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Homework 5: Vibrations 
Due Friday March 20, 2020 

                           
School of Engineering 
    Brown University 
 
 
1. The figure (from this publication) shows a 
vibration measurement from vibrometer 
microscope.  Use the figure to estimate 
 
1.1 The amplitude of the displacement  
 

From the graph, 0 26.58 / 2 13.29X mµ= =   

 
[1 POINT] 

 
1.2 The period of the vibration 
 

There are 2 cycles in 12.5 millisec, so the 
period is 6.25 millisecs. 

 
[1 POINT] 

 
1.3 The frequency (in Hertz) and angular frequency (in rad/s) 
 

The frequency is 1/T=160Hz, or 
2 1005.3 /rad s
T
π
=  rad/s 

[1 POINT] 
 
 
1.4 The amplitude of the velocity 

 
The simple harmonic motion formulas give 6

0 1005.3 13.29 10 0.01336 /V X m sω −= = × × =   
 

[1 POINT] 
 

1.5 The amplitude of the acceleration 
 

 
The simple harmonic motion formulas give 
 20.008 / 2 13.43 /A V m sω π= = =  

[1 POINT] 
 

 
 
 

https://www.spiedigitallibrary.org/journals/optical-engineering/volume-53/issue-03/034108/Optical-three-dimensional-vibrometer-microscope-with-picometer-resolution-in-x/10.1117/1.OE.53.3.034108.full?SSO=1


 
2. Find the number of degrees of freedom and vibration modes for each of the systems shown in the 
figures (you may need to consult the publications to understand 
the system) 

 
 
 
 
 
 
 

                            
 
                        
 

                    
 
(a) The DOF are indicated by the coordinates on the figure – (1) rotation of the boom about the slewing 
bearing; (2) Motion of the trolley along the boom; (3) extending the cable (4,5) Two angles defining the 
orientation of the cable, for a total of 5DOF (the length of the cable could be an additional DOF but the 
paper seems to make l constant – but 6DOF is an acceptable answer).   There are either no rigid body 
modes in this system or one or two (the crane is anchored to the ground and so cant translate indefinitely 
but the slewing bearing may allow the boom to rotate in one direction forever, however, and the traveler 
thing on the boom could also keep moving horizontally without vibration.   It’s more likely there is a 
motor attached to these though.). 

(a) Theoretical model of a tower crane (you 
may need to check the publication for a 
clearer description of the system than the 
figure 

 

(b) Universal Stage 

(c) AnglePoise Lamp (treat the 
system as 2D) 

(d)  Phosphorus pentafluoride 
molecule 

https://www.sciencedirect.com/science/article/pii/S0016003217305586
http://extreme-macro.co.uk/universal-stage/http:/agmicrosystems.com/technology/optical-mems/
https://www.researchgate.net/publication/245387128_The_spring-and-lever_balancing_mechanism_George_Carwardine_and_the_Anglepoise_lamp


(b) Each bearing can rotate about its axis, and no other motion is possible. According to the product 
description online the specimen (the triangular thing) can also rotate in the holder about the horizontal 
axis.  So 3 or 4 DOF.  Or 3 (or 4) rigid bodies (the 3 curved members possibly plus specimen) and 3 or 4 
joints with 5 constraints each – So #DOF = 3*6 - 3*5= 3.  Or if you include the specimen/additional joint 
4DOF.  Either no rigid body modes if the joints don’t permit steady rotation forever (ie there’s a torsional 
spring of some sort restraining motion) or possibly 3 or 4 rigid body modes if each joint allows rotation 
about its axis forever.   So either 3,4 or no vibration modes…    All these answers are fine for grading 
purposes as long as the reasoning is clear. 
(c) There are 4 2D rigid bodies with 3DOF each (12 DOF) 5 pin joints with 2 constraints each (10 
constraints) so 2DOF total (they are the two angles shown in the figure).    No rigid body modes so 2 
vibration modes. 
 
(d) 6 atoms (particles), 3 DOF each = 18 DOF.   There are 6 rigid body modes so 12 vibration modes. 

[8 POINTS] 
 
 

3. Solve the following differential equations (please solve them by hand, using the tabulated solutions to 
differential equation – you can check the answers with matlab if you like) 
 

3.1 
2

2
1 5 0 1 0 0
5

d y dyy y t
dtdt

+ = = = =   

3.2 
2

2 4 4 1 1 0d y dyy y t
dtdt

− = − = = − =   

3.3 
2

2
1 2 4 32sin( ) 64cos( ) 0 0 0
4

d y dy dyy t t y t
dt dtdt

+ + = + = = =  

 
 
3.1  
Rearrange in standard form 

2

2
1 0
25

d y y
dt

+ =  

 
This is a Case I equation - compare with the standard form to see that 5 0n Cω = =   
 

   The solution is  
0

0( ) ( )cos sinn n
n

vx t C x C t tω ω
ω

= + − +  

We are given 0 01 0x v= =   so  
( ) cos5y t t=  

 
 

[3 POINTS] 
 
3.2  
 
Rearrange in standard form 



2

2
1 1
4

d y y
dt

− = −  

 
This is a Case II equation - compare with the standard form to see that 2 1Cα = =   
 

.   The solution is  

( ) ( )0 0
0 0

1 1( ) exp( ) exp( )
2 2

v vx t C x C t x C tα α
α α

   = + − + + − − −   
   

 

We are given 0 01 1x v= = −   so  
1 1( ) 1 exp(2 ) exp( 2 )
4 4

y t t t= − + −  

 
 

[3 POINTS] 
 

3.3 
2

2
1 2 4 32sin( ) 16cos( ) 0 0 0
4

d y dy dyy t t y t
dt dtdt

+ + = + = = =  

 
We can rearrange this as a Case 6 equation 

2

2 2

2

2 2

1 2 1 2 18(sin cos( ))
4 44

1 2 2 sin
n nn

d y dy y t t
dtdt

d y dy dzy C K z z t
dt dtdt

ζ ζ
ω ωω

× ×
+ + = +

 
+ + = + + = 

 

 

 
It appears that 1, 8, 4, 1 0nK Cω ω ζ= = = = =  . 
 
The steady-state solution follows as  

( )

( ){ }
( ) ( )

0 0 0
1/22

3 3
1

1/2 2 2 22 22 2

( ) sin ( / , )

1 2 / 2 /( / , ) tan ( 0)
1 (1 4 ) /

1 / 2 /

p n

n n
n

n
n n

x t X t X KY M

M

ω φ ω ω ζ

ςω ω ςω ω
ω ω ζ φ π φ

ς ω ω
ω ω ςω ω

−

= + =

+ −
= = − < <

− − 
− + 

 
 

The homogeneous solution is 

{ }0 0 0( ) exp( )h h h
h n nx t x v x t tω ω = + + −   

with 

0 0 0 0

0 0 0 0
0

(0) sin

cos

h
p

ph

t

x x C x x C X

dx
v v v X

dt

φ

ω φ
=

= − − = − −

= − = −
 



Substituting numbers gives 0

0 0

1.0523 0.0263 8.4181
0.2215 8.4152h h

M X
x v

φ= = − =

= = −
  

The total solution is therefore  
{ }( ) 8.4181sin( 0.0263) exp( 4 ) 0.2215 7.5294y t t t t= − + − −  

We can check that this is correct by substituting it into the differential equation, and by substituting t=0 
into y and dy/dt and checking that initial conditions are satisfied. 

[3 POINTS] 
4. Find formulas for the natural frequency of vibration for the systems shown in the figure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the first system, we can replace the springs with an equivalent single spring.   The two springs 
connected end to end are in series, so 
 

1 1 1 / 2eff
eff

k k
k k k

= + ⇒ =  

The single spring is in parallel the pair of springs, so the effective stiffness of the entire assembly is 3k/2.    
The formula for natural frequency gives 3 / (2 )k mω =   

[2 POINTS] 
 
 
We can get an EOM for the second system using the energy method.   The platform is in circular motion, 
so its speed (from the circular motion formula) is 

dv L
dt
θ =  

 
  

k

m

k

k

k,L0

m

k,L0θ

LL0 L0



and therefore the KE is 
2

2 21 1
2 2

dT mv mL
dt
θ = =  

 
  

 
The PE includes gravity and the energy of the springs.   Geometry shows that the spring lengths are 

0 0sin , sinL L L Lθ θ+ −  so 

( ) ( )2 2
0 0 0 0

1 1cos sin sin
2 2

U mgL k L L L k L L Lθ θ θ= − + + − + + − −  

2
2 2

2

2
2 2

2

( ) 0

sin sin 2 0

sin sin 2 0

dT U const T U
dt

d d d dmL mgL kL
dt dt dt dt

dmL mgL kL
dt

θ θ θ θθ θ

θ θ θ

+ = ⇒ + =

   + + =  
  
 

+ + = 
 

 

(here we used the formula 2sin cos sin 2θ θ θ=  to make finding the small angle approximation easier 
but its fine to leave this term as just 2sin cosθ θ ) 
 
To linearize the equation just set sin , sin 2 2θ θ θ θ≈ ≈  , which gives 
 

( )

( )

2
2 2

2

2 2

22

2 0

0
2

dmL kL mgL
dt

mL d
dtkL mgL

θ θ

θ θ

 
+ + = 

 
 

⇒ + = +  

 

and compare to the standard case I EOM to see that 
2

2

2
n

kL mgL
mL

ω +
=  

 
 

[3 POINTS] 
 
 
 
5. The figure shows an ‘anti-resonant’ vibration isolation system (we’ll analyze its behavior in more detail 
in next week’s HW).    

 
 
 
 
 
 
 
 
 
 

m1

k,L
L/2

L/2
m2

L1
L2

m1

k,L
m2

θ



 
 
 
 
 
 
 
 
 
5.1 Find formulas for the kinetic and potential energy of the system in terms of the angle θ  and its time 
derivatives.  Neglect gravity. 
 
The length of the spring is (simple geometry) 1 siny L L θ= +  .    
 

The velocity of the mass 1m   follows as 1 cosdy dL
dt dt

θθ=   

 

Mass 2m  is in circular motion about the left most pivot, so its speed is 1 2( ) dv L L
dt
θ = +  

 
 

 
Therefore 

2 2 2
1 1

1 1( sin ) sin
2 2

U k L L L kLθ θ= + − =  

2 2

1 1 2 1 2
1 1cos ( )
2 2

d dT m L m L L
dt dt
θ θθ   = + +   

   
 

[2 POINTS] 
 
 
5.3 Hence, find the equation of motion for θ   
 

The system is conservative, so 

3 2 2
2 2 2 2

1 1 2 1 2 12 2

( ) 0

sin cos cos ( ) sin cos 0

dT U const T U
dt

d d d d d dm L m L L kL
dt dt dt dt dt dt
θ θ θ θ θ θθ θ θ θ θ

+ = ⇒ + =

  − + + + + =     

 

We can simplify this to 
 

( )
22

2 2 2 2 2
1 1 2 1 2 1 1 12cos ( ) sin cos sin cos 0d dm L m L L m L kL

dt dt
θ θθ θ θ θ θ + + − + = 

 
 

[2 POINTS] 
 
5.4 Linearize the equation for small θ , and hence find the natural frequency of the system.  (Your 
equation of motion will include a term that is multiplied by 2sin ( / )d dtθ θ   - for small harmonic θ  , the 
angular velocity /d dtθ  is also small, so when the equation of motion is linearized this term is neglected) 



 
Using the usual trig approximations for small angles and neglecting the quadratic term in /d dtθ  

( )
2

2 2 2
1 1 2 1 2 12( ) 0dm L m L L kL

dt
θ θ+ + + =  

Hence  
 

( )2 2 2
1 1 2 1 2

2 2
1

( )
0

m L m L L d
kL dt

θ θ
+ +

+ =  

 
So the natural frequency is 
 

( )
2
1

2 2
1 1 2 1 2( )

kL
m L m L L+ +

 

 
[2 POINTS] 

 
 
 
6. The spring-mass-dashpot system shown in the figure has an undamped 
natural frequency 100 /n rad sω =   and damping factor 0.1ζ =  .    The 

spring has stiffness 310 /k N m=  .    
 
 
6.1 Calculate the mass m and dashpot coefficient c. 
 
Using the standard formulas 

3

2 4

10100 / 0.1
10

0.1 2 2 /
2

n
n

k krad s m kg
m
c c km Ns m
km

ω
ω

ζ ζ

= = ⇒ = = =

= = ⇒ = =

 

 
 

[2 POINTS] 
 
6.2 The system is released from rest in the vertical configuration shown.   At time t=0 the spring is free of 
force.   Plot a graph of the subsequent vertical displacement of the mass from its initial position (in mm)  
as a function of time (for 0<t<0.5s).  Include the effects of gravity.  You only need to submit relevant 
calculations and the plot, a MATLAB upload is not required. 
 
The equation of motion for the spring mass system (with gravity) is 

2

2

m d x c dx mgx
k dt k dt k

+ + = −  

 
Comparing this to the case V EOM we see that 
 

k,L0
c

m



 

2n
k c mgC
m kkm

ω ζ= = = −  

The system is underdamped, therefore the solution is 

0 0
0

( )( ) exp( ) ( )cos sinn
n d d

d

v x Cx t C t x C t tςω
ςω ω ω

ω
 + −

= + − − + 
 

 

where 21d nω ω ς= −  
 
The plot is shown below. 
 
 
 
6.3 What value of the dashpot coefficient c is required to make the system critically damped? 
 
For critical damping 1 20cζ = ⇒ = Ns/m .    
 
The figure below shows the critically damped solution along with the solution for part 6.2 – this was not 
asked for in the problem. 
 
 

 
 
 
 
 

[2 POINTS] 
 
 
 
 



 

 
 
 
 
7. The figure (from this product spec) shows the measured damped vibration response of a piezoelectric 
actuator.    
 
7.1 Calculate the period and log decrement for the signal 
 
There are 3 cycles in 4 milliseconds – the period is (4/3) milliseconds. 
 
We have to measure the displacement from the steady-state position (15 microns) for the formulas to 
work.    So the first peak has height 7.5 microns; the 6th peak is about 2 microns.   The log decrement 
follows as 

1 7.5ln( ) 0.2644
5 2

δ = =  

 
[2 POINTS] 

 
7.2 Hence determine the undamped natural frequency nω   and damping coefficient ζ  for the system 
 
 

We can use the formulas from class - 

2 2
3

2 2

4 4.716 10 /

0.042
4

n rad s
T

π δω

δζ
π δ

+
= = ×

= =
+

  

[2 POINTS] 
 

https://www.piceramic.com/en/piezo-technology/properties-piezo-actuators/dynamic-operation/
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