform 

(c) THC Molecule 

https://research-information.bristol.ac.uk/files/93354292/JPCS_744_1_012044.pdf
https://research-information.bristol.ac.uk/files/93354292/JPCS_744_1_012044.pdf
http://medicaldevices.asmedigitalcollection.asme.org/article.aspx?articleid=2398339%20https://research-information.bristol.ac.uk/files/93354292/JPCS_744_1_012044.pdf
http://medicaldevices.asmedigitalcollection.asme.org/article.aspx?articleid=2398339%20https://research-information.bristol.ac.uk/files/93354292/JPCS_744_1_012044.pdf
http://medicaldevices.asmedigitalcollection.asme.org/article.aspx?articleid=2398339%20https://research-information.bristol.ac.uk/files/93354292/JPCS_744_1_012044.pdf
http://medicaldevices.asmedigitalcollection.asme.org/article.aspx?articleid=2398339%20https://research-information.bristol.ac.uk/files/93354292/JPCS_744_1_012044.pdf
http://www.sciencedirect.com/science/article/pii/S0094114X16301082
http://www.sciencedirect.com/science/article/pii/S0094114X16301082
https://www.centeronaddiction.org/addiction/commonly-used-illegal-drugs


3. Solve the following differential equations 
 

3.1 
2

2 25 100 0 0 0d y dyy y t
dtdt

+ = = = =   

 
We can re-write this as a case-I equation 
 

2

2 2
1 4

5
d y y
dt

+ =  

 
 
Comparing the equations shows that 4 5 0nC ω ζ= = =  .   The solution is  

0
0( ) ( )cos sinn n

n

vx t C x C t tω ω
ω

= + − +  

We are given 0 00 0x v= =   so  
( ) 4 4cos5y t t= −  

 
[3 POINTS] 

 

3.2 
2

2 100 25 50sin( ) 0 0 0d y dy dyy t y t
dt dtdt

+ + = = = =  

 
We can rearrange this as a Case 5 equation 

2

2 2

2

2 2

1 2 10 2sin
55

1 2 sin
nn

d y dy y t
dtdt

d y dy y C K t
dtdt

ζ
ωω

×
+ + =

+ + = +

 

 
It appears that 1, 2, 5, 10nKω ω ζ= = = =  . 
 
The steady-state solution follows as  

( )

( ) ( )

( ) ( ){ }

0

10
0 1/2 2 22 22 2

1
0 1/22 2

( ) sin

2 /tan
1 /

1 / 2 /

2 20 / 50.4862 tan 1.3353
1 1/ 25

1 1/ 25 20 / 5

p

n

n
n n

x t X t

KFX

X

ω φ

ςω ω
φ

ω ω
ω ω ςω ω

φ

−

−

= +

−
= =

− 
− + 

 
−

⇒ = = = = −
−

− +

 

The homogeneous solution is 

0 0 0 0( ) ( )( ) exp( ) exp( ) exp( )
2 2

h h h h
n d n d

h n d d
d d

v x v xx t t t tςω ω ςω ω
ςω ω ω

ω ω

 + + + − = − − − 
  

 



where 2 1d nω ω ς= −  

0 0 0 0

0 0 0 0
0

(0) sin 0.4862sin( 1.3353) 0.4728

cos 0.4862cos( 1.3353) 0.1135

h
p

ph

t

x x C x x C X

dx
v v v X

dt

φ

ω φ
=

= − − = − − = − − =

= − = − = − − = −
 

 
The total solution is therefore 

{ }5

( ) 0.4862sin( 1.3353)

0.1135 (50 5 99)0.4728 0.1135 (50 5 99)0.4728exp( 50 ) exp(5 99 ) exp( 5 99 )
10 99 10 99

0.4862sin( 1.3353) exp( 50 ) 0.4728exp(5 99 ) 5.05 10 exp( 5 99 )

y t t

t t t

t t t t−

= −

    − + + − + − + − − −            

= − + − − × −

 

We can check that this is correct by substituting it into the differential equation, and by substituting t=0 
into y and dy/dt and checking that initial conditions are satisfied. 

 
[3 POINTS] 

 
 
 
4. Find formulas for the natural frequency of vibration for the systems shown in the figure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the first system we can replace the springs with an equivalent single spring and use the standard result 
for a spring-mass system.   The two springs in parallel have combined stiffness 2k .   This is in series with 
a spring with stiffness k, and can be replaced by 2k/3.    The 3 combined springs are in parallel with the 
one at the top, so the total stiffness is 5k/3.  The natural frequency is therefore 

5
3n

k
m

ω =  

[1 POINT] 
 
 
 

k

m

k

k

k

x

m

k,L 2L



For the second system we can use energy conservation to get the EOM.   
 

The length of the spring is 2 24L x+  so its potential energy is 
2

2 21 4
2

k L x L + − 
 

 .  Hence 

2 2
2 21 1 4

2 2
dxT V m k L x L
dt

   + = + + −     
 

We can take the time derivative: 

( )
2

2 2
2 2 2

2
2 2

2 2 2

4 0
4

4 0
4

d dx d x x dxT V m k L x L
dt dt dtdt L x

d x xm k L x L
dt L x

    + = + + − =        +

 ⇒ + + − = 
  +

 

This is a nonlinear equation, so we have to linearize it.   Note that x=0 is a solution to the EOM, so this is 
a static equilibrium position.   For small values of x, therefore 

2
2

2 2

2

2

4 0
4

0
2

d x xm k L L
dt L

d x km x
dt

 ⇒ + − ≈ 
 

⇒ + ≈

 

Rearranging this in standard form gives 
2

2
2 0m d x x
k dt

+ ≈  

 
Thus (compare with the standard EOM) / 2n k mω =   

[3 POINTS] 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. The figure shows a design for an ‘anti-resonant’ vibration isolation system (see here for the patent; this 
reference analyzes the system in detail).    
 
5.1 Find formulas for the kinetic and potential energy of the system (neglect gravity) in terms of θ  and 
other relevant variables. 
 

The potential energy in the spring is 2
1

1 ( sin )
2

k L θ   

The vertical velocity of mass 1m   is 1 1( sin ) cosd dL L
dt dt

θθ θ=  .  Its kinetic energy is therefore 

2
2 2

1 1
1 cos
2

dm L
dt
θθ  

 
 

  

Mass 2m  is in circular motion, so its kinetic energy is 
2

2 2
1
2

dm L
dt
θ 

 
 

  

 

We have ( )
2

2 2 2 2 2
1 1 2 2 1

1 1cos sin
2 2

dT V m L m L kL
dt
θθ θ + = + + 

 
  

 
[2 POINTS] 

 
5.2 Find the equation of motion for the angle θ   
 

Take the time derivative (you can use a Live script) 
 

( ) ( )

( )

32
2 2 2 2 2

1 1 2 2 1 1 12

22
2 2 2 2 2

1 1 2 2 1 1 12

cos sin cos sin cos 0

cos sin cos sin cos 0

d d d d dT V m L m L m L kL
dt dt dt dtdt

d dm L m L m L kL
dtdt

θ θ θ θθ θ θ θ θ

θ θθ θ θ θ θ

     + = + + + =     
     

 ⇒ + + + = 
 

 

 
[2 POINTS] 

 

m1

k,L
L/2

L/2
m2

L1
L2

m1

k,L
m2

θ

https://www.google.com/patents/US3322379
https://www.researchgate.net/publication/222371191_Analysis_and_design_of_passive_low-pass_filter-type_vibration_isolators_considering_stiffness_and_mass_limitations
https://www.researchgate.net/publication/222371191_Analysis_and_design_of_passive_low-pass_filter-type_vibration_isolators_considering_stiffness_and_mass_limitations


5.3 Hence, calculate  a formula for its natural frequency. 
 

For small θ  (take Taylor expansions of all the nonlinear terms, e.g. using cos 1 sinθ θ θ= =   
and neglect the second order terms in θ  as well as products of , /d dtθ θ  ): 

 
 

( )
2

2 2 2
1 1 2 2 12 0dm L m L kL

dt
θ θ⇒ + + =  

 
The natural frequency follows as 

 

( )
2
1

2 2
1 1 2 2

n
kL

m L m L
ω⇒ =

+
 

 
(For discussion: part of the point of the design is that the resonant frequency of the system can be 
made very low without needing a large mass.    But the dynamics of the system is a bit more 
subtle when the base is shaking.) 

 
[2 POINTS] 

 
 
 

6. When the two masses shown in the figure 
are un-coupled, systems A and B have natural 
frequency and damping factor 

, ,A nA B nBζ ω ζ ω   
 
If the two masses are connected together, what 
are the natural frequency and damping factor 
of the new system? 

 
 
 
 
 
 
 

The formulas give 

2

2 2 2 2 ( )

A A A B
nA nA n

A B A B
A B

A B A B

k k k k
m m m

c c c c
k m k m m k k

ω ω ω

ζ ζ ζ

+
= = =

+
= = =

+

 

 
 The first three equations show that  

2 2 2 2
2

2 2 2 2 2
nA nB nA nBA B

n n
k k

m
ω ω ω ω

ω ω
+

= = + ⇒ = +   

kA

cA

m

A

kB

m

cB

B

kA

cA

m
kB

m

cB



The second three give 

2 2

4 2 2

2( )

nA A nB BA B
n

nA A nB B

nA nB

c c
m

ω ζ ω ζ
ω ζ

ω ζ ω ζ
ζ

ω ω

+
= = +

+
⇒ =

+

 

 
 

 
[4 POINTS] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7. The impact of a baseball with a flat rigid wall is idealized as a spring-mass system (this high-speed 
movie might help visualize the impact) 
 
 
7.1 Assume that the center of the ball (i.e. the mass) is at position 0x =  and has velocity 0/dx dt v= −  
just before impact.   Write down an equation for the displacement x(t) and velocity ( )v t  of the center of 
the ball (represented by the mass in the figure) during the impact, in terms of the natural frequency nω  
and damping factor ζ  for the system (use the solution for the value of ζ  that you think makes most 
sense, based on the behavior you see in the video). 
    

From the solutions to vibration EOM (using the underdamped case – the other two could be given 
two, but of course they would not rebound from the wall) 

( )

0

0

( ) exp( )sin

( ) exp( ) cos sin

n d
d

n d d n d
d

vx t t t

vv t t t t

ζω ω
ω

ζω ω ω ω ζ ω
ω

= −

= − −
  

 [2 POINTS] 
 
 
 
 
 
 

k
m

c
x

https://www.youtube.com/watch?v=3Iadne_ye88
https://www.youtube.com/watch?v=3Iadne_ye88


7.2 In a homework problem from 2017, the class estimated the stiffness, damping coefficient and mass of 
the baseball as   m= 0.145kg,  8.94 /k MN m=  364 /c Ns m= .  Estimate the maximum value of x during 
the impact.  Assume an impact velocity of 50 m/s. 
 

Substituting numbers gives 7850 0.1633
2n

k c
m km

ω ζ= = = =   

 
The maximum deflection occurs when 0v =  .  It is straightforward to solve 
( )cos sin 0d d n dt tω ω ω ζ ω− =  (to do it by hand, simply use trig formulas to re-write the expression as  
 
 
 

( )
( ) ( )

22
2 22 2

1

cos sin 0

1cos( ) 0 tan
2

d n
d n d d

d n d n

n
d

d d

t t

t t

ω ω ζ
ω ω ζ ω ω

ω ω ζ ω ω ζ

ω ζ πω φ φ φ
ω ω

−

 
 + − =  + + 

 ⇒ + = = ⇒ = − 
 

 

Or just use a Live Script.   The solution is 30.18 10t s−= ×  , which can be substituted back into the 
expression for x to get 
 

0 exp( )sin 5.1n d
d

v t t mmζω ω
ω

− =  

 
For discussion - It is possible to check this using the video….  You can download the movie from the 
2017 website and use the image processing software on the website to plot a graph of the motion of the 
baseball.    The estimate here turns out to be pretty good. 
 
 

[3 POINTS] 
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