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1. The vibration isolation system shown in the figure has  

• m=20kg,  
• 19.8 /k kN m=   
• 1.259 /c kNs m=   

 
The base vibrates harmonically with an amplitude of 1mm and 
angular frequency ω  . 
1.1 What is the value of ω  that will cause the platform (the mass m) to vibrate with the greatest 

amplitude?   What is the corresponding vibration amplitude? 
 
We find that for this system the natural frequency is / 31.4 / (5 )n k m rad s Hzω = =  and 

1/ (2 ) 1kmζ = =  .  This is too big for the approximate formulas 1/ (2 )M ζ≈   to be valid, so we need 
to rigorously maximize the vibration amplitude.    Note that the vibration amplitude is 

0 0 ( / , )nX Y M ω ω ζ=  , where the magnification for the critically damped base excited system is  
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The maximum amplitude occurs when M is a maximum.    We can maximize M in a live script 

 
This shows that the biggest vibrations will occur when / 2 22.2 /n rad sω ω= =   

The vibration amplitude is 0 0 max 02 / 3 1.15X Y M Y mm= = =   
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1.2 What is the lowest value of ω  for which the vibration isolator is effective (i.e. the amplitude of the 
platform is less than the amplitude of the base)? 
 
For vibration isolation we need 
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2. Systems A and B in the figure shown are 
subjected to the same harmonic force F(t). The 
steady state amplitude of vibration of system 
A is measured to be 1mm.   What is the 
amplitude of vibration of system B? 
 
Note that the values of ζ  and nω  are equal for 
both systems.    The vibration amplitude is given 
by the formula 

0 0 ( / , ) 1/n effX KF M K kω ω ζ= =   

Where effk  is the effective stiffness.    The two springs in B are in parallel, so the effective stiffness of B 
is twice that of A.   This implies that the amplitude of B will be half that of A, i.e. 0.5mm. 
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3. This IEEE transactions on biomedical engineering paper describes a vibration experiment designed to 
measure the mass and visco-elastic properties of a cell.   The cell is placed on a piezoelectric vibrating 
platform, and an atomic force microscope is used to measure the displacement of the top of the cell.   The 
authors idealize the cell as a spring-mass-damper system, and extract values for the stiffness, dashpot 
coefficient, and mass for live and dead cells from their experimental data.    
 
Using a static test, they measure a stiffness of 0.1 N/m for a live cell, and 0.2N/m for a dead one. 
 
Their data for the amplitude ratio (the vibration amplitude of the AFM tip divided by the vibration 
amplitude of the substrate) and phase lag (related to the time lag θ  between the zero crossing of the 
substrate and the zero crossing of the AFM tip and the period T as 2 / Tφ πθ= −  ) are shown in the tables 
below. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Live Cells 
Frequency 
 (kHz) 

Amplitude 
 Ratio 

Phase Lead (rad) 

0.05 1.002 -0.001 
0.1 1.003 -0.005 
0.15 1.008 -0.01 
0.2 1.011 -0.025 
0.25 1.018 -0.04 
0.3 1.0225 -0.06 
0.35 1.025 -0.08 
0.4 1.035 -0.09 
0.45 1.039 -0.1 
0.5 1.04 -0.12 

Dead Cells 
Frequency 
 (kHz) 

Amplitude 
 Ratio 

Phase lead (rad) 

0.05 1.0005 -0.0005 
0.1 1.0025 -0.0025 
0.15 1.004 -0.005 
0.2 1.006 -0.015 
0.25 1.01 -0.025 
0.3 1.0125 -0.03 
0.35 1.019 -0.045 
0.4 1.021 -0.05 
0.45 1.027 -0.051 
0.5 1.025 -0.08 

https://ieeexplore.ieee.org/document/7864368


3.1 The paper reports the following values for the cell mass m and dashpot coefficient c from their data.   
• Live cell:  m = 10.5x10-12kg    c=0.393x10-6Ns/m   
• Dead cell: m = 12.5x10-12kg    c=0.7x10-6Ns/m 

 
The paper does not compare the predictions of the model (equations 8 and 9 in the paper) with the 
experimental data, however, so we will try this. 
 
Calculate the values of damping coefficient  , nζ ω  and hence use the standard solutions for a base-
excited spring-mass system to plot (on the same graph) the predicted amplitude ratio (this is M in the 
engn40 notation) and the experimental data.    Do a similar second plot for the phase. Don’t forget to 
convert frequency from Hz to rad/s. Don’t worry if the theory and experiment don’t agree – I couldn’t get 
it to work either. 
 
There is no need to submit MATLAB code for this problem, the graphs are sufficient. 
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3.2 We can attempt to get better estimates for m and c. The estimates from the paper for k and m suggest 
that the excitation frequency is much less than the natural frequency.   If this is the case, we can derive 
simplified formulas for the amplitude ratio and phase that make it easier to fit numbers to the data.   Show 
that the formulas for M  and φ  for a base-excited spring-mass system can be expressed in terms of c, m, 
and k as 
 

2 2
1

1/2 2 22 2 2

1 ( / ) ( / )( / )tan
1 / ( / )(1 / ) ( / )

c k c k m kM
m k c km k c k

ω ω ωφ
ω ωω ω

−  + −
= =  − +   − + 

 

    Hence, show that for /k mω <<  the amplitude ratio can be approximated by (use MATLAB to take 
the Taylor series, or do it by hand) 

2
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while the phase can be approximated by 
3
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The amplitude ratio is just the magnification 
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Here’s a MATLAB ‘Live Script’ for the Taylor series but you can write down the answer by 
inspection…. 
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3.3 Use 3.2 and the experimental data to estimate values for m and c for live and dead cell (Find a way to 
plot the data to get a straight line relationship between the y axis and the frequency, so you can estimate m 
from the slope of the amplitude plot, and c from the slope of the phase plot. you will find the data does 
not give very good straight lines, so you will only be able to get approximate values)   
 
In theory, a graph of 0( / ) 1A A v ω− − −   should yield a straight line with slope /m k ,  while a 

graph of 1/3( ) vφ ω− − −   should yield a straight line with slope 2 1/3( / )cm k  .   The relevant plots, with 
approx. straight line fits, are shown below.   The data for the amplitude ratio fits the theory much better 
than the data for phase. 
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The slopes used for these plots are: 
 



Live cell amplitude ratio: 6x10-5s-1 
Dead cell amplitude ratio 8x10-5s-1 

 

Live cell phase: 1.5x10-4s-1 
Dead cell phase: 2x10-4s-1 
 
 
And using the formulas 
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we can calculate the mass and effective dashpot coefficient for live and dead cells 
 
Live cell:  m = 3.6x10-10kg    c=9.4x10-5Ns/m 
Dead cell: m = 1.3x10-9kg    c=2.5x10-4Ns/m 
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4 As part of the airworthiness certification process, the rotating parts 
of a jet engine are prevented from turning, and the engine is 
subjected to an external horizontal harmonic force 0( ) sinF t F tω=  
with amplitude 0F =   250N. The amplitude 0X  of the steady-state 
horizontal vibration 0( ) sin( )x t X tω φ= +  of the engine  is measured.  
 
The measured displacement amplitude 0X   is shown in the figure as 
a function of frequency (in cycles/sec).    
 
4.1 Assuming that the engine and its mounting are idealized as a 
spring-mass-damper system (with light damping), use the graph 
provided to estimate values for the following quantities   
 
 

(a) The natural frequency of vibration of the engine (give both the frequency in cycles per second 
and the angular frequency) 

 
From the graph, 1.6 ; 2 10 /n n nf Hz f rad sω π= = =   

[2 POINTS] 
 

(b) The damping factor ζ   . (Use the peak.  Note that the graph shows the displacement amplitude, 
not magnification M) 

 
We can get ζ  from the peak.    The magnification is 2.5/0.5=5, and we know 1 / 2 0.1M ζ ζ≈ ⇒ =   
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(c) The spring stiffness (use the displacement at very low frequency) 
 

We can get the stiffness from the zero frequency deflection (static).  
3

0/ 250 / 0.5 10 500 /k F X k kN m−= ⇒ = × =   
 [1 POINT] 

(d) The total mass 0m m+   
 

The mass follows from the natural frequency 2
0 0/ ( ) / 5000n nk m m m m k kgω ω+ = ⇒ + = =   

 
 [1 POINT] 

(e) The dashpot coefficient c 
 
 Using the formula: 0/ 2 ( ) 10 /c k m m c kNs mζ = + ⇒ =   

[1 POINT] 
 
4.2 During operation, the engine spins at 9550 rpm.   An 
accelerometer mounted on the outside of the engine measures a 
harmonic acceleration with amplitude 10 m/s2.   What is the amplitude 
of the displacement? 
 
The vibration is harmonic, therefore 

2 2
0 0 / 10 / (9550 2 / 60) 0.01X A mmω π= = × =   

[1 POINT] 
 
4.3 What is the engine speed (in rpm) at which the steady-state displacement amplitude will be a 
maximum? 
 
The maximum vibration amplitude will occur when the engine spins at the resonant frequency; this 
corresponds to 1.6x60 =96rpm  
 

[1 POINT] 
 
4.4 What is the steady-state displacement amplitude when the engine runs at the speed in 4.3? 
 
During operation the engine spins much faster than the resonant frequency.     We know the magnification 
is approximately 1 in this regime, and we know the amplitude is 0.01mm from 4.2.   At resonance, the 
magnification is 5.   We expect a vibration amplitude of 0.05mm. 
 

Other approaches are possible too – you could use 4.2 and the formulas 0
0 0

0

, mX KY M K
m m

= =
+

 , 

use the numbers in 4.2 to calculate the product 0 0 0 0( ) / ( 9550 2 / 60)Y m X m m M ω π= + = ×  , and then 

find the new amplitude at resonance using 0 0
0

0

( 10)m YX M
m m

ω= =
+

.   At resonance the 1/ (2 )M ζ≈  

approximation works too. 
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