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1. The vibration isolation system shown in the figure has  

• m=20kg,  
• 19.8 /k kN m=   
• 1.259 /c kNs m=   

 
If the base vibrates harmonically with an amplitude of 1mm and 
frequency of 100Hz, what is the steady-state amplitude of 
vibration of the platform (i.e. the mass m)? 
 
 
2. Both systems in the figure are subjected to a  
force with amplitude 1 kN and frequency equal to 
the undamped natural frequency of the spring-mass 
system ( nω ω=  ).     
 
The vibration amplitude of system B is measured 
to be 1mm.     
 
What is the vibration amplitude of system A? 
 
 
3. In this (hard!) problem we will analyze the 
behavior of the ‘anti-resonant’ vibration 
isolation system introduced in Homework 5.   
The system is illustrated in the figure.   Assume 
that the base vibrates vertically with a 
displacement 0( ) siny t Y tω=  .   Our goal is to 
calculate a formula for the steady-state vertical 
motion ( )x t  of the platform, and to compare the 
behavior of this system with the standard base 
excited spring-mass-damper design for an 
isolation system. 
 
 
 
 
3.1 Draw free body diagrams showing the 
forces acting on the mass 1m  and the 
pendulum assembly (see the figure). 
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3.2 Using geometry, find an expression for the acceleration of mass 2m  in terms of θ  , y and their time 
derivatives (as well as relevant geometric constants) (e.g. by writing down a formula for the position 
vector relative to a fixed origin and differentiating it).   Show that if θ  and its time derivatives are small 
the result can be approximated by 
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Show also that if θ  and its time derivatives are small 
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3.3 For the pendulum, write down m=F a  and 0=M  about the center of mass, in terms of reaction 
forces shown in your FBD.   Use the approximation in 3.2 for the acceleration. 
 
 
3.4 Write down m=F a  for mass 1m  , and hence use 3.3 and the second of 3.2 to show that (if if θ  and 
its time derivatives are small) then 
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3.5  Show that the equation can be re-arranged into the form 
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(and figure out what C is!) 
 
 
 
 
 
 
 
 
 



3.6 Suppose that the base is subjected to harmonic excitation 0 siny Y tω=  .     Show (using calculus and 
the double-angle formula cos sin sin cos sin( )t t tψ ω ψ ω ω ψ+ = + ) that the right hand side of the 
differential equation can be re-written as 
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Hence use the ‘Case IV’ solution to differential equations (just make 0F  a suitable function of frequency) 
to show that the steady state solution for x has the form 

0 0 0( ) sin( ) ( / , , )nx t L X t X M Yω φ ω ω ζ λ= + + =  
and show that the magnification factor  M is given by 
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3.7.   Plot a graph of M as a function of 0 / 6nω ω< <  for 0λ =  ,for values of 0.02,0.05,0.1,0.2ζ =  (on 
the same plot).  This graph shows the magnification for the ‘standard’ base excited vibration isolation 
system discussed in class, since 0λ =  corresponds to a pendulum with zero mass – it should look the 
same as the ‘Case V’ magnification graph. For comparison, plot a second graph of M as a function of 

/ nω ω  for 0.6λ =  (an anti-resonant isolator),for values of 0.02,0.05,0.1,0.2ζ = . 
 
 
3.8  What is the frequency corresponding to the anti-resonance (the minimum value of M), in terms of 

, nλ ω  (give an approximate solution for 1ζ <<  ) ?    What is (approximately) the smallest vibration 
amplitude (in terms of ,λ ζ )? 

 
3.9 For what range of frequency (in terms of λ , nω  ) does the pendulum system give better performance 
than the simpler spring-mass-damper system? 
 
3.10 What sort of application would be best suited for an anti-resonant vibration isolator? 
 

 
 
 
 
 
 
 



 

 
4 An unbalanced wind-turbine is idealized as a rotor-excited spring-
mass system as shown in the figure.  The mass m represents the 
tower, and 0m  represents the combined mass of the three rotor 
blades. The spring and damper represent the stiffness and energy 
dissipation in the tower.  The rotor is ‘unbalanced’ because its center 
of mass is a small distance 0Y  away from the axle.  The total mass 

0( )m m+  of the system is 25000kg.   
 
The figure shows the results of a free vibration experiment on the turbine. 
 
4.1 Use the data provided to determine the following quantities: 
 

(a) The vibration period 
 

(b) The log decrement 
 

(c) The undamped natural frequency 
 

(d) The damping factor 
 

(e) The spring stiffness 
 

(f) The dashpot coefficient 
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4.2 The figure shows the measured displacement of the system during operation.  The blades have a 
radius of 40m, and the total mass of the system 0( )m m+  is 25000kg .   Assuming that the rotor can be 
balanced by adding mass to the tip of one blade, estimate the mass that must be added to balance the 
rotor. 
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