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1. The figure (from this publication) shows a displacement measurement from a test on the vibration 
characteristics of a magnetic bearing (the units for the displacement are microns). 
 
1.1 The amplitude of the displacement 
 

From the graph, 0 (25 40) / 2 32.5X mµ≈ + =   

[1 POINT] 
1.2 The period of the vibration 
 

14 cycles takes 0.8 secs so T=0.057s. 
[1 POINT] 

1.3 The frequency (in Hertz) and angular frequency (in rad/s) 

The frequency is 1/T=17.5Hz, or 
2 110 /

0.057
rad sπ

=  rad/s 

[1 POINT] 
1.4 The amplitude of the velocity 

 
The simple harmonic motion formulas give 0 0 0 3.58 /V X V mm sω= ⇒ =   

[1 POINT] 
1.5 The amplitude of the acceleration 

The simple harmonic motion formulas give 2
0 0 0 393 /A V A mm sω= ⇒ =  

  
[1 POINT] 

 

https://www.jvejournals.com/article/14599


2. Find the number of degrees of freedom and vibration modes for each of the systems shown in the 
figures (you may need to consult the publications to understand the system) 

                                 
 
 
 
 
 
 

       
 
 
 
 
 
 
 
 
 
For (a): the figure shows 3 masses that can be idealized as particles; the rollers introduce one constraint 
each, so 4 constraints.   #DOF = 2p-c=2.   If the masses are idealized as rigid bodies instead, the rollers 
introduce 3 constraints each (preventing rotation/relative rotation) so we get the same answer.   The 
2DOF are clearly horizontal and vertical motion of the ‘Seismic mass.’   The constraints prevent constant 
speed motion/rotation in all directions so no rigid body modes => #vibration modes = 2. 
 
For (b) take everything including the black actuators to be outside the system.  There are then 7 rigid 
bodies in the system.  There are 6 pin joints with 5 constraints each, plus 3 spherical joints with 3 
constraints each so c = 39.   #DOF = 6r-c=3.  Or we can read the title of the paper “Inverse Kinematics of 
a 3 DOF Parallel Manipulator: A Conformal Geometric Algebra Approach”  The base is fixed, so there 
are no rigid body modes=> #vibration modes = 3 
 

(a) 2D model of an energy harvesting 
system  

(c) Human body on a seat (masses 
1,2,3,4,5 and 7 are rigid bodies; 
mass 6, representing the viscera, is 
a particle.  Note that the joints are 
flexible, and permit relative 
rotation and motion) 

(b)  Motion simulation platform 
(the joints connecting the 
platform to the members 
beneath it are spherical joints.  
The rest are all pin joints) 

 

(d) 1-Propanol molecule  
 

https://www.researchgate.net/publication/224107905_A_2-DOF_Wideband_Electrostatic_Transducer_for_Energy_Harvesting_and_Implantable_Applications
https://www.researchgate.net/publication/224107905_A_2-DOF_Wideband_Electrostatic_Transducer_for_Energy_Harvesting_and_Implantable_Applications
https://www.sciencedirect.com/science/article/pii/S187705091831007X?via%3Dihub
https://ieeexplore.ieee.org/document/7803360
https://webbook.nist.gov/cgi/cbook.cgi?Str3View=C71238&Type=JSmol


For (c) there are 6 rigid bodies and 1 particle.   The joint all permit relative rotation and motion of the two 
points they connect, so there are no constraints.   That gives #DOF=3x6 + 2x1 = 20.   The joints don’t 
allow translation or rotation at constant speed in any direction so there are no rigid body modes; # 
vibration modes = 20. 
 
For (d) There are 12 atoms (all particles), which gives #DOF = 3*12=36; the  molecule can translate in 3 
direction and rotate about 3 axes at constant speed so 6 rigid body modes.   # vibration modes = 30.                         

                    
 [8 POINTS] 

 
3. Solve the following differential equations (please solve them by hand, using the tabulated solutions to 
differential equation – you can check the answers with matlab if you like) 
 

3.1 
2

2 144 24 1 0 0d y dyy y t
dtdt

+ = = = =    

3.2
2

2 5 25 0 1 0 0d y dy dyy y t
dt dtdt

+ + = = = =  

3.3 
2

2 20 100 200sin10 2 5 3 0d y dy dyy t y t
dt dtdt

+ + = = − = =  

 
 
3.1 Rearrange in standard form 

2

2 2
1 1 1 0 0

612
d y dyy y t

dtdt
+ = = = =  

 
This is a Case I equation - compare with the standard form to see that 12 1/ 6n Cω = =   
 
The solution is  

0
0( ) ( )cos sinn n

n

vx t C x C t tω ω
ω

= + − +  

We are given 0 01 0x v= =   so  
1( ) (1 5cos12 )
6

y t t= +  

[3 POINTS] 
 
3.2 Rearrange in standard form 

2

2 2
1 2 0.5 0 1 0 0

55
d y dy dyy y t

dt dtdt
×

+ + = = = =  

 
This is a Case III equation - compare with the standard form to see that 5, 0.5 0n Cω ζ= = =  .  The 
solution is 
 

0 0
0

( )( ) exp( ) ( )cos sinn
n d d

d

v x Cx t C t x C t tςω
ςω ω ω

ω
 + −

= + − − + 
 

 



where 2 21 5 1 1/ 2 5 3 / 2d nω ω ς= − = − =   

( ) ( )1( ) exp( 2.5 ) cos 5 3 / 2 sin 5 3 / 2
3

y t t t t 
= − + 

 
 

 
[3 POINTS] 

 
 

3.3 
2

2 20 100 200sin10 2 5 3 0d y dy dyy t y t
dt dtdt

+ + = = − = =  

 
We can rearrange this as a Case 4 equation 

2

2 2
1 2 1 2sin10

1010
d y dy y t

dtdt
×

+ + =  

 
It appears that 010, 2, 10, 1 0nKF Cω ω ζ= = = = =  . 
 
The steady-state solution follows as  

( )

( ) ( )

0 0 0

1
1/2 2 22 22 2

( ) sin ( / , )

2 /1( / , ) tan ( 0)
1 /

1 / 2 /

p n

n
n

n
n n

x t X t X KF M

M

ω φ ω ω ζ

ςω ω
ω ω ζ φ π φ

ω ω
ω ω ςω ω

−

= + =

 −
= = − < <  −   − + 
 

 

The homogeneous solution is 

{ }0 0 0( ) exp( )h h h
h n nx t x v x t tω ω = + + −   

where  

0 0 0 0

0 0 0 0
0

(0) sin

cos

h
p

ph

t

x x C x x C X

dx
v v v X

dt

φ

ω φ
=

= − − = − −

= − = −
 

Substituting numbers gives 

 

( ){ }
( )1

1/22

0

0 0

1 1( / , ) tan / 2
20 2

1

1 5 3

n

h h

M

X

x v

ω ω ζ φ π−= = = ∞ = −
+

=

= − =

  

The total solution is therefore  

{ } { }( ) 1 5 3 10 exp( 10 ) sin(10 / 2) 1 5 3 10 exp( 10 ) cos(10 )y t t t t t t tπ   = − + − − + − = − + − − −     

We can check that this is correct by substituting it into the differential equation, and by substituting t=0 
into y and dy/dt and checking that initial conditions are satisfied. 

[3 POINTS] 



4. Find formulas for the natural frequency of vibration for the systems shown in the figure.   For the 
system on the right, the unstretched length of the spring 0 2L L=  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the first system, we can replace the springs with an equivalent single spring.   On the bottom we have 
two sets of two springs in parallel, which together are in series with a single spring.   The effective 
stiffness of this combination is 

1 1 1 1 4 / 3
2 2 eff

eff

k k
k k k

 = + ⇒ = 
 

 

This equivalent spring is in parallel with a spring on top, so the effective stiffness of the entire assembly 
is 7k/3.    The formula for natural frequency gives 7 / (3 )k mω =   

[2 POINTS] 
 
 
We can get an EOM for the second system using the energy method.   The platform is in circular motion, 
so its speed (from the circular motion formula) is 

dv L
dt
θ =  

 
  

and therefore the KE is 
2

2 21 1
2 2

dT mv mL
dt
θ = =  

 
  

 
The PE includes gravity and the energy of the springs.   Geometry shows that the spring length is 
2 sin( / 4 / 2)L π θ+  (to see this draw a perpendicular to the spring through the pivot at the base of the 
left most support, which bisects and angle / 2π θ+ ; then use Pythagoras on the right angle triangle.  You 
can also use the law of cosines, but that gives a rather more messy formula) so 

( )21cos 2 sin( / 4 / 2) 2
2

U mgL k L Lθ π θ= + + −  

k

m

k

k

k

k

k k

m

k,L0

θ
L

L

0 2L L=



( )( )
2

2
2

2
2 2 2

2

( ) 0

sin cos / 4 / 2 2 sin( / 4 / 2) 2 0

sin sin( / 2 ) 2 cos( / 4 / 2) 0

dT U const T U
dt

d d d dmL mgL kL L L
dt dt dt dt

dmL mgL kL kL
dt

θ θ θ θθ π θ π θ

θ θ π θ π θ

+ = ⇒ + =

   − + + + − =  
  
 

− + + − + = 
 

 

(here we used the formula 2sin cos sin 2θ θ θ=  to make finding the small angle approximation easier 
but its fine to leave this term as just 2sin cosθ θ ) 
 
To linearize the equation can use sinθ θ≈   and then expand the other two trig terms with Taylor 
series 

( )sin( / 2 ) sin( / 2) cos / 2 1
1 1cos( / 4 / 2) cos( / 4) sin( / 4) / 2
2 2 2

π θ π π θ

π θ π π θ θ

+ ≈ + ≈

+ ≈ − ≈ −
 

, which gives 
 

( )

2
2 2 2

2

2 2

22

1 12 0
2 2 2

2 0
2

dmL mgL kL kL
dt

mL d
dtkL mgL

θ θ θ

θ θ

   − + − − =   
  

 
⇒ + = −  

 

and compare to the standard case I EOM to see that 
2

2

2
2n

kL mgL
mL

ω −
=  

Remarks:  
(1) This arrangement is sometimes used to design a vibration isolation system.  You can tune the 

spring stiffness to make the natural frequency as low as you like. 
(2) It’s worth thinking about what happens if 22mgL kL>  .   If that happens our formula predicts 

that the natural frequency is complex – what does that mean, exactly?    We can figure this out in 
two different ways.   One idea is to recognize that our equation of motion  

( )
2

2 2
22 2 0dmL kL mgL

dt
θ θ

 
+ − = 

 
 

has a problem in this limit, because the coefficient of θ  is negative.   So it’s not a ‘Case I’ 
equation.     But we can turn it into a ‘Case II’ equation if we want 

( )

( )

2
2 2

2

2 2

22

2 2 0

2 0

dmL mgL kL
dt

mL d
dtmgL kL

θ θ

θ θ

 
− − = 

 
 

− = −  

 

Which has the form 



2

2 2

1 0d
dt
θ θ

α
 

− = 
 

 

The solution this equation has the form t tAe Beα αθ −= + , where A, B are constants (they depend 
on the initial conditions).    So the math tells us that this system won’t vibrate, but instead θ  will 
increase exponentially.    This looks a bit weird too, because that means the platform would zip 
around in a circle at progressively increasing speed, but of course our EOM is approximate, and 
only accurate when θ  is small.   So what we are really learning is that the system is unstable, and 
will collapse, if the springs are too soft.    That makes sense. 
 
There’s another way to look at the math if you happen to be familiar with trig functions of 
complex numbers.   Math will actually let us work with complex valued natural frequencies – if 
we have an equation of the form  

2

2 2

1 0
n

d
dt
θ θ

ω
 

+ = 
 

 

where n iω α=  is a complex number, we can use the ‘Case I’solution sin cosA i t B i tθ α α= +  .  
Euler’s formula for complex numbers tells us that trig functions of complex numbers are actually 
exponentials – for example 

cos sin cos ( ) / 2
cos ( ) / 2

i i t i t

t t

e i e e
i t e e

β β β

α α

β β β

α

−

−

= + ⇒ = +

= +
 

So again, the math is telling us that the motion is not harmonic vibrations any more, but 
exponential growth, i.e. collapse. 

[3 POINTS] 
 
 
5. When mass A is held fixed and mass B vibrates, the 
system shown in the figure has natural frequency nω  and 
damping factor ζ .   Find the natural frequency and 
damping factor when mass B is held fixed and mass A 
vibrates. 
 

For A fixed/B vibrating we know that  / / (2 )nB Bk m c kmω ζ= =  
 
For B fixed/A vibrating the two springs are in parallel and have effective stiffness 2k.  Therefore 

2 / 2
2 2 2 .2nA nB A B

k c
m k m

ω ω ζ ζ= = = =  

[3 POINTS] 
 
 
 
 
 
 
 
 

k

c
2m mk
A B



6. A shock absorber (consisting of a spring and dashpot) is to be 
designed for installation at the end of a linear conveyor.   Its 
purpose is to bring packages to rest at the end of the moving 
conveyor.   It must meet the following specifications: 

(i) Packages have mass 5kg and strike the shock absorber at 
speed 2 m/s 

(ii) The maximum acceleration of the package must not exceed 
2g 

(iii) The shock absorber should recover to its stretched length as 
quickly as possible, and the package should not rebound off the absorber. 

 
6.1 Find the spring stiffness and dashpot coefficient that will meet the specification.     
 

Condition (iii) means the spring-mass system should be critically damped.   Its deflection (i.e. the 
change in position of the mass after it just strikes the shock absorber) as a function of time is 
therefore 

[ ]{ }0 0 0( ) ( ) ( ) exp( )n nx t C x C v x C t tω ω= + − + + − −  

The EOM for x has C=0 and 0 0x = , which gives 

0( ) exp( )nx t v t tω= −  
The acceleration follows as 

2
02( ) (2 )exp( )n n n

d xa t v t t
dt

ω ω ω= = − − −  

The maximum acceleration occurs at time t=0 (to see this, plot the acceleration as a function of 
time, as shown below) 

0 1 2 3 4 5

n
 t

-2

-1.5

-1

-0.5

0

a/
(v

0

 
n

)

Package acceleration

 
The maximum acceleration is therefore 02 nv ω− , so to meet the second constraint we require 

02 / (2 ) 9.81/ 2n g vω < = .   To make the absorber rebound as quickly as possible we need the 
highest possible value of nω .    
 
We can now calculate the spring stiffness and dashpot coefficient (noting that the system is 
critically damped) 

2 120 /

2 49 /
nk m N m

c km Ns m

ω

ζ

= =

= =
 

[4 POINTS] 
 

k,L0
m

c V0

https://www.motioncontroltips.com/shock-absorber-technologies-for-automated-applications/


6.2 Find the maximum deflection of the absorber after it is struck, and the time required for the shock 
absorber’s deflection to recover to below 1% of the max deflection. 
 
 

It helps to plot the deflection as a function of time 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
t 

0

0.05

0.1

0.15

x(
t) 

(m
)

Displacement of shock absorber

 
 

The maximum deflection occurs when 
0

max 0

/ 0 (1 )exp( ) 0 1/
( / ) exp( 1) 15

n n n

n

dx dt v t t t
x v cm

ω ω ω
ω

= ⇒ − − = ⇒ =
⇒ = − =

 

 
To find the time needed to return to 1% of the max deflection, solve 

0 maxexp( ) 0.01nx v t t xω= − =  
using MATLAB vpasolve (you have to specify the range for the root of interest, because there are 
two solutions – we want the higher of the two values).   This gives t=1.5sec. 
 

[3 POINTS] 
 
 
 

 



 
7. The figure (from this publication) shows the measured velocity at the tip of a cantilever beam as a 
function of time.    
 
7.1 Find the period and log decrement of the signal 
 
     Picking the fourth peak at (t=0.458s, v=0.07 m/s) and 10th peak at (t=0.977, v=0.0209 m/s) we find 

the period T=(0.977-0.458)/6=0.0865s, and the log decrement 
1 log(0.0768 / 0.0209) 0.2169
6

δ = =  

[2 POINTS] 
 
7.2 Hence, calculate the natural frequency and damping factor for the beam. 
 
Using the formulas 

2 2

2 2

4 72.7 /

0.0345
4

n rad s
T

π δω

δζ
π δ

+
= =

= =
+

 

[2 POINTS] 
 

https://www.sciencedirect.com/science/article/pii/S0022460X11004020
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