
     EN40: Dynamics and Vibrations 
 

Homework 6: Vibrations 
Due Friday April 8 2022 

                           
School of Engineering 
    Brown University 
 
 
 
 
1. The spring-mass system shown is a simple idealization of a building 

subjected to wind loading.  The mass is 250x106 kg, spring stiffness 
is 2.5 GN/m and the dashpot coefficient is 160MNs/m.   The 
building is observed to vibrate at a frequency of 1Hz with an 
amplitude of 3mm.   Find the amplitude of the force. 

 
 
 
 
We can use the formulas.   Start by calculating the natural frequency and damping ratio 
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Then find the magnification (don’t forget to use 2 fω π=  with f=1Hz) 
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And finally use the formula for vibration amplitude 0 0X KMF=  with K=1/k.   This gives 

0 22F MN= . 
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2. An unbalanced rotating fan is mounted on isolation pads giving a 

spring mass system with natural frequency 10nω = rad/s, damping 
factor 0.2ζ = , total mass 0 10m m kg+ = , and mass unbalance 

0 0 0.1Y m kgm= .   The system is at rest for time t<0.   The fan is then 
turned on and spins with angular speed 20 /rad s .    Plot a graph 
showing the acceleration of the mass as a function of time, for a time 
interval 0<t<4s.  (Be careful when calculating the phase of the steady 
state response, the phase must be in the range 0π φ− < < .   When nω ω> the phase should be less 
than / 2π− ).   It is best to do the calculation and plot in MATLAB.   You need not submit your 
MATLAB code, however – just explain how you did the calculation and submit your plot. 

 
This is just a question of using the formulas to calculate the steady state and transient solutions.  The 
solution is 
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And (since the system is underdamped) the transient solution is 
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where 21d nω ω ς= −  
 
In all three preceding cases, we have set 
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with 0 00, 0, 0C x v= = = .   Once the displacement has been found, the acceleration follows 
by differentiating the displacement with respect to time twice…. 
The plot is shown below. 

 
 

0 1 2 3 4

Time (s)

-5

0

5

A
cc

el
er

at
io

n 
(m

/s
2

)

Fan acceleration

 
 

[5 POINTS] 
 



 
 
 
3. The figure (from this publication) shows the measured vibration amplitude of a submerged pipeline 
with, and without, and eddy current damper installed, as a function of frequency. 
 
3.1 What (approximately) is the undamped natural frequency of vibration of the system nω  ? 
 
The frequency is the peak of the curve – the undamped curve will give a more accurate measure of the 
undamped natural frequency – which is about 3Hz, or 6π rad/s. 
 

[1 POINT] 
 
3.2 What is the damping factor ζ , before and after the damper is added? 
 

We can use the recipe – divide the peak by 2  and find the bandwidth (the difference between the 
two frequencies where the amplitude is equal to max / 2X ), find the Q factor 

max 2 1/ ( )Q ω ω ω= −  and the damping factor follows as 1/ (2 )Q .    
 
The figure shows this construction – for the undamped system 3 / 0.38 7.9 0.06Q ζ≈ = ⇒ ≈  
For the damped system 3.1/ 0.8 3.8 0.13Q ζ≈ = ⇒ ≈  

https://www.mdpi.com/2076-3417/7/10/987/htm
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4. The re-designed vehicle suspension in Section 5.6.9 of the 
lecture notes had the following specification: 

• Natural frequency 5 / 2.1nω π=  rad/s 
• Damping factor 0.38ζ =  

Suppose that the car drives over a road with roughness 
amplitude 5cm and wavelength 8m.   
 
4.1 Show that if the mass of the wheel can be neglected, the 
normal force exerted by the wheel on the ground is given by 
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where 0Y  is the amplitude of the roughness, 2 /V Lω π= is the excitation frequency, nω  is the natural 
frequency of the suspension system and M is the magnification. 
 
 

Newton’s law for the wheel and car body as a combined system gives 
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https://brown.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=c2171e04-39bb-4b92-85b5-ac7900c79769&start=1701
https://brown.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=c2171e04-39bb-4b92-85b5-ac7900c79769&start=1701


We know that 0 sin( )x X tω φ= + , where 0 0X KY M=  (and K=1 for the base excited system).   
Hence 
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which rearranges to the result given 
 

[3 POINTS] 
 
4.2 Hence, find the car speed where the wheel will lose contact with the ground.  You might find it 
helpful to plot a graph of 2( / )n Mω ω  as a function of / nω ω  
 

  Substituting numbers, we find that 2
0/ 3.5067ng Y ω =  

The car loses contact with the ground if N<0.   The minimum value of N occurs when 
sin( ) 1tω φ+ = , so the car loses contact with the ground if 2( / ) 3.5067n Mω ω >   
 
Recall that  
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A plot of 2( / )n Mω ω  as a function of / nω ω  for 0.38ζ =  is shown below, which shows that the car 
will lose contact with the ground at high speeds. 
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MATLAB solves the equation 2( / ) 3.5067n Mω ω =  without trouble, giving / 4.2351nω ω = .  
So 31.68ω >  rad/s.    The car speed follows as / (2 ) 40.33 /V L m sω π= =   
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5. Formula 1 racecars have been using ‘inerters’ in their 
suspensions for over 10 years.   An ‘inerter’ is a mechanical 
element that, like a spring or dashpot, can be stretched by a force.   
In an inerter, the force is proportional to the relative acceleration 
of its ends (the second time derivative of its length) 

2

2I
d LF
dt

µ=  

The goal of this problem is to investigate the effects of adding an 
inerter to a suspension. 
 
Before attempting this problem you might find it helpful to 
review the analysis of a conventional spring-mass-damper suspension system discussed in class and in the e-notes. 
 
5.1 Draw a free body diagram showing the forces acting on the mass (the car body). Neglect gravity. 
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5.2 Hence, show that the displacement of the wheel y, and the displacement of the mass are related by an equation of 
the form 
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and give formulas for , ,nω λ ζ  in terms of , ,c k µ   
 
 
Newton’s law, together with the formulas for forces in springs, dampers and inerters, gives 
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Rearranging and noting that 0L  is a constant 
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This reduces to 
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5.3  The solution to the EOM in part 4.2 can be found in the tabulated solutions to differential equation for common 
vibration problems.   Note that (like the conventional suspension system) the amplitude of vibration of the car body 
is given by 

( )0 0/ , ,nX KM Yω ω ζ λ=  
where K=1. To understand the effects of the inerter, plot (on the same axes) a graph of the magnification M as a 
function of / nω ω   for 0 / 3nω ω< <  , 0.1ζ =  , and 0λ =  (a conventional suspension), 0.5λ =  , and 

0.7λ =  (representing the addition of a weak and a strong inerter).  You will find that the inerter gives the 
suspension a so-called ‘anti-resonance’ – a magic frequency where M has a minimum value. 
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 5.4 What is the frequency corresponding to the anti-resonance (the minimum value of M), in terms of , nλ ω  (give 
an approximate solution for 1ζ <<  ) ?    What is (approximately) the smallest vibration amplitude (in terms of 

,λ ζ )? 
  
 

The magnification (from the handout) is 
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The minimum will occur (approximately) when 
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If λ  is not close to 1, then 
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5.5  For what range of frequency (in terms of λ , nω  ) does the antiresonant system give better performance than the 
simpler spring-mass-damper system? 
 

The magnification for the anti-resonant isolator is equal to that of the conventional system when 
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The anti-resonant system is better than the conventional system for ω  below this value.    
 

[2 POINTS] 
 
 
5.6 Re-visit the suspension system that was re-designed in  Section 5.6.9 of the lecture notes.   Re-design the system 
(with an inerter) to meet the following specifications: 

(1) The vehicle is to be designed to drive over a roadway with roughness wavelength 10m, and  amplitude is 
20cm.   

(2) The suspension should give the minimum vibration amplitude of the car body at 50 mph 
(3) The suspension should be effective (i.e. the car should vibrate with amplitude less than that of the 

roadway) for all vehicle speeds exceeding 20 mph 
(4) The amplitude of vibration of the car’s body should not exceed 35cm at any speed 
(5) The static deflection of the suspension spring should be as small as possible, while still satisfying (1-4) 

 
For your design, recommend values of , ,nω ζ λ  , and , ,k c µ  .   You can use small ζ  approximations to simplify 
calculations (it’s possible to get a solution without this approximation in MATLAB but it’s quite tricky to set up – 

https://brown.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=c2171e04-39bb-4b92-85b5-ac7900c79769&start=1701


try it if you would like a challenge.   It changes the numbers you get a bit, but doesn’t have an appreciable effect on 
the performance of the design at the end). 
 

Constraint (1) (from the notes) tells us that the vibration frequency of the vehicle is 2 /V Lω π=  , which 
corresponds to 50 14.04 /rad sω =  at 50 mph and 20 5.62 /rad sω =  at 10 mph 
 
Constraint (2) requires (roughly) that 50 /nω ω λ=  
 
Constraint (3) requires that 1M <   for 10ω ω>  .   This requires 
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Since we want to minimize the static deflection of the spring, we want the highest possible spring stiffness, 
and therefore want to choose the highest possible value of nω .   This gives 

 20 / (2 4 / 25) 4.14 /n rad sω ω= − =  

50/ 0.295nλ ω ω= =  
 

 
Finally, we can estimate ζ  by assuming the maximum value of M occurs at nω ω=  , giving 
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Constraint (4) requires max 35 / 20M <  .   We want to select the smallest allowable value of ζ  to make 
the suspension as effective as possible at speeds above 20 mph.   Therefore 
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We can check our design by plotting the magnification as a function of frequency 



0 0.5 1 1.5 2 2.5 3

/
n

0.5

1

1.5

M
ag

ni
fic

at
io

n 
M

=0.3,  = 0.318

=0.3,  = 0.34

X: 0.9103
Y: 1.737

 
 
Taking 0.318ζ =  slightly exceeds the allowable value of M (this is because we used an approximation 
for very small damping to estimate it, and it turned out the damping is not as small as we hoped).   
Increasing ζ  to 0.34 fixes the problem. 
 
 You don’t have to do this graphically, of course – if you want a really accurate answer you can have 
MATLAB maximize M for you and then solve for the necessary value of ζ   - but this is quite 
complicated.  Here’s a solution that works with my MATLAB in 2020 – you might have to tweak it if the 
roots of the equations come out in a different order 
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Finally we can calculate values for the properties of the suspension elements.  Here’s a matlab solution (but 
it’s easy to do by hand as well) 



 

 
 
Graders – people may get different numbers if they use different values for , , nλ ζ ω  so please check 
the method used rather than the answer… 
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5.7 Compare your new design to the one in the notes by plotting graphs (on the same figure) of the predicted 
vibration amplitude for the two designs (use the system designed at the end of Section 5.6.9 as the ‘original’ design, 
and plot your new design on the same graph) as a function of car speed in the range 0<V<80 mph. 
 
The performance of the system (with the ‘exact’ parameters) is compared to the old design below 

 
 

[3 POINTS] 
 
A few final remarks: 

(1) The graph gives the impression that the inerter greatly improves the performance of the suspension.   This 
is partly true, but the comparison is a bit misleading because the two designs have different natural 
frequencies (they were designed with different constraints).    The original suspension could be improved if 
its natural frequency were smaller.   A better comparison is to use the same spring stiffness in both designs 
(or to use the same natural frequency – but the original suspension would need  softer spring than the new 

https://brown.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=c2171e04-39bb-4b92-85b5-ac7900c79769&start=1701


design, which is undesirable).   The graph below compares a conventional suspension with the same 
stiffness to the suspension with an inerter.    The inerter-based design is better than the original over a range 
of frequencies, but worse at high frequency. 

 
(2) The static deflection of the suspension is 15cm – this is quite large. 
(3) There is another consideration in suspension design that was not addressed here – the ‘road holding’ 

performance.    We could do a rough comparison of road holding between the two suspensions by 
following the procedure in problem 4 – which tells us that the new suspension will be better than the old 
one as long as its magnification is lower.   So the suspension will improve road holding below 60mph.   But 
to analyze road-holding properly, we really need to consider the mass of the wheel, which turns the 
suspension into a 2DOF system, which is beyond the scope of engn40. 
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