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1 A three bladed 10 kW vertical wind-turbine has total mass 150kg (50kg 
per blade), rotor diameter 5.5m and rotor height 6m. 
 
1.1 The rotor spins at an angular speed of 260 rpm and generates power at a 

rate of 10kW.   What is the torque exerted by the wind on the rotor? 
 
The torque-power formula is P Qω=  so 

/ 10000 / (2 .260 / 60) 367Q P Nmω π= = =   
[2 POINTS] 

 
1.2 Suppose that the rotor is spun up from rest by a constant torque with 

magnitude calculated in problem 1.1, with the generator disconnected.   
How long will it take the rotor to reach 260 rpm? (you can treat the rotors as slender rods with their 
axis vertical). 

 
The mass moment of inertia of the rod about its own axis is zero, so the total mass moment of inertia of 
the rotor is (from the parallel axis theorem) 2 2 23 ( / 2) 150(5.5 / 2) 1134zzI m D kgm= = =   
 
The angular acceleration of the rotor follows as 2/ 0.323 /zzQ I rad sα = =   
 
We can calculate the time to reach 260rpm using the constant acceleration formulas (same as straight line 
motion formulas, except angular acceleration replaces acceleration, angular velocity replaces velocity) 
 

/ (2 .260 / 60) / 0.323 84.3sτ ω α π= = =  
 
For discussion – we could also do the calculation with power-KE – i.e. total work done on the turbine is 

0

t

Pdt∫  which must equal its change in KE.   This works, but since we were told the torque is constant, we 

can’t assume the power is 10kW.   Instead, we have to use P Qω=  , where (since the torque is constant) 
/ zzt Qt Iω α= =  .  This approach ends up being a bit more involved. 

 
 

[3 POINTS] 
 
 
 
  

https://www.windturbinestar.com/10kwv-v-aeolos-wind-turbine.html


 
2.  The point of this problem is to illustrate the choices you can make 
when you apply the moment-angular momentum equation to calculate 
the acceleration and angular acceleration of a rigid body subjected to 
forces.    The figure shows a cube with side length L and mass m that is 
being tipped over by force P applied to one corner.    Assume no slip at 
the contact point C. 
 
2.1 Draw a free body diagram showing the forces acting on the cube 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

[3 POINTS] 
(OK to draw the friction force T acting left instead, since there is no slip.    It is not OK to label the 
friction force as Nµ  .    No slip means that T Nµ<  ; T could have any value between Nµ±  ) 
 
2.2 Write down the rigid body kinematics equation that relates the angular acceleration  zα   and linear 
acceleration Gxa   of the center of mass of the cube 
 
The rigid body kinematics equation gives 
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[1 POINT] 

2.3 Write down F=ma for the cube 
 

F=ma gives 2( ) ( ) ( )
2 2z
L LT N P mg m mα ω+ + − = − + − +i j i j i j   

[2 POINTS] 
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2.4 Write down the equation that relates the total moment acting on the spool to the time derivative of its 
angular momentum.    Take moments (and angular momentum) about the center of mass.   Hence, solve 
the equations in 3.3. and 3.4 to calculate the angular acceleration of the spool and the acceleration of its 
COM Gxa  
 
Applying the moment-angular momentum equation about the COM gives 
 

21( )
2 2 6G z
L LT P N m mLα + − = × + 

 
k 0 a k  

 
To find zα  we need to eliminate T and N from 2.2, 2.3 and 2.4; 
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Hence 
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The acceleration of the COM follows as 
23 (2 )( ) ( )

8 2G
LP mg

m
ω= − − + − +a i j i j  

(The 2ω  term can be neglected if the cube is assumed to be instantaneously stationary) 
 

[3 POINTS] 
 
2.5 Repeat 2.4, but this time apply the moment – dh/dt relation by taking moments about the contact point 
C.   Notice that (just like when you do statics) you can simplify the algebra by choosing to take moments 
about a convenient point – it doesn’t change the answer, but can make your life easier. 

 
 

The moment – mass moment of inertia formula about C gives 
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[2 POINTS] 
 

2.6 Repeat 2.4, but this time use special version of the moment – dh/dt relation for bodies that rotate 
about a fixed point. 
 
The parallel axis theorem gives 

2
2 21 2

6 32C
LI m mL mL = + = 

 
 

The moment-dh/dt relation gives 
22
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3. The figure shows a platform with mass M supported on two cylindrical rollers with radius R and mass 
m.   At time  t=0 the system is at rest with the COM 
of the platform midway between the rollers.   The 
base then starts to move with a harmonic 
displacement 

0( ) (1 cos )y t Y tω= −  

The goal of this problem is to calculate the motion 
x(t) of the platform.   To do this, we first need to 
calculate the acceleration of the platform, and then 
integrate it. 

 

3.1 Find a formula for the horizontal acceleration of the base basea  , in terms of 0 , ,Y tω   

2
2

02 cosd ya Y t
dt

ω ω= =  

m R
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CD



[1 POINT] 
 

3.2 Draw free body diagrams showing forces acting on the rollers, and forces acting on the platform.   
Include gravity.   Assume no slip at the contacts. 

 

 

 

 

 

 

 
[3 POINTS] 

3.3 Write down the equations of translational and rotational motion for the rollers (i.e. 
,roller roller

G G Gzzm m I α= × = × +∑F a r F r a k  ), in terms of (unknown) reaction forces.  You can 
assume both rollers have the same acceleration. 

2 2

( ) ( ) ( ) ( )
1 1( ) ( )
2 2

roller roller
D A D A x C B C B x

D A C B

T T N N mg ma T T N N mg ma

T T R mR T T R mRα α

− + − − = − + − − =

+ = + =

i j i i j i
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3.4 Write down the equation of translational and rotational motion  for the platform. 

( ) ( )
( ) ( ) ( ) 0

block
A B A B x

A B B A

T T N N Mg Ma
T T h N L x N L x
+ + + − =

+ + − − + =

i j i
 

[2 POINTS] 
 

3.5 Write down kinematic equations relating the acceleration of the platform, the acceleration of the base, 
and  the angular & linear accelerations of the rollers. 

Using the rolling wheel formulas 

roller
x base
block roller
x x

a a R
a a R

α

α

= −

= −
 

[2 POINTS] 
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3.6 Use the results of 4.3-4.5 to show that the acceleration of the block is related to that of the base by 

(4 3 )
block base
x x

ma a
M m

= −
+

 

and hence find a formula for the displacement x(t) of the block, in terms of m,M 0 , ,Y tω   

 

The horizontal components of F=ma together with the angular momentum equation for the rollers 
gives 
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The horizontal component of F=ma for the platform gives block
A B xT T Ma+ =  , so  

1
2

block roller
x xMa mR maα= −  

Using the first kinematics equation 

1 3
2 2

block base base
x x xMa mR ma m R mR maα α α= − + = −  

2 ( ) / (2 )
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and finally 
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4
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Ma m a a ma

m mM a a
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Since the block and base have the same initial conditions, the integrals of their accelerations have 
the same form, and therefore 

0( ) (1 cos )
(4 3 )

mx t Y t
M m

ω= − −
+

 

Notice that the block moves in the opposite direction to the base!! 

[3 POINTS] 
 

 
4. The figure shows an experiment that is often used to test control 
systems, and is sometimes used to stabilize walking robots.  The bar AB 
has mass M and length R and rotates freely about A.  It is stabilized in 
an inverted position by a reaction wheel with mass m and radius r at B.  
The goal of this problem is to design a simple ‘Proportional-Derivative’ 
(P-D) controller for the device. 

4.1 Suppose that the bar AB rotates with angular speed /d dtθΩ =  and 
the reaction wheel rotates with angular speed ω  relative to AB  (i.e. the 
total angular speed of the reaction wheel relative to a non-rotating frame 
is ωΩ+ ).   Find a formula for the total angular momentum of the 
system about A. 

For AB we can use the formula for a solid that rotates about a fixed point 

2
2 2

0
1 1

12 2 3AB
RI MR M MR

  = Ω = + Ω = Ω     
h k k   

For the reaction wheel we have to use the general formula 

2 21 ( )
2W G G Gm I mR mrω ω= × + = Ω + +Ωh r v k k k  

(we evaluated G Gm×r v  by noting that the center of the reaction wheel is in circular motion about A, and 

therefore has speed RΩ  .   The velocity is perpendicular to AB, so 2
G Gm mR× = Ωr v  ) 

 

The total angular momentum is therefore 

( )2 2 21 1
3 2

MR mR mr ω  = + Ω+ Ω+  
  

h k  

[3 POINTS] 
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https://www.youtube.com/watch?v=nFSflKQajQU
https://www.youtube.com/watch?v=nFSflKQajQU
http://biorobotics.ri.cmu.edu/robots/Flyped.php


 
4.2 Hence, use a free body diagram and the moment-angular momentum relation about A to show that θ  
satisfies the equation of motion 

2
2 2 2 2

2

1 1 1( 2 ) ( ) sin 0
3 2 2 2

d MR dMR m r R mR g mr
dt dt
θ ωθ + + − + + = 

 
 

 
 
 
A FBD is shown in the picture.    Applying moment-angular momentum 
about A gives 

( )2 2 21 1sin sin
2 3 2
R dMg mgR MR mR mr

dt
θ θ ω    + = + Ω+ Ω+    

    
k k

 
This can be easily rearranged into the form required. 
 
 
 

[3 POINTS] 
 
 
4.3 The EOM suggests that we could stabilize the pendulum with a simple feedback controller that spins 
the wheel with an angular acceleration 

D P
d dk k
dt dt
ω θ θ= +  

where ,P Dk k  are two constants (called the ‘proportional’ and ‘derivative’ gain of the controller. 
 
For the special case M=0 (just to keep the algebra simple), show (by linearizing the EOM and using the 
solutions to differential equations for vibrating systems) 

(i) The pendulum will be stabilized for any proportional gain satisfying 22 /Pk Rg r>  
(ii) For a critically damped response the derivative gain must satisfy 

( )2 2 22 (1 2 / ) 2 /D Pk R r k Rg r= + −  

 
 
 
 
Set M=0 in the EOM and substitute the controller equation 
 

2
2 2 2

2

1 1( 2 ) sin 0
2 2 D P

d dm r R mRg mr k k
dt dt
θ θθ θ + − + + = 

 
 

Use the small angle approximation for θ  and rearrange into standard form 
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This is a case III vibration equation as long as the coefficient of the angular acceleration is positive (if the 
coefficient is negative the system is unstable).   Therefore 22 /Pk Rg r>  for stability. 
 
Note that for a stable system the natural frequency and damping factor satisfy 
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For critical damping 1ζ =  and therefore 
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5. The figure shows a simplified idealization of a commercial instrument for measuring the inertial 
properties of large objects.   It operates by measuring the amplitude and frequency of small oscillations of 
a platform, together with the horizontal and vertical reaction forces at the pivot. 
 
The goal of this problem is to find a formula for the distance of the COM from the pivot and the mass 
moment of inertia of the object, in terms of these quantities. 
 
 
5.1 Use the energy method to derive an equation of motion for the system, and hence find a formula for 
the natural frequency of vibration of the system, in terms of , , , ,Gk L h I m   
 
 
The mass moment of inertia of the vehicle about the pivot is 2

O GI I mh= +   

The kinetic energy is 
21

2 O
dT I
dt
θ =  

 
  

The potential energy is 2 2
0 0

1 1cos ( cos ) ( cos )
2 2

U mgh k d L L k d L Lθ θ θ= + + − + − −   where d is a 

constant and 0L  is the unstretched length of the springs. 
 
 
We know T+U is constant, and therefore 
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Linearize with the usual small angle approximations 
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5.2 Draw a free body diagram showing the forces acting on the platform/vehicle together 
 
 

https://resonic.de/resonic-f/


 
 
 

[2 POINTS] 
 
 
5.3 Assume that the platform vibrates at its natural frequency with a small amplitude 0 sin tθ θ ω=  .   
Show that the horizontal reaction force at O has the form 

0( ) sin nH t H tω≈  
 
and find a formula for 0H  in terms of 0, , , ,nm h tθ ω  
 
 

The position vector of the COM is 
sin cosG h hθ θ= − +r i j  

The velocity and acceleration vectors follow as 

( )

( ) ( )
2 2

2

cos sin

sin cos cos sin

G

G

dh h
dt

d dh h h h
dt dt

θθ θ

θ θθ θ θ θ

= − +

 = − − + 
 

v i j

a i j i j
 

 
F=ma in the horizontal direction gives 
 

2 2
2

02sin cos sinn n
d dH mh hm mh t
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 
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5.4 Finally, show that GI  and h can be calculated from the following formulas 
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We have that 
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6. Several publications describe candidate approaches to capturing a tumbling spacecraft.   This example 
from Stanford sets up a small-scale experiment to test strategies on an air-table.   The figure shows a 
tumbling satellite (A) that has mass Am  and mass moment of inertia GzzAI   captured by a larger spacecraft 
(B) that has mass Bm  and mass moment of inertia GzzBI   .    At time t=0 B is stationary, while A moves 
in the i direction with speed V and spins with angular velocity 0Ω k  .    The capture is similar to a plastic 
collision: the two spacecraft remain in contact after they touch, and no relative rotation of the two occurs.   
After the capture the center of mass of combined craft moves with velocity vector Gv  and angular 
velocity ω  , to be determined. 
 
6.1 Write down the total linear momentum of the system before the capture. 
 

0 Am V=p i  
[1 POINT] 

 
 
6.2 Find the position vector of the center of mass of the system at the instant of capture (take the origin at 
point C) 
 

1 A A B B
G i i

A B

m R m Rm
M m m

−
= =

+∑r r j  

 
[1 POINT] 

 
 
 
 
 
 
 

https://www.frontiersin.org/articles/10.3389/frobt.2019.00014/full
http://asl.stanford.edu/wp-content/papercite-data/pdf/Estrada.Hockman.Bylard.ea.ICRA16.pdf


6.2 Choose a point about which to calculate the initial angular momentum (there are an infinite number of 
choices – anything is fine), and determine the initial angular momentum about the point you chose. 
 
There are many choices: 

(i) Point C: ( )0C A A GzzAm R V I= − + Ωh k   

(ii) The center of satellite A 0A GzzAI= Ωh k  

(iii) The center of satellite B ( )0( )B A A B GzzAm R R V I= − + + Ωh k  
(iv) The COM of the assembly 

( )0 0
A A B B A B

G A A GzzA A B GzzA
A B A B

m R m R m mm R V I R R V I
m m m m

   −
= − − + Ω = − + + Ω   + +   

h k k  
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6.3 Explain why both linear and angular momentum of a system consisting of the two satellites is 
conserved. 
 

There is no external force acting on the system so the external impulse is zero. 
 

[1 POINT] 
 

6.4   Hence, show that Gv  and ω are given by  

( )
0

2
( ) ( )

( )( )

A
G

A B

GzzA A B A B A B

A B GzzA GzzB A B A B

m V
m m

I m m m m R R V
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=
+

+ Ω − +
=
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v i

ω k
 

 
The linear momentum of the system after the capture can be expressed in terms of Gv  : 

1 ( )A B Gm m= +p v   
 
Momentum conservation gives 

0 1
A

G
A B

m V
m m

= ⇒ =
+

p p v i  

 
Angular momentum is conserved about all points – we can write down the total angular momentum of the 
system about the same point that was chosen in 6.2 just after the capture in terms of Gv  and ω  and set it 
equal to the initial angular momentum.    
 
For example, if we choose point C, we note that the velocities of the centers of the two satellite can be 
calculated using the rigid body velocity formula, eg for A ( )A C A Cω− = × −v v k r r   
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We also know that 
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and therefore 
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whence 
 

( ) ( )

( )

2 2
0

2
2 2

0

0

( )

( )

( )

A A A B B
A A GzzA A A B B A A GzzA B B GzzB

A B A B

A A B BA B A B
GzzA A A GzzA B B GzzB

A B A B

A B A B
GzzA GzzA

A B

m m R m Rm R V I m R m R V m R I m R I
m m m m

m R m Rm m R R V I m R I m R I
m m m m

m m R R V I I
m m

ω ω

ω

  −
− + Ω = − − + + + + +  + +  

 −+
⇒ − + Ω = + + + − 

 + + 

+
⇒ − + Ω =

+

k k k

( )

( )

2

0
2

( ) ( )
( )( )

A B A B
GzzB

A B

GzzA A B A B A B

A B GzzA GzzB A B A B

m m R R
I

m m

I m m m m R R V
m m I I m m R R

ω

ω

 +
+ + 

 + 
+ Ω − +

⇒ =
+ + + +

  
As a second approach, we can apply angular momentum conservation about the COM.   In this case we 
can find the combined mass moment of inertia of the entire connected assembly about the COM using the 
parallel axis theorem: 

( )
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   − −
= + + + + −   + +   

+
= + +

+

 

Then we get directly 
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⇒ =
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