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1. The solid line labeled ‘base’ on the figure (from this publication) shows a measurement from an 
accelerometer attached to a vibrating inclined ramp (the experiment was designed to show that 
earthquakes can cause sand and earth-piles to collapse) 
 
1.1 The amplitude of the acceleration 
 

From the graph, 2
0 8.5 /A m s≈   

[1 POINT] 
1.2 The period of the vibration 
 

4 cycles takes 1.6 secs so T=0.4s. 
[1 POINT] 

1.3 The frequency (in Hertz) and angular frequency (in rad/s) 

The frequency is 1/T=2.5Hz, or 
2 5 /
0.4

rad sπ π=  rad/s 

[1 POINT] 
1.4 The amplitude of the velocity 

 
The simple harmonic motion formulas give 0 0 0 8.5 / (5 ) 0.541 /A V V m sω π= ⇒ = =   

[1 POINT] 
1.5 The amplitude of the displacement 

The simple harmonic motion formulas give 
 0 0 0 0.541/ (5 ) 0.0344V X X mω π= ⇒ = =  

[1 POINT] 
 

https://www.jvejournals.com/article/20420


2. Find the number of degrees of freedom and vibration modes for each of the systems shown in the 
figures (you may need to consult the publications to understand the system) 

 
 
 

 
 
 
 
 
For (a): the mass can only move vertically, so clearly there is only 1 DOF.   But we can derive this with 
the formula too.   There are 7 rigid bodies (the mass, plus the 6 links), 9 pin joints (2 constraints each) and 
two slider joints (1 constraint each).     So the formula gives #DOF = 3r + 2p-c = 21 – 18 – 2 = 1.   There 
are no rigid body modes since the base is fixed, so 1 vibration mode. 
 
For (b) there are again 7 rigid bodies (the platform, plus two for each leg); there are 3 pin joints (5 
constraints each), 3 spherical joints (3 constraints each) and 3 prismatic joints (5 constraints each – 3 
rotations and relative motion in two directions are prevented).    The formula gives #DOF = 6r + 3p –c  = 
6x7 – 3*5 – 3*3 – 3*5 = 3*(14-5-3-5) = 3 .   There are no rigid body modes since the base is fixed, so 3 
vibration modes. 
 
For (c) there are 6 rigid bodies (the rear wheel, the swing arm attached to the rear wheel, the 
spring/damper unit, the main frame/rider, the front forks, and the front wheel).  There are 4 pin joints (2 
constraints each), two contacts (2 constraints each), two slider joints (2 constraints each – prevents 
rotation, and relative motion in one direction).    So the formula gives #DOF = 3r + 2p-c = 18-8-4-4 = 2 
DOF.   There is one rigid body mode, since the bike can roll steadily in the horizontal direction, so 1 
vibration mode.   As an aside, the figure in the publication is actually incorrect – there should be another 
pin joint between the swing arm and the spring-damper unit, otherwise the rear suspension is over-
constrained and can’t move…    If we use the figure, the only DOFs are rolling left/right, and rocking 
about the rear axle.    If there was another pin joint the DOFs would be rolling, vertical motion of the 
body, and rocking of the body (with the wheels moving during body motion as dictated by the 
constraints) 
 
For (d) 6 particles, no constraints so 18 DOF.    There are 6 rigid body modes, so 12 vibration modes.                         

                    
 [8 POINTS] 

(a) 2D model of an energy harvesting 
system (assume the base is fixed) 

(c) 2D idealization of a motorcycle 
(ignore steering, and treat the rider 
and frame as a single rigid body) 

(b)  Motion simulation platform 
 

(d) Ethylene molecule (you can see 
the vibration modes here) 
 

https://link.springer.com/article/10.1007/s11071-016-2630-7
https://link.springer.com/article/10.1007/s11071-016-2630-7
https://www.researchgate.net/publication/226132961_Multibody_Aspects_of_Motorcycle_Modelling_with_Special_Reference_to_Autosim
http://www.fengdari.com/3dof-motion-simulation-platform-p15.html
https://www.chemtube3d.com/vibrationsc2h4/


3. Solve the following differential equations (please solve them by hand, using the tabulated solutions to 
differential equation – you can check the answers with matlab if you like) 
 

3.1 
2

2 81 9 0 0 0d y dyy y t
dtdt

+ = = = =    

3.2
2

2
1 2 4 0 1 1 0
4

d y dy dyy y t
dt dtdt

+ + = = = =  

3.3 
2

2 16 sin5 0 0 0d y dyy t y t
dtdt

+ = = = =  

 
 
3.1  
Rearrange in standard form 

2

2
1 1
81 9

d y y
dt

+ =  

 
This is a Case I equation - compare with the standard form to see that 9 1/ 9n Cω = =   
 
The solution is  

0
0( ) ( )cos sinn n

n

vx t C x C t tω ω
ω

= + − +  

We are given 0 00 0x v= =   so  
1( ) (1 cos9 )
9

y t t= −  

[3 POINTS] 
 
3.2  
 
Rearrange in standard form 

2

2
1 2 0 1 1 0

16 4
d y dy dyy y t

dt dtdt
+ + = = = =  

 
This is a Case III equation - compare with the standard form to see that 4, 1 0n Cω ζ= = =   
 

The solution is  
[ ]{ }0 0 0( ) ( ) ( ) exp( )n nx t C x C v x C t tω ω= + − + + − −  

We are given 0 01 1x v= =   so  

[ ]{ } { }( ) 1 1 4 exp( 4 ) 1 5 exp( 4 )x t t t t t= + + − = + −  
 

[3 POINTS] 
 
 



3.3 
2

2 16 sin5 0 0 0d y dyy t y t
dtdt

+ = = = =  

 
We can rearrange this as a Case 4 equation 

2

2 2
1 1 sin5

164
d y y t
dt

+ =  

 
It appears that 05, 1 /16, 4, 0 0nKF Cω ω ζ= = = = =  . 
 
The steady-state solution follows as  

( )

( ) ( )

0 0 0

1
1/2 2 22 22 2

( ) sin ( / , )

2 /1( / , ) tan ( 0)
1 /

1 / 2 /

p n

n
n

n
n n

x t X t X KF M

M

ω φ ω ω ζ

ςω ω
ω ω ζ φ π φ

ω ω
ω ω ςω ω

−

= + =

 −
= = − < <  −   − + 
 

 

The homogeneous solution is 

0 0
0( ) exp( ) cos sin

h h
h n

h n d d
d

v xx t t x t tςω
ςω ω ω

ω

 + = − + 
  

 

where 21d nω ω ς= −  and 

0 0 0 0

0 0 0 0
0

(0) sin

cos

h
p

ph

t

x x C x x C X

dx
v v v X

dt

φ

ω φ
=

= − − = − −

= − = −
 

Substituting numbers gives 

 

( ){ }
( )1

1/22

0

0 0

1 16( / , ) tan 0 0
91 25 /16

1
9

0 5 / 9

n

h h

M

X

x v

ω ω ζ φ −= = = =
−

=

= = −

  

The total solution is therefore  
1 5( ) sin5 sin 4
9 36

y t t t= −  

We can check that this is correct by substituting it into the differential equation, and by substituting t=0 
into y and dy/dt and checking that initial conditions are satisfied. 

[3 POINTS] 
 
 
 
 
 
 
 



4. Find formulas for the natural frequency of vibration for the systems shown in the figure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the first system, we can replace the springs with an equivalent single spring.   On the bottom we have 
two springs in parallel, which together are in series with a single spring.   The effective stiffness of this 
combination is 
 

1 1 1 2 / 3
2 eff

eff

k k
k k k

= + ⇒ =  

This equivalent spring is in parallel with the pair of springs on top, so the effective stiffness of the entire 
assembly is 8k/3.    The formula for natural frequency gives 8 / (3 )k mω =   

[2 POINTS] 
 
 
We can get an EOM for the second system using the energy method.   The platform is in circular motion, 
so its speed (from the circular motion formula) is 

dv L
dt
θ =  

 
  

and therefore the KE is 
2

2 21 1
2 2

dT mv mL
dt
θ = =  

 
  

 
The PE includes gravity and the energy of the springs.   Geometry shows that the spring lengths are 

0 0sin , sinL L L Lθ θ+ −  so 

( ) ( )2 2
0 0 0 0

1 1cos sin sin
2 2

U mgL k L L L k L L Lθ θ θ= + + − + + − −  

k

m

k

k k

k

k,L0 m k,L0

θ

L
L0 L0



2
2 2

2

2
2 2

2

( ) 0

sin sin 2 0

sin sin 2 0

dT U const T U
dt

d d d dmL mgL kL
dt dt dt dt

dmL mgL kL
dt

θ θ θ θθ θ

θ θ θ

+ = ⇒ + =

   − + =  
  
 

− + = 
 

 

(here we used the formula 2sin cos sin 2θ θ θ=  to make finding the small angle approximation easier 
but its fine to leave this term as just 2sin cosθ θ ) 
 
To linearize the equation just set sin , sin 2 2θ θ θ θ≈ ≈  , which gives 
 

( )

( )

2
2 2

2

2 2

22

2 0

0
2

dmL kL mgL
dt

mL d
dtkL mgL

θ θ

θ θ

 
+ − = 

 
 

⇒ + = −  

 

and compare to the standard case I EOM to see that 
2

2

2
n

kL mgL
mL

ω −
=  

Remarks:  
(1) This arrangement is sometimes used to design a vibration isolation system.  You can tune the 

spring stiffness to make the natural frequency as low as you like. 
(2) It’s worth thinking about what happens if 22mgL kL>  .   If that happens our formula predicts 

that the natural frequency is complex – what does that mean, exactly?    We can figure this out in 
two different ways.   One idea is to recognize that our equation of motion  

( )
2

2 2
2 2 0dmL kL mgL

dt
θ θ

 
+ − = 

 
 

has a problem in this limit, because the coefficient of θ  is negative.   So it’s not a ‘Case I’ 
equation.     But we can turn it into a ‘Case II’ equation if we want 

( )

( )

2
2 2

2

2 2

22

2 0

0
2

dmL mgL kL
dt

mL d
dtmgL kL

θ θ

θ θ

 
− − = 

 
 

− = −  

 

Which has the form 
2

2 2

1 0d
dt
θ θ

α
 

− = 
 

 

The solution this equation has the form t tAe Beα αθ −= + , where A, B are constants (they depend 
on the initial conditions).    So the math tells us that this system won’t vibrate, but instead θ  will 
increase exponentially.    This looks a bit weird too, because that means the platform would zip 
around in a circle at progressively increasing speed, but of course our EOM is approximate, and 



only accurate when θ  is small.   So what we are really learning is that the system is unstable, and 
will collapse, if the springs are too soft.    That makes sense. 
 
There’s another way to look at the math if you happen to be familiar with trig functions of 
complex numbers.   Math will actually let us work with complex valued natural frequencies – if 
we have an equation of the form  

2

2 2

1 0
n

d
dt
θ θ

ω
 

+ = 
 

 

where n iω α=  is a complex number, we can use the ‘Case I’solution sin cosA i t B i tθ α α= +  .  
Euler’s formula for complex numbers tells us that trig functions of complex numbers are actually 
exponentials – for example 

cos sin cos ( ) / 2
cos ( ) / 2

i i t i t

t t

e i e e
i t e e

β β β

α α

β β β

α

−

−

= + ⇒ = +

= +
 

So again, the math is telling us that the motion is not harmonic vibrations any more, but 
exponential growth, i.e. collapse. 

[3 POINTS] 
 
 
5. The figure shows a proposed design for a vibrating conveyor (it’s a bit simpler than a real configuration 
– which usually has inclined springs -  to make it easier to analyze!).   It vibrates at a frequency equal to 
its natural frequency. The goal of this problem is to find a formula for its natural frequency, and hence to 
determine the spring stiffness k and unstretched spring length 0L   needed.   When the system is at rest, 
the angle θ  is 45 degrees.  
 
 
 
 
 
 
 
 
 
 
 
5.1 Use the energy method to 
show that y satisfies the equation of motion 

2
2

02 ( sin 2 2 cos ) cosdmL kL L L mgL
dt
θ θ θ θ+ − = −  

 

The kinetic energy of the system is 
21

2
dT m L
dt
θ =  

 
  (to see this, note that (i) the platform has to 

remain level; (ii) All points on the platform have the same speed; (iii) The points where the platform is 
attached to the inclined bars clearly are in circular motion about the pivot.    We can get the speed using 
the circular motion formula). 
 
 

θ

m
L

k,L0
k,L0

https://www.youtube.com/watch?v=5EUiSGYZpq4


The potential energy is ( )2
0sin sinU k L L mgLθ θ= − +   

 
Using the energy method we get  

( )
2

2
02

2
2

02

2
2

02

2 ( sin ) cos cos 0

2 ( sin cos cos ) cos

( sin 2 2 cos ) cos

d d d d dT U mL k L L L mgL
dt dt dt dt dt

dmL kL L L mgL
dt
dmL kL L L mgL
dt

θ θ θ θθ θ θ

θ θ θ θ θ

θ θ θ θ

+ = + − + =

⇒ + − = −

⇒ + − = −

 

[3 POINTS] 
 

5.2 Recall that θ  is 45 when the system is at rest.  Use the EOM to show that this requires an unstretched 
spring length 

0 22
L mgL

k
= +  

 
If the system is at rest the angular acceleration is zero, so the equation of motion gives 
 

0

0

( sin 90 2 cos 45) cos 45

22

kL L L mgL
L mgL

k

− = −

⇒ = +
 

[2 POINTS] 
 

5.3 If the vibration amplitude is small then  
4
πθ δθ≈ +   where 1δθ   .    Linearize the equation of 

motion for small δθ  and hence find a formula for the natural frequency (use the solution to 5.2 to 
eliminate 0L  ) 
 

2
2

2

2
2 2

2

2

2

sin 2 2 cos cos
2 2 4 42

0

0

/n

d L mgmL kL L mgL
dt k

dmL kL
dt

m d
k dt

k m

δθ π π πδθ δθ δθ

δθ δθ

δθ δθ

ω

       + + − + + = − +       
       

⇒ + ≈

⇒ + ≈

=

 

 
MATLAB can help with the Taylor series, eg 

 
But if you prefer you can also just expand all the terms with the double angle formulas 

 



In retrospect the answer is obvious – we have two springs in parallel, which have effective stiffness 2k.    
Since the mass moves at a 45 degree angle to the vertical, its speed in the horizontal direction and vertical 
directions are equal – it therefore has kinetic energy 2

ymv   - i.e. twice the KE of a mass moving only 
vertically.   It therefore has an apparent mass equal to 2m.   So the natural frequency is 

2 / (2 ) /n k m k mω = =   
[3 POINTS] 

 
 

k,L0

m
m

k,L0

m
k,L0

m

k,L0

m

Landing Max deflection Takeoff Max height Landing
h

wmax

V V V

 
 
6. This famous publication shows that many aspects of the motion of a human hopping up and down in 
place can be predicted by idealizing the person jumping as a spring-mass system, as shown in the figure.   
This problem will repeat some of the authors calculations. 
 
6.1 Suppose the person jumps to a height h above the ground.   Find formulas for (1) the time that the 
person is airborne; and (2) the person’s speed just before hitting the ground, in terms of g and h. 
 

We can solve the second problem with energy:  
• take the system to be the earth + the jumper; the initial state as the highest point of the jump; 

the final state as the instant just before landing.     
• In the initial state the person has zero velocity so the KE is zero, and the PE is mgh.     
• In the final state the person has speed V; the KE is 2(1/ 2)mV  and the PE is zero.       

• No external forces means energy is conserved, so 2 / 2 2mgh mV V gh= ⇒ =  .      
We could get the same answer using straight-line motion constant accel formulas too, of course. 
 
We can get the time airborne using impulse-momentum:    

• Take the system to be the jumper;  
• he/she is subjected to a gravitational force mg− j  while airborne.    
• Take the initial state to be the instant just after take-off and the final state to be the instant just 

before landing.    Note that since the PE is the same at both times, and energy is conserved, 
the jumper must have the same speed at both instants. 

• The initial linear momentum is 2mV m gh=j j ; the final linear momentum is 

2mV m gh− = −j j  .    
• The gravitational force exerts an impulse amgt− j  where at  is the time airborne.     

• Impulse-momentum gives 2 2 2 2 /a amgt m gh m gh t h g− = − − ⇒ =j j j   
 

[2 POINTS] 

https://www.sciencedirect.com/science/article/pii/0021929089902248


 
6.2 Find the maximum deflection of the spring (which represents the person’s legs bending) after the 
person hits the ground (you could do this with energy.   Include gravity, of course).  Use the answer to 
find a formula for the maximum force in the spring. 
 

We can do this with energy as well 
• Take the system to be earth+jumper 
• Take the initial state to be  
• In the initial state the person has zero velocity so the KE is zero, and the PE is mgh.     

• In the final state the pe is 2
max max

1
2

mgw kw− +   and the KE is again zero. 

 
Hence  
 

( )

2
max max

2

max

1
2

( ) 2
1 1 2 / ( )

mgh mgw kw

mg mg mghk mgw kh mg
k k

= − +

+ +
⇒ = = + +

 

 
The maximum force is ( )max max 1 1 2 / ( )F kw mg kh mg= = + +   

[3 POINTS] 
 
6.3 Write down the equation of motion for the downward deflection of the mass w   during the phase of 
motion while the spring is in contact with the ground (include gravity – you can get the equation using 
energy, Newton’s law, or just write down the answer if you know it. 
 
Using the energy method:  

• the KE is 
2

1
2

dwT m
dy

 
=  

 
  

• the PE is 21
2

U kw mgw= −   

• Energy conservation implies that 
 

( )
2

2

2

2

0d dw d w dw dwT U m kw mg
dt dt dt dt dt

m d w mgw
k dt k

+ = + − =

⇒ + =
 

[2 POINTS] 
 
6.4 Write down the initial conditions for the equation of motion (i.e. the value of w and dw/dt at the 
instant the spring just touches the ground) in terms of 0 , ,L g h  . 

The initial conditions are 0 2dww gh
dt

= =   

[1 POINT] 



6.5 Hence, a formula for w as a function of time (take t=0 to be the instant when the spring just touches 
the ground). 

Using the tabulated solution to the ‘Case I’ equation we get 

2

1 1

2

2 2sin 1 sin
/

( / ) 1sin sin
22 1

/

mg mg gh k mg mg kh kw t t
k k k m m k k mg m

mg k
khmg gh

mgk k m

φ φ

φ − −

    = + + + = + + +             
−

= = −
  ++ 
 

 

Or alternatively 

2cos sin
/

mg mg k gh kw t t
k k m k m m

   
= − +      

   
 

 
[3 POINTS] 

 

6.5 Use your solution to the previous problem to find a formula for the time that the person is in contact 
with the ground, in terms of k,m,g,h  (you will need to use your solution to 6.5, and then find the roots of 
sin( ) sinntω φ φ+ =  . You can figure this out by hand using a sketch of the sin function, but if you like, 
MATLAB will do this for you too).   

The person leaves the ground when 0w =  so 

20 1 sin

1sin sin( )
21

mg mg kh k t
k k mg m

k t
m kh

mg

φ

φ φ

 
= + + +  

 
  −

⇒ + = =  
  +

 

Where we have used the solution for φ  from 6.4 to get the last line. 

This has roots  1 10, / 2 / 2 / sin
21

c c ct k mt t m k m k
kh

mg

π φ π −= = − ⇒ = +
+

  

 
 

[3 POINTS] 
 



6.6 If you jump up and down, you can control (roughly speaking) the maximum force in the spring maxF  
(by controlling the forces in your muscles) and the maximum spring deflection maxw  (by choosing how 
much to bend your knees).   Note that this means max max/k F w=  Show that, in terms of these variables: 

(i) The height of your jump is given by 

max
max 1

2
Fh w
mg

 
= − 

 
  

(ii) The time for one complete jump is given by 

1max max max

max max max

12 2 2sin

1 2
jump

w F mwt
g mg F F F

mg mg

π −

 
 

   = − + +   
    + −    

 

Problem 6.2 tells us that 

( )max

2
max

2
max max max max

max

max
max

1 1 2 / ( )

1 2 / ( ) 1

1 1 2
2 2

1
2

F mg kh mg

Fkh mg
mg

F mgw F Fmgh
k mg F mg mg

Fh w
mg

= + +

 
⇒ + = − 

 
       ⇒ = − − = −      
      

 
= − 

 

 

Problems 6.1 and 6.6 tell us that 
1 12 2 / / 2 / sin

21
jumpt h g m k m k

kh
mg

π −= + +
+

 

[3 POINTS] 
 
6.7 The publication suggests that (for an average person) the maximum effective spring force that leg 
muscles can develop is about 3000N, and the maximum leg displacement that the muscles are able to 
sustain is max 0.5w m≈  .   Estimate the maximum jump height that you can achieve, and the resulting 
number of jumps per second  
 
The answer will depend on the person’s weight.  For a 70 kg person we get 

0.59
0.69 0.404 1.1 1/ 0.91 /a c jump jump

h m
t s t t N t jumps s
≈
= = = ⇒ = =

 

You are in better shape than I am if you are able to achieve this.   The force-plate measurements 
conducted in lecture ??  suggest 2 jumps per second, and a peak force of 2400 N.     
 

[2 POINTS] 
 
 



 
 
 

 
 

 
 
 
7. The figure (from this publication) shows the measured damped vibration response of a railway bridge. 
 
7.1 Calculate the period and log decrement for the signal 
 
There are about 20 cycles in 5 seconds – the period is 5/20 = 0.25s. 
 
Take 0 0.02x =  to be the second peak after 4 sec, and note that the amplitude has decayed to about 

9 0.01x =  after 9 cycles.   Therefore 
1 0.02ln( ) 0.0770
9 0.01

δ = =  

 
[2 POINTS] 

 
7.2 Hence determine the undamped natural frequency nω   and damping coefficient ζ  for the system 
 
 
We can use the formulas from the lectures/notes 

https://www.sciencedirect.com/science/article/pii/S0888327016000182


- 

2 2

2 2

4 25.13 /

0.0123
4

n rad s
T

π δω

δζ
π δ

+
= =

= =
+

 

[2 POINTS] 
 

7.3 The effective mass of the bridge can be estimated from the numbers 
given in the table in the paper as 3.9x105kg.   Estimate its effective 
stiffness k and dashpot coefficient c. 
 
 

We know that 

2 8

5

2.46 10 /

2 2.4 10 /
2

n n
k k m N m
m
c c km N m
km

ω ω

ζ ζ

= ⇒ = = ×

= ⇒ = = ×
  

 
[2 POINTS] 

 
 
7.4 What value of c would be required to make the bridge critically damped? 
 
For critical damping 71 2 1.96 10 /km Ns mζ ζ= ⇒ = ×   
 

[1 POINT] 
 
 
 
7.5 If the system were critically damped, and at time t=0  is stationary and has an acceleration of 0.02 
m/s2  how long would it take for the acceleration to decay to 0.01m/s2? 
 
The solution for the critically damped spring-mass system is 

[ ]{ }0 0 0( ) ( ) ( ) exp( )n nx t C x C v x C t tω ω= + − + + − −  
The acceleration follows as  

[ ]{ } [ ]( )
2

0 0 0 0 02( ) ( ) ( ) 2 ( ) exp( )n n n n n
d xa t x C v x C t v x C t
dt

ω ω ω ω ω= = − + + − − + − −  

With zero initial velocity this simplifies to 
2

0( ) ( ) (1 )exp( )n n na t C x t tω ω ω= − − −  

If a(0)=0.02 then 2
0( ) 0.02 ( ) 0.02(1 )exp( )n n nC x a t t tω ω ω− = ⇒ = − −  .   The time to reach a=0.01m/s2 

satisfies 
0.02(1 )exp( ) 0.01n nt tω ω− − =  

We can substitute 25.13nω =  and ask MATLAB to solve for t.   This gives t=0.0125s. 
[3 POINTS] 
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8. The spring-mass system shown in the figure is subjected to a 
harmonic force with amplitude 100N.    The figure shows the 
measured steady-state amplitude of vibration of the mass as a 
function of the frequency of the force. 
 
8.1 What (approximately) is the natural frequency of vibration of the 

system nω  ? 
 
This is a standard spring-mass system so there is no need to derive the EOM; we can use the solution 
from the notes.   The formula for vibration amplitude is 

( ) ( )

0 0

1/22 22 2

( / , )
1( / , )

1 / 2 /

/ / (2 ) 1 /

n

n

n n

n

X KF M

M

k m c km K k

ω ω ζ

ω ω ζ

ω ω ςω ω

ω ζ

=

=
 

− + 
 

= = =

 

 
 
From the discussion in the notes, we know that (as long as the damping is fairly small) the maximum 
occurs when  nω ω≈  , so 45 /n rad sω ≈   
 

[1 POINT] 
 
8.2 8.3 What is the damping factor ζ   ? 
 

k

m
c x(t)

F(t)



The maximum value of the magnification M occurs roughly when nω ω=  and has value 1/ 2M ζ=  .   
We have to be careful to calculate M correctly.    We know that 

(1) M=1 when 0ω =  , therefore we can get the value of 0KF  from the displacement amplitude at 
zero frequency, i.e. 0 0.001KF = m 

(2) We can now calculate 0 0/ ( )M X KF=  .   At the peak, 0.00325 / 0.001 3.25M = =   
 

Therefore 
max

1 1 0.15
2 6.5M

ζ = = =   

[2 POINTS] 
 
 
8.3 What is the stiffness of the spring k,, the mass m and the dashpot coefficient c?  
 

We know that 0 0.001KF = m (from the previous problem)  and 0 100F =  N, therefore K=10-4 m/N, 
and since 1/K k=   we find that k=105 N/m. 
 
Then 2/ / 49n nk m m k kgω ω= ⇒ = =   
 
And finally / (2 ) 2 660 /c km c km Ns mζ ζ= ⇒ = =   

 
 [3 POINTS] 

 
 
9 The spring-mass system described in the previous problem is at rest at time t=0, and has no force acting 
on it.    At time t>0, a harmonic force with amplitude 100N and frequency 90 rad/s starts to act on the 
mass.    Neglect gravity. 
 
Plot a graph showing the displacement of the mass as a function of time, for 0<t< 1s (you will need to use 
the solutions to the differential equations for vibrating systems, and include the transient response.  Be 
careful to get the phase right!).  You only need to submit your plot and a brief explanation of your 
calculation – there is no need to submit MATLAB code 
 

We know the properties of the system from the previous problem: 
45 /n rad sω ≈  

0.15ζ =  

0 0.001KF = m 
 
The tabulated solutions give the solution as 

( ) ( ) ( )h px t C x t x t= + +  
The value of C is zero for the standard spring-mass system with no gravity, and 



( )

( ) ( )

0 0 0

1
1/2 2 22 22 2

( ) sin ( / , )

2 /1( / , ) tan ( 0)
1 /

1 / 2 /

p n

n
n

n
n n

x t X t X KF M

M

ω φ ω ω ζ

ςω ω
ω ω ζ φ π φ

ω ω
ω ω ςω ω

−

= + =

 −
= = − < <  −   − + 
 

 

and (since the system is underdamped) the transient solution is 

0 0
0( ) exp( ) cos sin

h h
h n

h n d d
d

v xx t t x t tςω
ςω ω ω

ω

 + = − + 
  

 

where 21d nω ω ς= −  and 

0 0 0 0

0 0 0 0
0

(0) sin

cos

h
p

ph

t

x x C x x C X

dx
v v v X

dt

φ

ω φ
=

= − − = − −

= − = −
 

 
We are given that 0 0 0x v= =  .   It’s straightforward to code all this stuff in MATLAB: 
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10 The figure shows a design for a 
vibration isolation system (see eg this 
design for a vibration isolation system for 
an atomic force microscope as practical 
example).   The outer case vibrates 
horizontally with a harmonic displacement 

0( ) siny t Y tω=  .   The goal of the design is 
to minimize the horizontal displacement of 
the platform ( )x t  . 
 
 
10.1 Show that the vertical acceleration of the platform is related the angle θ  by 

2 2

2cos sind da L L
dt dt
θ θθ θ = + 

 
 

 
We can take the origin for the vertical coordinate at one of the pivots.  The height of the platform 
above the pivot is 
 

m

θ

L

y(t)

x(t)
c

https://aip.scitation.org/doi/10.1063/1.5060707
https://aip.scitation.org/doi/10.1063/1.5060707


2 2

2

cos

sin

cos sin

h L
dh dL
dt dt

d da L L
dt dt

θ
θθ

θ θθ θ

= −

=

 = + 
 
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10.2 Draw a free body diagram showing the forces acting on the platform. 

θ

mg

TT

 
 
 

[2 POINTS] 
 
10.3 Note that problem 3.1 shows that if 1θ <<  the vertical acceleration of the platform is much 
smaller than its horizontal acceleration, and can be neglected.   Show that with this 
approximation, and assuming cos 1θ ≈  the equation of motion relating x to y is (approximately) 
 

2

2

L d x Lc dx Lc dyx y
g dt mg dt mg dt

+ + = +  

Hence find formulas for the constants , ,n Kω ζ  in the standard form for the equation. 
 
Geometry shows that sin ( ) /x y Lθ = −  . 
 
Newton’s law in the horizontal and vertical directions gives 
 

2

2

2

2

2

2

( )2 sin

2 cos 2
( )

d x d x ym T c
dt dt

ma T mg T mg
d x x y d x ym mg c
dt L dt

L d x Lc dx Lc dyx y
g dt mg dt mg dt

θ

θ

−
= − −

= − ⇒ ≈

− −
⇒ = − −

+ + = +

 

 
Comparing these with the standard form gives 



2
2 2n

n

g Lc Lc g c L
L mg mg L m g

ζω ζ
ω

= = ⇒ = =  
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10.4  Following the publication, the system is to be designed with the following specifications: 
(1) The mass of the platform is 146kg, and carries a payload of 40kg 
(2) The resonant frequency of the system is 0.5Hz 
(3) The damping ratio of the system is 0.58ζ =   
 
Calculate the values of L and c that will meet this specification. 
 

Here’s the MATLAB calculation 

 
 
So 1 , 678 /L m c Ns m= =   

[2 POINTS] 
 
10.5    The lab in which the system is to be installed has a vibration with acceleration amplitude 
8 m/s2 at 11 Hz.    What is the expected amplitude of the displacement of the platform of the 
vibration isolator? 
 
The amplitude of the displacement of the lab is 2

0 0 / 0.0017Y A mω= =   
 
The vibration solutions give the amplitude of the platform as 

( ){ }
( ) ( )

0 0
1/22

1/22 22 2

( / , )

1 2 /
( / , )

1 / 2 /

n

n
n

n n

X KY M

M

ω ω ζ

ςω ω
ω ω ζ

ω ω ςω ω

=

+
=
 

− + 
 

 

Substituting numbers (see matlab below) gives 0 88X mµ=   

 
[2 POINTS] 
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