
Chapter 3 

 

Analyzing motion of systems of particles 
 
In this chapter, we shall discuss 

1. The concept of a particle 

2. Position/velocity/acceleration relations for a particle 

3. Newton’s laws of motion for a particle 

4. How to use Newton’s laws to calculate the forces needed to make a particle move in a particular 

way 

5. How to use Newton’s laws to derive `equations of motion’ for a system of particles 

6. How to solve equations of motion for particles by hand or using a computer. 

 

The focus of this chapter is on setting up and solving equations of motion – we will not discuss in detail 

the behavior of the various examples that are solved.   
 

 

3.1 Equations of motion for a particle 
 

We start with some basic definitions and physical laws. 

 

3.1.1 Definition of a particle 

 

A `Particle’ is a point mass at some position in space. It can move about, but has no characteristic 

orientation or rotational inertia.  It is characterized by its mass. 

 

Examples of applications where you might choose to idealize part of a system as a particle include: 

1. Calculating the orbit of a satellite – for this application, you don’t need to know the orientation of 

the satellite, and you know that the satellite is very small compared with the dimensions of its 

orbit. 

2. A molecular dynamic simulation, where you wish to calculate the motion of individual atoms in a 

material.  Most of the mass of an atom is usually concentrated in a very small region (the nucleus) 

in comparison to inter-atomic spacing. It has negligible rotational inertia.   This approach is also 

sometimes used to model entire molecules, but rotational inertia can be important in this case. 

 

Obviously, if you choose to idealize an object as a particle, you will only be able to calculate its position.  

Its orientation or rotation cannot be computed.  

 

 

3.1.2 Position, velocity, acceleration relations for a particle (Cartesian coordinates) 

 

In most practical applications we are interested in the position or the 

velocity (or speed) of the particle as a function of time.   But Newton’s 

laws will only tell us its acceleration.   We therefore need equations 

that relate the position, velocity and acceleration. 

 

Position vector: In most of the problems we solve in this course, we 

will specify the position of a particle using the Cartesian components 

of its position vector with respect to a convenient origin.  This means 
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1. We choose three, mutually perpendicular, fixed directions in space.  The three directions are 

described by unit vectors  , ,i j k  

2. We choose a convenient point to use as origin. 

3. The position vector (relative to the origin) is then specified by the three distances (x,y,z) shown in 

the figure.  
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In dynamics problems, all three components can be functions of time.  

 

 

Velocity vector: By definition, the velocity is the derivative of the position vector with respect to time 

(following the usual machinery of calculus) 
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Velocity is a vector, and can therefore be expressed in terms of its Cartesian components 

x y zv v v  v i j k  

You can visualize a velocity vector as follows  

 The direction of the vector is parallel to the direction of motion 

 The magnitude of the vector 2 2 2
x y zv v v v   v  is the speed of the particle (in meters/sec, for 

example).   

 

When both position and velocity vectors are expressed in terms Cartesian components, it is simple to 

calculate the velocity from the position vector.   For this case, the basis vectors  , ,i j k  are constant 

(independent of time) and so 
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This is really three equations – one for each velocity component, i.e. 
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Acceleration vector: The acceleration is the derivative of the velocity vector with respect to time; or, 

equivalently, the second derivative of the position vector with respect to time. 
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The acceleration is a vector, with Cartesian representation x y za a a  a i j k . 

 
Like velocity, acceleration has magnitude and direction. Sometimes it may be possible to visualize an 

acceleration vector – for example, if you know your particle is moving in a straight line, the acceleration 

vector must be parallel to the direction of motion; or if the particle moves around a circle at constant 

speed, its acceleration is towards the center of the circle.  But sometimes you can’t trust your intuition 

regarding the magnitude and direction of acceleration, and it can be best to simply work through the math. 

 

The relations between Cartesian components of position, velocity and acceleration are 
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3.1.3 Examples using position-velocity-acceleration relations 

 

It is important for you to be comfortable with calculating velocity and acceleration from the position 

vector of a particle.   You will need to do this in nearly every problem we solve.  In this section we 

provide a few examples.  Each example gives a set of formulas that will be useful in practical 

applications. 

 

 
Example 1: Constant acceleration along a straight line.  There are many examples where an object 

moves along a straight line, with constant acceleration.   Examples include free fall near the surface of a 

planet (without air resistance), the initial stages of the acceleration of a car, or and aircraft during takeoff 

roll, or a spacecraft during blastoff. 

 

Suppose that 

The particle moves parallel to a unit vector i  

The particle has constant acceleration, with magnitude a 

At time 0t t  the particle has speed 0v  

At time 0t t  the particle has position vector 0xr i  

The position, velocity acceleration vectors are then 

 

2
0 0 0 0

0

1
( ) ( )

2
x v t t a t t

v at

a

 
     
 

 



r i

v i

a i

 

 

Verify for yourself that the position, velocity and acceleration (i) have the correct values at t=0 and (ii) 

are related by the correct expressions (i.e. differentiate the position and show that you get the correct 

expression for the velocity, and differentiate the velocity to show that you get the correct expression for 

the acceleration). 

 

HEALTH WARNING: These results can only be used if the acceleration is constant.  In many 

problems acceleration is a function of time, or position – in this case these formulas cannot be used. 

People who have taken high school physics classes have used these formulas to solve so many problems 

that they automatically apply them to everything – this works for high school problems but not always in 

real life! 

 

Example 2: Simple Harmonic Motion:  The vibration of a very simple spring-

mass system is an example of simple harmonic motion.  

 

In simple harmonic motion (i) the particle moves along a straight line; and (ii) 

the position, velocity and acceleration are all trigonometric functions of time. 

 

For example, the position vector of the mass might be given by  
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 0( ) sin(2 / )x t X X t T  r i i  

Here 0X  is the average length of the spring, 0X X   is the maximum length of the spring, and T is the 

time for the mass to complete one complete cycle of oscillation (this is called the `period’ of oscillation).   

 

Harmonic vibrations are also often characterized by the frequency of vibration: 

 The frequency in cycles per second (or Hertz) is related to the period by f=1/T 

 The angular frequency is related to the period by 2 / T   

 

The motion is plotted in the figure on the right. 

 

The velocity and acceleration can be calculated by 

differentiating the position, as follows 
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Note that: 

 The velocity and acceleration are also harmonic, and 

have the same period and frequency as the 

displacement. 

 If you know the frequency, and amplitude and of 

either the displacement, velocity, or acceleration, you can immediately calculate the amplitudes 

of the other two.  For example, if X , V , A  denote the amplitudes of the displacement, 

velocity and acceleration, we have that 
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Example 3: Motion at constant speed around a circular path  

Circular motion is also very common – examples include any 

rotating machinery, vehicles traveling around a circular path, and 

so on. 

 

The simplest way to make an object move at constant speed along 

a circular path is to attach it to the end of a shaft (see the figure), 

and then rotate the shaft at a constant angular rate.  Then, notice 

that 

 The angle   increases at constant rate.  We can write 

t  , where   is the (constant) angular speed of the 

shaft, in radians/seconds.   

 The speed of the particle is related to   by V R .   To 

see this, notice that the circumferential distance traveled by the particle is s R .  Therefore, 

/ /V ds dt Rd dt R    . 

 

For this example the position vector is 
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The velocity can be calculated by differentiating the position vector.   

sin cos ( sin cos )
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Here, we have used the chain rule of differentiation, and noted that /d dt  . 

 

The acceleration vector follows as 
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Note that 

 (i) The magnitude of the velocity is V R , and its direction is (obviously!) tangent to the path 

(to see this, visualize (using trig) the direction of the unit vector ( sin cos )   t i j  

(ii) The magnitude of the acceleration is 2R  and its direction is towards the center of the circle. 

To see this, visualize (using trig) the direction of the unit vector (cos sin )   n i j   

 

We can write these mathematically as 
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Example 4: More general motion around a circular path   
 

We next look at more general circular motion, where the particle 

still moves around a circular path, but does not move at constant 

speed.  The angle   is now a general function of time.   

 

We can write down some useful scalar relations: 

 Angular rate:
d

dt
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 Angular acceleration 
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We can now calculate vector velocities and accelerations 

cos sinR R  r i j  

The velocity can be calculated by differentiating the position vector.   
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The acceleration vector follows as 
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It is often more convenient to re-write these in terms of the unit vectors n and t normal and tangent to the 

circular path, noting that ( sin cos )   t i j , (cos sin )   n i j .  Then 
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These are the famous circular motion formulas that you might have seen in physics class.   

 

 

Using MAPLE to differentiate position-velocity-acceleration relations 
 

If you find that your calculus is a bit rusty you can use MAPLE to do the tedious work for you.  You 

already know how to differentiate and integrate in MAPLE – the only thing you may not know is how to 

tell MAPLE that a variable is a function of time.   Here’s how this works.  To differentiate the vector  

( ) ( ) ( )x t y t z t  r i j k  

you would type 

  
It is essential to type in the (t) after x,y,and z – if you don’t do this, Mupad assumes that these variables 

are constants, and takes their derivative to be zero.  You must enter (t) after _any_ variable that changes 

with time. 

 

Here’s how you would do the circular motion calculation if you only know that the angle   is some 

arbitrary function of time, but don’t know what the function is 



 


As you’ve already seen in EN3, Matlab can make very long and complicated calculations fairly painless.  

It is a godsend to engineers, who generally find that every real-world problem they need to solve is long 

and complicated.  But of course it’s important to know what the program is doing – so keep taking those 

math classes… 

 

3.1.4 Velocity and acceleration in normal-tangential and cylindrical polar coordinates. 

 

In some cases it is helpful to use special basis vectors to write down velocity and acceleration vectors, 

instead of a fixed {i,j,k} basis.  If you see that this approach can be used to quickly solve a problem – go 

ahead and use it.  If not, just use Cartesian coordinates – this will always work, and with MAPLE is not 

very hard.  The only benefit of using the special coordinate systems is to save a couple of lines of rather 

tedious trigonometric algebra – which can be extremely helpful when solving an exam question, but is 

generally insignificant when solving a real problem. 

 

Normal-tangential coordinates for particles moving along a prescribed planar path 

  

In some problems, you might know the particle speed, and the x,y coordinates of the 

path (a car traveling along a road is a good example).   In this case it is often easiest to 

use normal-tangential coordinates to describe forces and motion.  For this purpose we 

 Introduce two unit vectors n and t, with t pointing tangent to the path and n 

pointing normal to the path, towards the center of curvature 

 Introduce the radius of curvature of the path R.  

 

If you happen to know the parametric equation of the path (i.e. the x,y coordinates are 

known in terms of some variable  ), then  
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The sign of n should be selected so that  
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The radius of curvature can be computed from 
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The radius of curvature is always positive. 

 

The direction of the velocity vector of a particle is tangent to its path.  The magnitude of the velocity 

vector is equal to the speed.  

 

The acceleration vector can be constructed by adding two components: 

 the component of acceleration tangent to the particle’s path is equal /dV dt  

 The component of acceleration perpendicular to the path (towards the center of curvature) is 

equal to 2 /V R . 

Mathematically 
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Example: Design speed limit for a curvy road:  As a consulting firm 

specializing in highway design, we have been asked to develop a 

design formula that can be used to calculate the speed limit for cars 

that travel along a curvy road. 

 

The following procedure will be used: 

 The curvy road will be approximated as a sine wave 

sin(2 / )y A x L  as shown in the figure – for a given road, 

engineers will measure values of A and L that fit the path. 

 Vehicles will be assumed to travel at constant speed V around 

the path – your mission is to calculate the value of V 

 For safety, the magnitude of the acceleration of the car at any point along the path must be less 

than 0.2g, where g is the gravitational acceleration. (Again, note that constant speed does not 

mean constant acceleration, because the car’s direction is changing with time). 

 

Our goal, then, is to calculate a formula for the magnitude of the acceleration in terms of V, A and L.  The 

result can be used to deduce a formula for the speed limit. 

 

Calcluation: 
 

We can solve this problem quickly using normal-tangential coordinates.  Since the speed is constant, the 

acceleration vector is 
2V

R
a n  

The position vector is sin(2 / )x A x L r i j , so we can calculate the radius of curvature from the 

formula 
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Note that x acts as the parameter   for this problem, and sin(2 / )y A x L , so 
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and the acceleration is 
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We are interested in the magnitude of the acceleration…   
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We see from this that the car has the biggest acceleration when / 2x L . The maximum acceleration 

follows as 
2

max (2 / )a A V L  

The formula for the speed limit is therefore ( / 2 ) 0.2 /V L g A  

 

Now we send in a bill for a big consulting fee… 

 

 

Polar coordinates for particles moving in a plane 
 

When solving problems involving central forces (forces that 

attract particles towards a fixed point) it is often convenient to 

describe motion using polar coordinates. 

 

Polar coordinates are related to x,y coordinates through 

2 2 1tan ( / )r x y y x     

 

Suppose that the position of a particle is specified by its ‘polar 

coordinates’ ( , )r  relative to a fixed origin, as shown in the 

figure. Let re  be a unit vector pointing in the radial direction, 

and let e be a unit vector pointing in the tangential direction, i.e 
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The velocity and acceleration of the particle can then be expressed as 
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Deriving these results takes some tedious algebra, but it’s conceptually simple – here’s what we do: 

1. Write down the position vector in terms of ( , )r   in a fixed (i,j,k) coordinate system 

2. Take the time derivatives to find acceleration and velocity in the (i,j,k) coordinate system 

3. Convert the results to the { , , }r ze e e  coordinate system.  To do this remember that the 

component of v parallel to re  can be found using a dot product: r rv  v e .  Similarly v  v e  

 

Here are the details with Mupad taking care of the tedious algebra. 

 

 
 

These are the answers stated. 

 

Example The robotic manipulator shown in the 

figure rotates with constant angular speed   

about the k axis.   Find a formula for the 

maximum allowable (constant) rate of extension 

/dL dt  if the acceleration of the gripper may not 

exceed g. 

 

We can simply write down the acceleration 

vector, using polar coordinates.  We identify 

/d dt   and r=L, so that 

 
2

22 2 4 2 2 2 2 21
2 4 /

4
r

dL dL dL
L L g g L

dt dt dt
     

   
            

   
a e e a  

 

L

i

j

k





i

j
L

O

O

ere 



Other examples using polar coordinates can be found in sections below. 

 

 

3.1.5 Measuring position, velocity and acceleration 
 

If you are designing a control system, you will need some way to detect the 

motion of the system you are trying to control.  A vast array of different 

sensors is available for you to choose from: see for example the list at 

http://www.sensorland.com/HowPage001.html .  A very short list of 

common sensors is given below 

1. GPS – determines position on the earth’s surface by measuring the 

time for electromagnetic waves to travel from satellites in known 

positions in space to the sensor.   Can be accurate down to cm 

distances, but the sensor needs to be left in position for a long time for 

this kind of accuracy.  A few m is more common. 

2. Optical or radio frequency position sensing – measure position by (a) monitoring deflection of laser 

beams off a target; or measuring the time for signals to travel from a set 

of radio emitters with known positions to the sensor.  Precision can 

vary from cm accuracy down to light wavelengths. 

3. Capacitative displacement sensing – determine position by measuring 

the capacitance between two parallel plates.  The device needs to be 

physically connected to the object you are tracking and a reference 

point. Can only measure distances of mm or less, but precision can be 

down to micron accuracy. 

4. Electromagnetic displacement sensing – measures position by detecting 

electromagnetic fields between conducting coils, or coil/magnet 

combinations within the sensor.  Needs to be physically connected to 

the object you are tracking and a reference point.  Measures displacements of order cm down to 

microns. 

5. Radar velocity sensing – measures velocity by detecting the change in frequency of electromagnetic 

waves reflected off the traveling object. 

6. Inertial accelerometers: measure accelerations by detecting the deflection of a spring acting on a 

mass.  

 

Accelerometers are also often used to construct an ‘inertial platform,’ which uses gyroscopes to maintain 

a fixed orientation in space, and has three accelerometers that can detect motion in three mutually 

perpendicular directions.  These accelerations can then be integrated to determine the position.  They are 

used in aircraft, marine applications, and space vehicles where GPS cannot be used. 

 

 

 

3.1.6 Newton’s laws of motion for a particle 

 

Newton’s laws for a particle are very simple.  Let 

1. m denote the mass of the particle 

2. F denote the resultant force acting on the particle (as a vector) 

3. a denote the acceleration of the particle (again, as a vector).  Then 

 

mF a  

 

http://www.sensorland.com/HowPage001.html


Occasionally, we use a particle idealization to model systems which, strictly speaking, are not particles.  

These are: 

1. A large mass, which moves without rotation (e.g. a car moving along a straight line) 

2. A single particle which is attached to a rigid frame with negligible mass (e.g. a person on a 

bicycle) 

 

In these cases it may be necessary to consider the moments acting on the mass (or frame) in order to 

calculate unknown reaction forces.   

1. For a large mass which moves without rotation, the resultant moment of external forces about the 

center of mass must vanish. 

2. For a particle attached to a massless frame, the resultant moment of external forces acting on the 

frame about the particle must vanish. 

C M 0  

 

It is very important to take moments about the correct point in dynamics problems! Forgetting this is 

the most common reason to screw up a dynamics problem… 

 

If you need to solve a problem where more than one particle is attached to a massless frame, you have to 

draw a separate free body diagram for each particle, and for the frame.   The particles must obey 

Newton’s laws mF a .   The forces acting on the frame must obey F 0  and C M 0 , (because the 

frame has no mass).   

 

 

The Newtonian Inertial Frame.  
 

Newton’s laws are very familiar, and it is easy to write them down without much thought.  They do have 

a flaw, however. 

 

When we use Newton’s laws, we assume that we can identify a convenient origin somewhere that we 

regard as `fixed’.   In addition, to write down an acceleration vector, we need to be able to choose a set of 

fixed directions in space. 

 

For engineering calculations, this usually poses no difficulty.  If we are solving problems involving 

terrestrial motion over short distances compared with the earth’s radius, we simply take a point on the 

earth’s surface as fixed, and take three directions relative to the earth’s surface to be fixed.  If we are 

solving problems involving motion in space near the earth, or modeling weather, we take the center of the 

earth as a fixed point, (or for more complex calculations the center of the sun); and choose axes to have a 

fixed direction relative to nearby stars. 

 

But in reality, an unambiguous inertial frame does not exist.  We can only describe the relative motion of 

the mass in the universe, not its absolute motion.  The general theory of relativity addresses this problem 

– and in doing so explains many small but noticeable discrepancies between the predictions of Newton’s 

laws and experiment.   

 

It would be fun to cover the general theory of relativity in this course – but regrettably the mathematics 

needed to solve any realistic problem is horrendous.  As engineers, we always have to solve realistic 

problems, and we usually can’t afford to spend a long time doing complicated calculations, so we use the 

simplest theory that will allow us to make the correct design decisions.  Newton’s laws are fine for us… 
 

 



 

3.2 Calculating forces required to cause prescribed motion of a particle 

 
Newton’s laws of motion can be used to calculate the forces required to make a particle move in a 

particular way.    

 
We use the following general procedure to solve problems like this 

(1) Decide how to idealize the system (what are the particles?) 

(2) Draw a free body diagram showing the forces acting on each particle 

(3) Consider the kinematics of the problem. The goal is to calculate the acceleration of each 

particle in the system – you may be able to start by writing down the position vector and 

differentiating it, or you may be able to relate the accelerations of two particles (eg if two 

particles move together, their accelerations must be equal). 

(4) Write down F=ma for each particle. 

(5) If you are solving a problem involving a massless frames (see, e.g. Example 3, involving a 

bicycle with negligible mass) you also need to write down C M 0  about the particle. 

(5) Solve the resulting equations for any unknown components of force or acceleration (this is 

just like a statics problem, except the right hand side is not zero). 

 
It is best to show how this is done by means of examples.   

 

 

 
Example 1: Estimate the minimum thrust that must be produced 

by the engines of an aircraft in order to take off from the deck of 

an aircraft carrier (the figure is from 

www.lakehurst.navy.mil/NLWeb/media-library.asp) 
 

We will estimate the acceleration required to reach takeoff speed, 

assuming the aircraft accelerates from zero speed to takeoff speed 

along the deck of the carrier, and then use Newton’s laws to 

deduce the force. 

 

Data/ Assumptions:  

1. The flight deck of a Nimitz class aircraft carrier is about 300m long (http://www.naval-

technology.com/projects/nimitz/) but only a fraction of this is used for takeoff (the angled runway 

is used for landing).   We will take the length of the runway to be d=200m 

2. We will assume that the acceleration during takeoff roll is constant. 

3. We will assume that the aircraft carrier is not moving (this is wrong – actually the aircraft carrier 

always moves at high speed during takeoff.  We neglect motion to make the calculation simpler) 

4. The FA18 Super Hornet is a typical aircraft used on a carrier – it has max catapult weight of 

m=15000kg  http://www.boeing.com/defense-space/military/fa18ef/docs/EF_overview.pdf  

5. The manufacturers are somewhat reticent about performance specifications for the Hornet but 

tv  150 knots (77 m/s) is a reasonable guess for a minimum controllable airspeed for this 

aircraft. 

 

Calculations:  

1. Idealization: We will idealize the aircraft as a particle.  We can do this because the aircraft is not 

rotating during takeoff. 

http://www.lakehurst.navy.mil/NLWeb/media-library.asp
http://www.naval-technology.com/projects/nimitz/
http://www.naval-technology.com/projects/nimitz/
http://www.boeing.com/defense-space/military/fa18ef/docs/EF_overview.pdf


 

2. FBD: The figure shows a free body diagram.  TF  represents the (unknown) force exerted on the 

aircraft due to its engines. 

 

3. Kinematics: We must calculate the acceleration required to reach takeoff speed.  We are given (i) 

the distance to takeoff d, (ii) the takeoff speed tv  and (iii) the aircraft is at rest at the start of the 

takeoff roll. We can therefore write down the position vector r and velocity v of the aircraft at 

takeoff, and use the straight line motion formulas for r and v to calculate the time t to reach 

takeoff speed and the acceleration a.  Taking the origin at the initial position of the aircraft, we 

have that, at the instant of takeoff 

21

2
td at v at   r i i v i i  

This gives two scalar equations which can be solved for a and t  
2

21 2

2 2

t
t

t

v d
d at v at a t

d v
      

 

4. EOM: The vector equation of motion for this problem is 
2

2

t
T

v
F ma m

d
 i i i  

 

5. Solution: The i component of the equation of motion gives an equation for the unknown force in 

terms of known quantities 
2

2

t
T

v
F m

d
  

Substituting numbers gives the magnitude of the force as 

F=222 kN.  This is very close, but slightly greater than, the 

200kN (44000lb) thrust quoted on the spec sheet for the 

Hornet.  Using a catapult to accelerate the aircraft, speeding up 

the aircraft carrier, and increasing thrust using an afterburner 

buys a margin of safety.   

 

 

 

 

Example 2: Mechanics of Magic! You have no doubt seen the 

simple `tablecloth trick’ in which a tablecloth is whipped out 

from underneath a fully set table (if not, you can watch it at 

http://wm.kusa.gannett.edgestreams.net/news/1132187192333-

11-16-05-spangler-2p.wmv) 

 

In this problem we shall estimate the critical acceleration that 

must be imposed on the tablecloth to pull it from underneath the objects placed upon it. 

 

We wish to determine conditions for the tablecloth to slip out from under the glass. We can do this by 

calculating the reaction forces acting between the glass and the tablecloth, and see whether or not slip will 

occur.   It is best to calculate the forces required to make the glass move with the tablecloth (i.e. to 

prevent slip), and see if these forces are big enough to cause slip. 
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1. Idealization: We will assume that the glass behaves like a particle (again, we can do this because 

the glass does not rotate) 

 

2. FBD. The figure shows a free body diagram for the glass.  The forces 

include (i) the weight; and (ii) the normal and tangential components 

of reaction at the contact between the tablecloth and the glass.   The 

normal and tangential forces must act somewhere inside the contact 

area, but their position is unknown.   For a more detailed discussion of 

contact forces see Sects 2.4 and 2.5. 

 

3. Kinematics We are assuming that the glass has the same acceleration 

as the tablecloth. The table cloth is moving in the i direction, and has magnitude a. The 

acceleration vector is therefore aa i . 

4. EOM. Newton’s laws of motion yield 

( )m T N mg ma    F a i j i  

5. Solution: The i and j components of the vector equation must each be satisfied (just as when you 

solve a statics problem), so that 

0T ma N mg N mg      

Finally, we must use the friction law to decide whether or not the tablecloth will slip from under 

the glass.   Recall that, for no slip, the friction force must satisfy 

T N  

where   is the friction coefficient.  Substituting for T and N from (5) shows that for no slip 

a g  

To do the trick, therefore, the acceleration must exceed g .  For a friction coefficient of order 

0.1, this gives an acceleration of order 
21 /m s .   There is a special trick to pulling the tablecloth 

with a large acceleration – but that’s a secret. 

 

 

Example 3: Bicycle Safety.  If a bike rider brakes too hard on the 

front wheel, his or her bike will tip over (the figure is from 

http://www.thosefunnypictures.com/picture/7658/bike-flip.html).  In 

this example we investigate the conditions that will lead the bike to 

capsize, and identify design variables that can influence these 

conditions. 

 

If the bike tips over, the rear wheel leaves the ground.  If this happens, 

the reaction force acting on the wheel must be zero – so we can detect 

the point where the bike is just on the verge of tipping over by calculating the reaction forces, and finding 

the conditions where the reaction force on the rear wheel is zero. 

 

1. Idealization:  
a. We will idealize the rider as a particle 

(apologies to bike racers – but that’s how 

we think of you…). The particle is located 

at the center of mass of the rider.  The 

figure shows the most important design 

parameters- these are the height of the 
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rider’s COM, the wheelbase L and the distance of the COM from the rear wheel. 

b. We assume that the bike is a massless frame.   The wheels are also assumed to have no mass.  

This means that the forces acting on the wheels must satisfy F 0  and M 0  - and can be 

analyzed using methods of statics.  If you’ve forgotten how to think about statics of wheels, 

you should re-read the notes on this topic – in particular, make sure you understand the nature 

of the forces acting on a freely rotating wheel (Section 2.4.6 of the reference notes). 

c. We assume that the rider brakes so hard that the front wheel is prevented from rotating.  It 

must therefore skid over the ground.  Friction will resist this sliding. We denote the friction 

coefficient at the contact point B by  . 

d. The rear wheel is assumed to rotate freely. 

e. We neglect air resistance. 

 

2. FBD. The figure shows a free body diagram for the 

rider and for the bike together.  Note that 

a. A normal and tangential force acts at the 

contact point on the front wheel (in general, 

both normal and tangential forces always 

act at contact points, unless the contact 

happens to be frictionless).  Because the 

contact is slipping it is essential to draw the 

friction force in the correct direction – the 

force must resist the motion of the bike;  

b. Only a normal force acts at the contact 

point on the rear wheel because it is freely 

rotating, and behaves like a 2-force member. 

 

3. Kinematics The bike is moving in the i direction. As a vector, its acceleration is therefore aa i , 

where a is unknown.   

 

4. EOM: Because this problem includes a massless frame, we must use two equations of motion 

( mF a  and C M 0 ).  It is essential to take moments about the particle (i.e. the rider’s COM). 

 

mF a  gives ( )B A BT N N W ma    i j i  

 

 It’s very simple to do the moment calculation by hand, but for those of you who find such 

calculations unbearable here’s a Mupad script to do it. The script simply writes out the position 

vectors of points A and B relative to the center of mass as 3D vectors, writes down the reactions at A 

and B as 3D vectors, and calculates the resultant moment (we don’t bother including the weight, 

because it acts at the origin and so exerts zero moment) 

 
The two nonzero components of mF a  and the one nonzero component of C M 0  give us three 

scalar equations  
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We have four unknowns – the reaction components , ,A B BN N T  and the acceleration a so we need 

another equation.   The missing equation is the friction law 

B BT N  

 

5. Solution: Here’s the solution with Mupad.  It’s easy to get the same answer by hand as well. 

 

We are interested in finding what makes the reaction force at A go to zero (that’s when the bike is about 

to tip).  So 

( )
0 ( ) /A

h L d
N W L d h

h L






 
    


 

 

This tells us that the bike will tip if the friction 

coefficient exceeds a critical magnitude, which 

depends on the geometry of the bike.  The simplest 

way to design a tip-resistant bike is to make the 

height of the center of mass h small, and the distance 

(L-d) between the front wheel and the COM  as large 

as possible.   

 

A `recumbent’ bike is one way to achieve this – the 

figure (from 

http://en.wikipedia.org/wiki/Recumbent_bicycle) 

shows an example. The recumbent design offers 

many other significant advantages over the classic 

bicycle besides tipping resistance. 

 

 

 

 

http://en.wikipedia.org/wiki/Recumbent_bicycle


Example 4: A stupid problem that you might find in the FE professional 

engineering exam.  The purpose of this problem is to show what you need to 

do to solve problems involving more than one particle. 

 

Two weights of mass Am  and Bm  are connected by a cable passing over two 

freely rotating pulleys as shown.  They are released, and the system begins to 

move.  Find an expression for the tension in the cable connecting the two 

weights. 

 

 
1. Idealization – The masses will be idealized as particles; the cable is inextensible and the mass of 

the pulleys is neglected.  This means the internal forces in the cable, and the forces acting 

between cables/pulleys must satisfy  F 0  and M 0 , and we can 

treat them as though they were in static equilibrium.   

 

2. FBD – we have to draw a separate FBD for each particle.  Since the 

pulleys and cable are massless, the tension T in the cable is constant. 

 

3. Kinematics  We know that both masses must move in the j direction.  

We also know that the masses always move at the same speed but in 

opposite directions.  Therefore, their accelerations must be equal and 

opposite.  We can express this mathematically as 

A Ba a j j  

 

4. EOM: We must write down two equations of motion, as there are two masses 
( )

( )

A A A

B B B

T m g m a

T m g m a
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 

j j

j j
 

We now have three equations for three unknowns (the unknowns are ,A Ba a  and T). 

 

5. Solution: As paid up members of ALE (the Academy of Lazy Engineers) we use Mupad to solve 

the equations 

 
So the tension in the cable is
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We pass! 
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Example 5: Another stupid FE exam problem: The 

figure shows a small block on a rotating bar.  The contact 

between the block and the bar has friction coefficient  .  

The bar rotates at constant angular speed  .  Find the 

critical angular velocity that will just make the block start 

to slip when 0  .  Which way does the block slide? 

 
The general approach to this problem is the same as for the 

Magic trick example – we will calculate the reaction force 

exerted by the bar on the block, and see when the forces are large enough to cause slip at the contact.  We 

analyze the motion assuming the slip does not occur, and then find out the conditions where this can no 

longer be the case. 

 

 

1. Idealization – We will idealize the block as a particle.  This is dangerous, because the block is 

clearly rotating.  We hope that because it rotates at constant rate, the rotation will not have a 

significant effect – but we can only check this once we know how to 

deal with rotational motion. 
2. FBD: The figure shows a free body diagram for the block.  The block is 

subjected to a vertical gravitational force, and reaction forces at the 

contact with the bar.  Since we have assumed that the contact is not 

slipping, we can choose the direction of the tangential component of the 

reaction force arbitrarily.  The resultant force on the block is 

 cos sin ( cos sin )T N N T mg       F i j  

3. Kinematics  We can use the circular motion formula to write down the acceleration of tbe block 

(see section 3.1.3) 
2(cos sin )r    a i j  

4. EOM: The equation of motion is 

  2cos sin ( cos ) (cos sin )T N N mg mr          i j i j  

5. Solution: The i and j components of the equation of motion can be solved for N and T – Mupad  

makes this painless 

 

To find the point where the block just starts to slip, we use the friction law.  Recall that, at the 

point of slip 

T N  

For the block to slip with 0   

2r g    

so the critical angular velocity is /g r  .  Since the tangential traction T is negative, and the 

friction force must oppose sliding, the block must slide outwards, i.e. r is increasing during slip. 
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Alternative method of solution using normal-tangential 

coordinates 

 

We will solve this problem again, but this time we’ll use 

the short-cuts described in Section 3.1.4 to write down the 

acceleration vector, and we’ll write down the vectors in 

Newton’s laws of motion in terms of the unit vectors n and 

t normal and tangent to the object’s path. 

(i) Acceleration vector  If the block does not slip, it moves 

with speed V r around a circular arc with radius r.   Its acceleration vector has magnitude 2 /V r  and 

direction parallel to the unit vector n.    

(ii) The force vector can be resolved into components parallel to n and t.  Simple 

trig on the free body diagram shows that 

   cos sinN mg mg T    F t n  

(iii) Newton’s laws then give 

    2cos sinm N mg mg T m r       F a t n n  

The components of this vector equation parallel to t and n yield two equations, with solution 
2cos sinN mg T mg m r      

This is the same solution as before.   The short-cut makes the calculation slightly more straightforward.   

This is the main purpose of using normal-tangential components. 

 

 

Example 6: Window blinds.  Have you ever wondered how 

window shades work?  You give the shade a little downward 

jerk, let it go, and it winds itself up.  If you pull the shade down 

slowly, it stays down.  

 

The figure shows the mechanism (which probably only costs a 

few cents to manufacture) that achieves this remarkable feat of 

engineering.  It’s called an `inertial latch’ – the same principle is 

used in the inertia reels on the seatbelts in your car. 

 
The picture shows an enlarged end view of the window shade.  

The hub, shown in brown, is fixed to the bracket supporting the 

shade and cannot rotate.  The drum, shown in peach, rotates as 

the shade is pulled up or down.  The drum is attached to a 

torsional spring, which tends to cause the drum to rotate 

counterclockwise, so winding up the shade.  The rotation is 

prevented by the small dogs, shown in red, which engage with 

the teeth on the hub.  You can pull the shade downwards freely, 

since the dogs allow the drum to rotate counterclockwise. 

 

To raise the shade, you need to give the end of the shade a jerk 

downwards, and then release it.  When the drum rotates 

sufficiently quickly (we will calculate how quickly shortly) the 
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dogs open up, as shown on the right.  They remain open until the drum slows down, at which point the 

topmost dog drops and engages with the teeth on the hub, thereby locking up the shade once more. 

 

We will estimate the critical rotation rate required to free the rotating drum. 

 

 

1. Idealization – We will idealize the topmost dog as a particle on the 

end of a massless, inextensible rod, as shown in the figure. 
a.   We will assume that the drum rotates at constant angular 

rate  .  Our goal is to calculate the critical speed where the 

dog is just on the point of dropping down to engage with 

the hub. 

b. When the drum spins fast, the particle is contacts the outer 

rim of the drum – a normal force acts at the contact.  When 

the dog is on the point of dropping this contact force goes to 

zero.  So our goal is to calculate the contact force, and then 

to find the critical rotation rate where the force will drop to 

zero. 

c. We neglect friction. 
 

2. FBD. The figure shows a free body diagram for the particle. The 

particle is subjected to: (i) a reaction force N where it contacts the rim; 

(ii) a tension T in the link, and (iii) gravity.  The resultant force is 

 cos( ) cos ( sin sin( ) )T N N T mg             F i j  

 
3. Kinematics  We can use the circular motion formula to write down the 

acceleration of the particle(see section 3.1.3) 
2(cos sin )R    a i j  

4. EOM: The equation of motion is 

  2cos( ) cos ( sin sin( ) ) (cos sin )T N N T mg R                   i j a i j  

5. Solution: The i and j components of the equation of motion can be solved for N and T – Mupad 

makes this painless 

 
normal reaction force is therefore 

2cos( ) / sinN mg mR        

We are looking for the point where this can first become zero or negative.  Note that  max{cos( )} 1    

at the point where   =0.  The smallest value of N therefore occurs at this point, and has magnitude 

2
min / sinN mg mR     

The critical speed where N=0 follows as 

/ ( sin )g R   
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Changing the angle   and the radius R gives a convenient way to control the critical speed in designing 

an inertial latch. 
 

Alternative solution using polar coordinates 

 

We’ll work through the same problem again, but this time handle the vectors using polar 

coordinates. 

 
1. FBD. The figure shows a free body diagram for the particle. 

The particle is subjected to: (i) a reaction force N where it 

contacts the rim; (ii) a tension T in the link, and (iii) gravity.  

The resultant force is 

( cos sin ) ( sin cos )rN T mg T mg         F e e  

 
2. Kinematics  The acceleration vector is now 

2
rR a e  

3. EOM: The equation of motion is 
2( cos sin ) ( sin cos )r rN T mg T mg R          e e e  

4. Solution: The ,r e e components of the equation of motion can be solved for N and T – again, we 

can use Mupad for this 

 
 

The normal reaction force is therefore 

2cos( ) / sinN mg mR        

We are looking for the point where this can first become zero or negative.  Note that  max{cos( )} 1    

at the point where   =0.  The smallest value of N therefore occurs at this point, and has magnitude 

2
min / sinN mg mR     

The critical speed where N=0 follows as 

/ ( sin )g R   

Changing the angle   and the radius R gives a convenient way to control the critical speed in designing 

an inertial latch. 
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Example 7: Aircraft Dynamics Aircraft performing certain 

instrument approach procedures (such as holding patterns or 

procedure turns) are required to make all turns at a standard 

rate, so that a complete 360 degree turn takes 2 minutes.  All 

turns must be made at constant altitude and constant speed, V.   

 

People who design instrument approach procedures need to 

know the radius of the resulting turn, to make sure the aircraft 

won’t hit anything.   Engineers designing the aircraft are interested in the forces needed to complete the 

turn – specifically, the load factor, which is the ratio of the lift force on the aircraft to its weight. 

 

In this problem we will calculate the radius of the turn R and the bank angle required, as well as the load 

factor caused by the maneuver, as a function of the aircraft speed V. 

 

Before starting the calculation, it is helpful to understand what makes an aircraft travel in a circular path. 

Recall that 

1. If an object travels at constant speed around a circle, its acceleration vector has constant 

magnitude, and has direction towards the center of the circle 

2. A force must act on the aircraft to produce this acceleration – i.e. the resultant force on the 

aircraft must act towards the center of the circle.  The necessary force comes from the horizontal 

component of the lift force – the pilot banks the wings, so that the lift acts at an angle to the 

vertical. 

 

With this insight, we expect to be able to use the equations of motion to calculate the forces. 

 

1. Idealization – The aircraft is idealized as a particle – it’s not obvious that this is accurate, because the 

aircraft clearly rotates as it travels around the curve.  However, the forces we wish to calculate turn 

out to be fully determined by F=ma and are not influenced by the rotational motion. 
 

2. FBD. The figure shows a free body diagram for the aircraft.  It is subjected to (i) a gravitational force 

(mg); (ii) a thrust from the engines TF , (iii) a drag force DF , acting perpendicular to the direction of 

motion, and (iv) a lift force LF , acting perpendicular to the plane of the wings. 

 

The resultant force is 

     ( )cos sin sin ( )sin sin cos cosT D L D T L LF F F F F F F mg            i j k

 

(you may find the components of the lift force difficult to 

visualize – to see where these come from, note that the lift 

force can be projected onto components along OR and the 

k direction as sin cosL L LF RO F  F k .  Then note 

that  sin cosRO    i j .)   

 

3. Kinematics   
a. The aircraft moves at constant speed around a circle, so the angle t  , where   is the 

(constant) angular speed of the line OP.   Since the aircraft completes a turn in two minutes, 

we know that  2 / (2 60) / 60      rad/sec 

b. The position vector of the plane is 
sin cosR t R t  r i j  
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We can differentiate this expression with respect to time to find the velocity 

(cos sin )R t t   v i j  

c. The magnitude of the velocity is V R , so if the aircraft flies at speed V, the radius of the 

turn must be /R V   

d. Differentiating the velocity gives the acceleration 
2(sin cos )R t t    a i j  

 

4. EOM: The equation of motion is 

     
2

( )cos sin sin ( )sin sin cos cos

(sin cos )

(sin cos )

T D L D T L LF F F F F F F mg

mR

mV

      

  

  

      

  

  

i j k

i j

i j

 

 

5. Solution: The i j and k components of the equation of motion give three equations that can be solved 

for TF , LF  and  .  We assume that the drag force is known, since this is a function of the aircraft’s 

speed. 

 
This solution is correct, but you need a PhD to understand what it means (other symbolic manipulation 

programs like Maple and Mathematica give a comprehensible solution).  Fortunately, I happen to have a 

PhD…  The solution can be simplified to 

1 2 2 2tan ( / ) 1 /L T DV g F mg V g F F       

As we will see below, if you choose to solve this problem in normal-tangential coordinates, you don’t 

need a PhD to  

 

We can calculate values of  , /R V   and the load factor /LF mg  for a few aircraft 

a. Cessna 150 – V=70knots (36 m/s) : 011   R=690m, / 1.02LF mg   



b. Boeing 747: V=200 knots (102 m/s) 028   R=1950m, / 1.14LF mg   

c. F111  V=300 knots (154 m/s) 039   R=2950m, / 1.3LF mg   

 

Alternative solution using normal-tangential coordinates 
 

This problem can also be solved rather more quickly using 

normal and tangential basis vectors. 

 

(i) Acceleration vector.  The aircraft travels around a circular 

path at constant speed, so its acceleration is 
2V

V
R

 a n n  

where n is a unit vector pointing towards the center of the circle. 

 

(ii) Force vector. The force vector can be written in terms of the 

unit vectors n,t,k as 

( ) sin ( cos )T D L LF F F F mg     F t n k  

 

(iii) Newton’s law ( ) sin ( cos )T D L LF F F F mg mV       F t n k n  

 

The n, t and k components of this equation give three equations that can be solved for TF , LF  and  .  

This time it is easy to solve the equations by hand… 

1 2 2 2tan ( / ) 1 /L T DV g F mg V g F F       

 

This example again shows why normal-tangential coordinates are useful – describing forces, and solving 

the resulting force-acceleration relations are much simpler than working with a fixed coordinate system. 

 

 

3.3 Deriving and solving equations of motion for systems of particles 
 

We next turn to the more difficult problem of predicting the motion of a system that is subjected to a set 

of forces.   
 

 

3.3.1 General procedure for deriving and solving equations of motion for systems of particles 

 

It is very straightforward to analyze the motion of systems of particles.   You should always use the 

following procedure 

1. Introduce a set of variables that can describe the motion of the system.  Don’t worry if this sounds 

vague – it will be clear what this means when we solve specific examples. 

2. Write down the position vector of each particle in the system in terms of these variables 

3. Differentiate the position vector(s), to calculate the velocity and acceleration of each particle in 

terms of your variables; 

4. Draw a free body diagram showing the forces acting on each particle.  You may need to introduce 

variables to describe reaction forces.  Write down the resultant force vector. 

5. Write down Newton’s law mF a  for each particle.  This will generate up to 3 equations of 

motion (one for each vector component) for each particle. 
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6. If you wish, you can eliminate any unknown reaction forces from Newton’s laws. If you are 

trying to solve the equations by hand, you should always do this; of you are using MATLAB, it’s 

not usually necessary – you can have MATLAB calculate the reactions for you. The result will be 

a set of differential equations for the variables defined in step (1) 

7. If you find you have fewer equations than unknown variables, you should look for any 

constraints that restrict the motion of the particles.  The constraints must be expressed in terms of 

the unknown accelerations. 

8. Identify the initial conditions for the variables defined in (1).  These are usually the values of the 

unknown variables, their time derivatives, at time t=0. If you happen to know the values of the 

variables at some other instant in time, you can use that too.   If you don’t know their values at 

all, you should just introduce new (unknown) variables to denote the initial conditions.  

9. Solve the differential equations, subject to the initial conditions. 

 

Steps (3) (6) and (8) can usually be done on the computer, so you don’t actually have to do much calculus 

or math.   

 

Sometimes, you can avoid solving the equations of motion completely, by using conservation laws – 

conservation of energy, or conservation of momentum – to calculate quantities of interest.  These short-

cuts will be discussed in the next chapter. 

 

 

3.2.2 Simple examples of equations of motion and their solutions 

 

The general process described in the preceding section can be illustrated using simple examples.  In this 

section, we derive equations of motion for a number of simple systems, and find their solutions. 

 

The purpose of these examples is to illustrate the straightforward, step-by-step procedure for analyzing 

motion in a system.   Although we solve several problems of practical interest, we will simply set up and 

solve the equations of motion with some arbitrary values for system parameter, and won’t attempt to 

explore their behavior in detail.   More detailed discussions of the behavior of dynamical systems will 

follow in later chapters. 

 

Example 1: Trajectory of a particle near the earth’s surface (no air resistance) 

 

 

At time t=0, a projectile with mass m is launched from a 

position 0 X Y Z  X i j k  with initial velocity vector  

0 x y zV V V  V i j k .  Calculate its trajectory as a function 

of time. 

 

 

1. Introduce variables to describe the motion: We can 

simply use the Cartesian coordinates of the particle  ( ( ), ( ), ( ))x t y t z t  

 

2. Write down the position vector in terms of these variables: ( ) ( ) ( )x t y t z t  r i j k  

 

3. Differentiate the position vector with respect to time to find the acceleration. For this example, this is 

trivial 

i

j

k
X0

V0



2 2 2

2 2 2

dx dy dz d x d y d z

dt dt dt dt dt dt
     v i j k a i j k  

 

4. Draw a free body diagram.  The only force acting on the particle is gravity – the 

free body diagram is shown in the figure.  The force vector follows as mg F k . 

 

 

5. Write down Newton’s laws of motion. This is easy  
2 2 2

2 2 2

d x d y d z
m mg m

dt dt dt

 
      

 
F a k i j k  

The vector equation actually represents three separate differential equations of motion 
2 2 2

2 2 2
0 0

d x d y d z
g

dt dt dt
     

 

6. Eliminate reactions – this is not needed in this example. 

 

7. Identify initial conditions.  The initial conditions were given in this problem – we have that 

0 0 0x y z

dx dy dz
x X V y Y V z Z V

dt dt dt

     
          

     
 

 

8. Solve the equations of motion.  In general we will use MAPLE or matlab to do the rather tedious 

algebra necessary to solve the equations of motion.  Here, however, we will integrate the equations by 

hand, just to show that there is no magic in MAPLE. 

 

The equations of motion are 
2 2 2

2 2 2
0 0

d x d y d z
g

dt dt dt
     

It is a bit easier to see how to solve these if we define 

x y z

dx dy dz
v v v

dt dt dt
    

The equation of motion can be re-written in terms of ( , , )x y zv v v  as 

0 0
yx z

dvdv dv
g

dt dt dt
     

We can separate variables and integrate, using the initial conditions as limits of integration 

0 0 0

0 0

yx z

x y z

vv vt t t

x x z

V V V

x x y y z z

dv dt dv dt dv gdt

v V v V v V gt

   

   

     
 

Now we can re-write the velocity components in terms of (x,y,z) as 

x y z

dx dy dz
V V V gt

dt dy dt
     

Again, we can separate variables and integrate 
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dx V dt dy V dt dz V gt dt

x X V t y Y V t z Z V t gt

   
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so the position and velocity vectors are 

   

 
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x y z

x y z

X V t Y V t Z V t gt

V V V gt

 
       

 

   

r i j k

v i j k

 

 

Here’s how to integrate the equations of motion using Mupad 

 
 

Applications of trajectory problems: It is traditional in elementary physics and dynamics courses to 

solve vast numbers of problems involving particle trajectories.   These invariably involve being given 

some information about the trajectory, which you must then use to work out something else.  These 

problems are all somewhat tedious, but we will show a couple of examples to uphold the fine traditions of 

a 19
th
 century education.  

 

 Estimate how far you could throw a stone from the top 

of the Kremlin palace.   

 

Note that 

1. The horizontal and vertical components of 

velocity at time t=0 follow as 

0 0cos 0 sinx y zV v V V v     

2. The components of the position of the particle 

at time t=0 are  0, 0,X Y Z H    

3. The trajectory of the particle follows as 

  2
0 0

1
cos sin

2
v t H v t gt 

 
    

 
r i k  

4. When the particle hits the ground, its position vector is Dr i .  This must be on the trajectory, so 

  2
0 0

1
cos sin

2
I I Iv t H v t gt D 

 
    
 

i k i  

where It  is the time of impact.    

5. The two components of this vector equation gives us two equations for the two unknowns 

{ , }It D , which can be solved 
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v0

i

k
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The RootOf in MAPLE is scary – any time that MAPLE gives you a scary result, look in the help and see 

if there is a `convert’ function that might make it less scary.   

 
For a rough estimate of the distance we can use the following numbers 

1. Height of Kremlin palace – 71m 

2. Throwing velocity – maybe 25mph?  (pretty pathetic, I know - you can probably do better, 

especially if you are on the baseball team).   

3. Throwing angle – 45 degrees. 

Substituting numbers gives 36m (118ft).  

If you want to go wild, you can maximize D with respect to  , but this won’t improve your estimate 

much. 

 

Silicon nanoparticles with radius 20nm are in thermal motion near a flat surface.  At the surface, 

they have an average velocity 2 /kT m , where m is their mass, T is the 

temperature and k=1.3806503 × 10-23  is the Boltzmann constant. Estimate the 

maximum height above the surface that a typical particle can reach during its 

thermal motion, assuming that the only force acting on the particles is gravity 

 

1. The particle will reach its maximum height if it happens to be traveling 

vertically, and does not collide with any other particles. 

2. At time t=0 such a particle has position 0, 0, 0X Y Z    and velocity 

0 0 2 /x y zV V V kT m    

3. For time t>0 the position vector of the particle follows as 

  21
2 /

2
kT m t gt

 
  
 

r k  

Its velocity is 

 2 /kT m gt v k  

4. When the particle reaches its maximum height, its velocity must be equal to zero (if you don’t see 

this by visualizing the motion of the particle, you can use the mathematical statement that if  

yr k  is a maximum, then / ( / ) 0d dt dy dt  r v k ).  Therefore, at the instant of maximum 

height  max2 /kT m gt  v k 0  

5. This shows that the instant of max height occurs at time  max 2 / /t kT m g  

6. Substituting this time back into the position vector shows that the position vector at max height is 



2 1 2

2

kT kT kT

mg mg mg

 
   
 

r k k  

7. Si has a density of about 2330 kg/m^3. At room temperature (293K) we find that the distance is 

surprisingly large: 10mm or so.   Gravity is a very weak force at the nano-scale – surface forces 

acting between the particles, and the particles and the surface, are much larger.   
 

 

 

 

 

 

 

Example 2: Free vibration of a suspension system. 

 

A vehicle suspension can be idealized as a mass m supported by a spring.  The 

spring has stiffness k and un-stretched length 0L .  To test the suspension, the 

vehicle is constrained to move vertically, as shown in the figure. It is set in 

motion by stretching the spring to a length L  and then releasing it (from rest).  

Find an expression for the motion of the vehicle after it is released. 

 

As an aside, it is worth noting that a particle idealization is usually too crude to 

model a vehicle – a rigid body approximation is much better.  In this case, however, we assume that the 

vehicle does not rotate. Under these conditions the equations of motion for a rigid body reduce to 

mF a  and M 0 , and we shall find that we can analyze the system as if it were a particle. 

 

 

1. Introduce variables to describe the motion: The length of the spring ( )x t  is a convenient way to 

describe motion.   

 

2. Write down the position vector in terms of these variables:  We can take the origin at O as shown in 

the figure.  The position vector of the center of mass of the block is then 

( )
2

b
x t
 

  
 

r j  

 

3. Differentiate the position vector with respect to time to find the acceleration. For this example, this is 

trivial 
2

2

dx d x

dt dt
 v j a j  

 

4. Draw a free body diagram.  The free body diagram is shown in the figure: 

the mass is subjected to the following forces 

 Gravity, acting at the center of mass of the vehicle 

 The force due to the spring 

 Reaction forces at each of the rollers that force the vehicle to move 

vertically. 

Recall the spring force law, which says that the forces exerted by a spring act parallel to its length, tend to 

shorten the spring, and are proportional to the difference between the length of the spring and its un-

stretched length.   
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5. Write down Newton’s laws of motion. This is easy  

 
2

0 2
( ) ( )Ax Bx

d x
m R R mg k x L m

dt
      F a i j j  

The i and j components give two scalar equations of motion 

2

02

( ) 0

( )

Ax BxR R

d x k
g x L

mdt

 

 
    

 

 

6. Eliminate reactions – this is not needed in this example.  

 

7. Identify initial conditions.  The initial conditions were given in this problem – at time t=0, we know 

that x L  and / 0dx dt   

 

8. Solve the equations of motion. Again, we will first integrate the equations of motion by hand, and then 

repeat the calculation with MAPLE.  The equation of motion is 
2

02
( )

d x k
g x L

mdt

 
    
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We can re-write this in terms of  

x

dx
v

dt
  

This gives 

0( )x x x
x

dv dv dvdx k
v g x L

dt dx dt dx m

 
      

 
 

We can separate variables and integrate 

 

0

0

2 2 2
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2 2

0 0
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2 2

x
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x x
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k
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k k
v g x L x L L x L

m m

k mg mg
v L L x L

m k k

 
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 
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     

 

 

Don’t worry if the last line looks mysterious – writing the solution in this form just makes the algebra a 

bit simpler.  We can now integrate the velocity to find x 
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0 0
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0 0
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L

dx k mg mg
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The integral on the left can be evaluated using the substitution  
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Here’s the MAPLE solution 

 
Note that it’s important to include the assume() statements, otherwise Mupad gives the solution in the 

form of an exponential of a complex number.   The solution in this other form is also correct, but is 

difficult to visualize. 

 

The solution is plotted in the figure.  The behavior of vibrating 

systems will be discussed in more detail later in this course, but it 

is worth noting some features of the solution: 

1. The average position of the mass is 0 /x L mg k  .  

Here, mg/k is the static deflection of the spring i.e. the 

deflection of the spring due to the weight of the vehicle 

(without motion). This means that the car vibrates 

symmetrically about its static deflection.  

2. The amplitude of vibration is 0 /L L mg k  .  This 

corresponds to the distance of the mass above its average 

position at time t=0. 

3. The period of oscillation (the time taken for one 

complete cycle of vibration) is 2 /T m k  

4. The frequency of oscillation (the number of cycles per second) is 
1

2

k
f

m
  (note f=1/T).  

Frequency is also sometimes quoted as angular frequency, which is related to f  by 

2 /f k m   .  Angular frequency is in radians per second. 

 



An interesting feature of these results is that the static deflection is related to the frequency of oscillation - 

so if you measure the static deflection /mg k  , you can calculate the (angular) vibration frequency as 

/g   

 

 

 

Example 3: Silly FE exam problem 
 

This example shows how polar coordinates can be used to 

analyze motion.   

 

The rod shown in the picture rotates at constant angular speed 

in the horizontal plane.  The interface between block and rod 

has friction coefficient  .  The rod pushes a block of mass m, 

which starts at r=0 with radial speed V.   Find an expression 

for r(t). 

 

 

1. Introduce variables to describe the motion – the polar coordinates ,r   work for this problem 

 

2. Write down the position vector and differentiate to find acceleration – we don’t need to do 

this – we can just write down the standard result for polar coordinates 

2
2

2
2r

d r dr
r

dtdt
 

 
   
 
 

a e e  

 

3. Draw a free body diagram – shown in the figure – note that it is 

important to draw the friction force in the correct direction.  The block 

will slide radially outwards, and friction opposes the slip. 

 

4. Write down Newton’s law 
 

2
2

2
2r r

d r dr
T N m r

dtdt
  

   
       

   

e e e e  

 

5. Eliminate reactions  
 

F=ma gives two equations for N and T.   A third one comes from the friction law T N  

 

 
The third solution can be rearranged into an equation of motion for r 
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2
2

2
2 0

d r dr
r

dtdt
      

 

6. Identify initial conditions Here, r=0  dr/dt=V at time t=0. 

 

7. Solve the equation: If you’ve taken AM33 you will know how to solve this equation…   But if 

not, or you are lazy, you can use MAPLE to solve it for you. 

 
This can be simplified slightly by hand: 
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2
( ) sinh( 1 )

2 1

tV
r t e t  

 

 



 

 

 

Example 4: Motion of a pendulum (R-rated version) 

 

A pendulum is a ubiquitous engineering system. You are, of course, familiar with 

how a pendulum can be used to measure time.  But it’s used for a variety of other 

scientific applications.  For example, Professor Crisco’s lab uses pendulum to 

measure properties of human joints, see  

Crisco Joseph J; Fujita Lindsey; Spenciner David B, ‘The dynamic flexion/extension 

properties of the lumbar spine in vitro using a novel pendulum system.’ Journal of 

biomechanics 2007;40(12):2767-73 

 

In this example, we will work through the basic problem of deriving and solving the equations of motion 

for a pendulum, neglecting air resistance. 

 

1. Introduce variables to describe motion:   The angle   ( )t  shown in the figure is a convenient 

variable. 

 

 

2. Write down the position vector as a function of the variables We introduce a Cartesian coordinate 

system with origin at O, as shown in the picture. 

 

Elementary geometry shows that sin cosl l  r i j  

 

i
j



l



Note that we have assumed that the cable remains straight – this will be true as long as the internal force 

in the cable is tensile.  If calculations predict that the internal force is compressive, this assumption is 

wrong.  But there is no way to check the assumption at this point so we simply proceed, and check the 

answer at the end 

 

3. Differentiate the position vector to find the acceleration: The computer makes this painless.   

 

 
 

4. The free body diagram is shown in the figure.   The force exerted by the cable on 

the particle is introduced as an unknown reaction force.  The force vector is  

 sin cosR R mg    F i j  

 

5. Newton’s laws of motion can be expressed as 

 
2 22 2

2 2
sin cos sin cos cos sin

m

d d d d
R R mg m l l m l l

dt dtdt dt
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Equating the i and j components gives two equations for the two unknowns  

2 2

2

2 2

2

sin sin cos
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6. Eliminate the reaction forces. – In this problem, it is helpful to eliminate the unknown reaction force 

R.  You can do this on the computer if you like, but in this case it is simpler to do this by hand.  You can 

simply multiply the first equation by cos  and the second equation by sin  and then add them.   This 

yields 

 
2

2 2

2

2

2

sin sin cos

sin 0

d
mg m

dt

d g

ldt


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  

 

 

7. Identify initial conditions. Some calculations are necessary to determine the initial conditions in this 

problem.  We are given that 0   at time t=0, and the horizontal velocity is 0V  at time t=0, but to solve 

i

j


R

mg



the equation of motion, we need the value of / 0d dt  .  We can find the relationship we need by 

differentiating the position vector to find the velocity 

 cos sin
d

l l
dt


  v i j  

Setting 0Vv i  and 0   at t=0 shows that 

0
d

V l
dt


i i  

so 0/ /d dt V l   

 
8. Solve the equations of motion  This equation of motion is too difficult for MAPLE but actually the 

solution does exist and is very well known – this is a classic problem in mathematical physics.  With 

initial conditions 00, / / 0d dt V l t     the solution is 

1 0 0 0

0 0

0

2sin sn , 1

( )

2am , 1
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glV V
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l V gl
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 
 

   
  

 

The first solution describes swinging motion of the pendulum, while the second solution describes the 

motion that occurs if you push the pendulum so hard that it whirls around on the pivot. The equations 

may look scary, but you can simply use MAPLE to calculate and plot them. 

1. In the first equation, sn( , )x k  is a special function called the `sin amplitude.’  You can think of it 

as a sort of trig function for adults – in fact for  k=0, sn( ,0) sin( )x x  and we recover the PG 

version.   You can compute it in Mupad using jacobiSN(x,k) 

2. Similarly, am( , )x k  is a function called the `Amplitude.’  You can calculate it in Mupad using 

jacobiAM(x,k).  In Mupad, the am function has range - <am( , )x k  , so the solution 

predicts that as the pendulum whirls around the pivot, the angle   increases from 0 to 2 , then 

jumps to 2 , increases to 2  again, and so on.   

 

You might have solved the pendulum problem already in an elementary physics course, and might 

remember a different solution.  This is because you probably only derived an approximate solution, by 

assuming that the angle   remains small.   This occurs when the initial velocity satisfies / 1V gl  , in 

which case the solution can be approximated by 

( ) sin
V g

t t
lgl


 

   
 

 

 

 

 

3.3.3 Numerical solutions to equations of motion using MATLAB 

 

In the preceding section, we were able to solve all our equations of motion exactly, and hence to find 

formulas that describe the motion of the system.  This should give you a warm and fuzzy feeling – it 

appears that with very little work, you can predict everything about the motion of the system.  You may 

even have visions of running a consulting business from your yacht in the Caribbean, with nothing more 

than your chef, your masseur (or masseuse) and a laptop with a copy of MAPLE. 

 



Unfortunately real life is not so simple.   Equations of motion for most engineering systems cannot be 

solved exactly.  Even very simple problems, such as calculating the effects of air resistance on the 

trajectory of a particle, cannot be solved exactly. 

 

For nearly all practical problems, the equations of motion need to be solved numerically, by using a 

computer to calculate values for the position, velocity and acceleration of the system as functions of time. 

Vast numbers of computer programs have been written for this purpose – some focus on very specialized 

applications, such as calculating orbits for spacecraft (STK); calculating motion of atoms in a material 

(LAMMPS); solving fluid flow problems (e.g. fluent, CFDRC); or analyzing deformation in solids (e.g. 

ABAQUS, ANSYS, NASTRAN, DYNA); others are more general purpose equation solving programs. 

 

In this course we will use MATLAB, which is widely used in all engineering applications.  You should 

complete the MATLAB tutorial before proceeding any further. 

 

In the remainder of this section, we provide a number of examples that illustrate how MATLAB can be 

used to solve dynamics problems.   Each example illustrates one or more important technique for setting 

up or solving equations of motion. 

 

 

Example 1: Trajectory of a particle near the earth’s surface (with air resistance) 

 

As a simple example we set up MATLAB to solve the 

particle trajectory problem discussed in the preceding 

section.  We will extend the calculation to account for the 

effects of air resistance, however.   We will assume that our 

projectile is spherical, with diameter D, and we will assume 

that there is no wind.  You may find it helpful to review the 

discussion of aerodynamic drag forces in Section 2.1.7 

before proceeding with this example. 

 

1. Introduce variables to describe the motion: We can 

simply use the Cartesian coordinates of the particle  ( ( ), ( ), ( ))x t y t z t  

 

2. Write down the position vector in terms of these variables: ( ) ( ) ( )x t y t z t  r i j k  

 

3. Differentiate the position vector with respect to time to find the acceleration. Simple calculus gives 

 
2 2 2

2 2 2

dx dy dz d x d y d z

dt dt dt dt dt dt
     v i j k a i j k  

 

4. Draw a free body diagram.  The particle is now subjected to two forces, as shown in the picture. 

 

Gravity – as always we have g mg F k . 

   

 

Air resistance.   

 

The magnitude of the air drag force is given by 21

2
D DF C DV , where 

i

j

k
X0

V0 FD

mg



    is the air density,  

 DC  is the drag coefficient, 

 D is the projectile’s diameter, and 

 V  is the magnitude of the projectile’s velocity relative to the air. Since we assumed the air is 

stationary, V is simply the magnitude of the particle’s velocity, i.e. 

2 2 2
dx dy dz

V
dt dt dt

     
       

     
 

 

The Direction of the air drag force is always opposite to the direction of motion of the projectile 

through the air.  In this case the air is stationary, so the drag force is simply opposite to the direction 

of the particle’s velocity.   Note that /Vv  is a unit vector parallel to the particle’s velocity.  The drag 

force vector is therefore 
2 2

21 1

2 4 2 4
D D D

D D dx dy dz
C V C V

V dt dt dt

 
 

 
      

 

v
F i j k  

 

The total force vector is therefore 
21

2 4
D

D dx dy dz
mg C V

dt dt dt




 
     

 
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5. Write down Newton’s laws of motion.  
2 2 2 2

2 2 2
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It is helpful to simplify the equation by defining a specific drag coefficient 
2

8
Dc D C

m


 , so that 
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The vector equation actually represents three separate differential equations of motion 
2 2 2

2 2 2

d x dx d y dy d z dz
cV cV g cV
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6. Eliminate reactions – this is not needed in this example. 

 

7. Identify initial conditions.  The initial conditions were given in this problem - we have that 

0 0 0x y z

dx dy dz
x X V y Y V z Z V

dt dt dt
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8. Solve the equations of motion.  We can’t use the magic ‘dsolve’ command in MAPLE to solve this 

equation – it has no known exact solution.  So instead, we use MATLAB to generate a numerical 

solution. 

 



This takes two steps.  First, we must turn the equations of motion into a form that MATLAB can use.  

This means we must convert the equations into first-order vector valued differential equation of the 

general form ( , )
d

f t
dt


y

y .  Then, we must write a MATLAB script to integrate the equations of motion. 

 

Converting the equations of motion:  We can’t solve directly for (x,y,z), because these variables get 

differentiated more than once with respect to time.   To fix this, we introduce the time derivatives of 

(x,y,z) as new unknown variables.   In other words, we will solve for ( , , , , , )x y zx y z v v v , where 

x y z
dx dx dx

v v v
dt dt dt

    

These definitions are three new equations of motion relating our unknown variables.   In addition, we can 

re-write our original equations of motion as 

yx z
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So, expressed as a vector valued differential equation, our equations of motion are 
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MATLAB script.  The procedure for solving these equations is discussed in the MATLAB tutorial.  A 

basic MATLAB script is listed below. 

 
function trajectory_3d 
% Function to plot trajectory of a projectile  
% launched from position X0 with velocity V0 
% with specific air drag coefficient c 

% stop_time specifies the end of the calculation 

  

g = 9.81; % gravitational accel 

c=0.5; % The constant c 

X0=0; Y0=0; Z0=0; % The initial position 

VX0=10; VY0=10; VZ0=20; 

stop_time = 5; 

 
initial_w = [X0,Y0,Z0,VX0,VY0,VZ0]; % The solution at t=0 

  
[times,sols] = ode45(@eom,[0,stop_time],initial_w); 

  
plot3(sols(:,1),sols(:,2),sols(:,3)) % Plot the trajectory 

  
function dwdt = eom(t,w) 

% Variables stored as follows w = [x,y,z,vx,vy,vz] 

% i.e. x = w(1), y=w(2), z=w(3), etc 

   x = w(1); y=w(2); z=w(3); 

   vx = w(4); vy = w(5); vz = w(6); 

   vmag = sqrt(vx^2+vy^2+vz^2); 



   dxdt = vx; dydt = vy; dzdt = vz; 

   dvxdt = -c*vmag*vx; 

   dvydt = -c*vmag*vy; 

   dvzdt = -c*vmag*vz-g; 
   dwdt = [dxdt;dydt;dzdt;dvxdt;dvydt;dvzdt]; 
end 

  
end 

 

 

This produces a plot that looks like this (the plot’s been edited to add the grid,etc) 

 

 
 

 

 

 

Example 2: Simple satellite orbit calculation 

 

The figure shows satellite with mass m orbiting a planet with 

mass M.  At time t=0 the satellite has position vector Rr i  

and velocity vector Vv j .  The planet’s motion may be 

neglected (this is accurate as long as M>>m). Calculate and 

plot the orbit of the satellite. 

 

1. Introduce variables to describe the motion: We will use 

the (x,y) coordinates of the satellite. 

 

2. Write down the position vector in terms of these variables: x y r i j  

 

3. Differentiate the position vector with respect to time to find the acceleration.  
2 2
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dx dy d x d y

dt dt dt dt
   v i j a i j  

 

 

i

j

m
M

V

R

i

j

Fg



4. Draw a free body diagram.  The satellite is subjected to a gravitational force. 

The magnitude of the force is 
2g

GMm
F

r
 , where  

 G  is the gravitational constant, and 

 2 2r x y   is the distance between the planet and the satellite 

 

The direction of the force is always towards the origin:  / rr  is therefore a unit vector parallel to the 

direction of the force.   The total force acting on the satellite is therefore 

 
2 3

GMm GMm
x y

rr r
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r
F i j  

 

5. Write down Newton’s laws of motion.  
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The vector equation represents two separate differential equations of motion 
2 2

2 3 2 3

d x GM d y GM
x y

dt r dt r
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6. Eliminate reactions – this is not needed in this example. 

 

7. Identify initial conditions.  The initial conditions were given in this problem - we have that 
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dx dy

x R y V
dt dt
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8. Solve the equations of motion.  We follow the usual procedure: (i) convert the equations into 

MATLAB form; and (ii) code a MATLAB script to solve them. 

 

Converting the equations of motion:  We introduce the time derivatives of (x,y) as new unknown 

variables.   In other words, we will solve for ( , , , )x yx y v v , where 

x y
dx dx

v v
dt dt

   

These definitions are new equations of motion relating our unknown variables.   In addition, we can re-

write our original equations of motion as 
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So, expressed as a vector valued differential equation, our equations of motion are 
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Matlab script: Here’s a simple script to solve these equations. 

 



function satellite_orbit 
% Function to plot orbit of a satellite  
% launched from position (R,0) with velocity (0,V) 

  
GM=1; 

R=1; 

V=1; 

Time=100; 

w0 = [R,0,0,V]; % Initial conditions 

  
[t_values,w_values] = ode45(@odefunc,[0,time],w0); 

  
plot(w_values(:,1),w_values(:,2)) 

  
function dwdt = odefunc(t,w) 
   x=w(1); y=w(2); vx=w(3); vy=w(4); 

   r = sqrt(x^2+y^2); 
   dwdt = [vx;vy;-GM*x/r^3;-GM*y/r^3]; 
end 

  

  
end 

 

 

 

Running the script produces the result shown (the plot was annotated by 

hand) 

 

Do we believe this result?   It is a bit surprising – the satellite seems to be 

spiraling in towards the planet.   Most satellites don’t do this – so the 

result is a bit suspicious.   The First Law of Scientific Computing states 

that ` if a computer simulation predicts a result that surprises you, it is 

probably wrong.’ 

 

So how can we test our computation?   There are two good tests: 

1. Look for any features in the simulation that you can predict 

without computation, and compare your predictions with those of the computer. 

2. Try to find a special choice of system parameters for which you can derive an exact solution to 

your problem, and compare your result with the computer 

We can use both these checks here. 

 

1. Conserved quantities  For this particular problem, we know that (i) the total energy of the system 

should be constant; and (ii) the angular momentum of the system about the planet should be constant 

(these conservation laws will be discussed in the next chapter – for now, just take this as given).  The total 

energy of the system consists of the potential energy and kinetic energy of the satellite, and can be 

calculated from the formula 
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The total angular momentum of the satellite (about the origin) can be calculated from the formula 
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(If you don’t know these formulas, don’t panic – we will discuss energy and angular momentum in the 

next part of the course) 

 

We can have MATLAB plot E/m and / mH , and see if these are really conserved.  The energy and 

momentum can be calculated by adding these lines to the MATLAB script 
 

 

 

for i =1:length(t) 

     r = sqrt(w_values(i,1)^2 + w_values(i,2)^2) 

     vmag = sqrt(w_values(i,1)^2 + w_values(i,2)^2) 
energy(i) = -GM/r + vmag^2/2; 
angularm(i) = w_values(i,1)*w_values(i,4)-w_values(i,2)*w_values(i,3); 

end 

 

You can then plot the results (e.g. plot(t_values,energy)).  The results are shown below.  

 
These results look really bad – neither energy, nor angular momentum, are conserved in the simulation.  

Something is clearly very badly wrong. 

 

Comparison to exact solution: It is not always possible to find a 

convenient exact solution, but in this case, we might guess that some 

special initial conditions could set the satellite moving on a circular path.  

A circular path might be simple enough to analyze by hand.  So let’s 

assume that the path is circular, and try to find the necessary initial 

conditions. If you still remember the circular motion formulas, you could 

use them to do this.  But only morons use formulas – here we will derive 

the solution from scratch. Note that, for a circular path 

(a) the particle’s radius r=constant.  In fact, we know r=R, from the 

position at time t=0.  

(b) The satellite must move at constant speed, and the angle   must increase linearly with time, 

i.e. t   where    is a constant (see section 3.1.3 to review motion at constant speed 

around a circle). 
With this information we can solve the equations of motion.   Recall that the position, velocity and 

acceleration vectors for a particle traveling at constant speed around a circle are  
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We know that Vv  from the initial conditions, and v  is constant. This tells us that 

V R  

Finally, we can substitute this into Newton’s law 
2
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Both components of the equation of motion are satisfied if we choose 
2

2

GM V

RR
  

So, if we choose initial values of , ,GM V R  satisfying this equation, the orbit will be circular.  In fact, our 

original choice, 1, 1, 1GM V R    should have given a circular orbit.  It did not.  Again, this means our 

computer generated solution is totally wrong. 

 

 

 

Fixing the problem:  In general, when computer predictions are 

suspect, we need to check the following 

1. Is there an error in our MATLAB program?  This is nearly 

always the cause of the problem.  In this case, however, the 

program is correct (it’s too simple to get wrong, even for me). 

2. There may be something wrong with our equations of motion 

(because we made a mistake in the derivation).  This would not 

explain the discrepancy between the circular orbit we predict 

and the simulation, since we used the same equations in both 

cases. 

3. Is the MATLAB solution sufficiently accurate?  Remember that 

by default the ODE solver tries to give a solution that has 0.1% 

error.  This may not be good enough.  So we can try solving the 

problem again, but with better accuracy.  We can do this by modifying the MATLAB call to the 

equation solver as follows 
options = odeset('RelTol',0.00001); 
[t_values,w_vlues] = ode45(@odefunc,[0,time],w0,options); 

4. Is there some feature of the equation of motion that makes them especially difficult to solve? In 

this case we might have to try a different equation solver, or try a different way to set up the 

problem.  

 

The figure on the right shows the orbit predicted with the better accuracy.  You can see there is no longer 

any problem – the orbit is perfectly circular.   The figures below plot the energy and angular momentum 

predicted by the computer. 



  
There is a small change in energy and angular momentum but the rate of change has been reduced 

dramatically.   We can make the error smaller still by using improving the tolerances further, if this is 

needed.  But the changes in energy and angular momentum are only of order 0.01% over a large number 

of orbits: this would be sufficiently accurate for most practical applications. 

 

Most ODE solvers are purposely designed to lose a small amount of energy as the simulation proceeds, 

because this helps to make them more stable.  But in some applications this is unacceptable – for example 

in a molecular dynamic simulation where we are trying to predict the entropic response of a polymer, or a 

free vibration problem where we need to run the simulation for an extended period of time.  There are 

special ODE solvers that will conserve energy exactly. 

 

 

Example 3: Earthquake response of a 2-storey building 

 

The figure shows a very simple idealization of a 2-storey building.   The 

roof and second floor are idealized as blocks with mass m.  They are 

supported by structural columns, which can be idealized as springs with 

stiffness k and unstretched length L.   At time t=0 the floors are at rest 

and the columns have lengths 1 2/ / 2l L mg k l L mg k     (can 

you show this?).  We will neglect the thickness of the floors themselves, 

to keep things simple. 
 

For time t>0, an earthquake makes the ground vibrate vertically. The 

ground motion can be described using the equation 0 sind d t .  

Horizontal motion may be neglected. Our goal is to calculate the motion of the first and second floor of 

the building. 

 

 

It is worth noting a few points about this problem: 

1. You may be skeptical that the floor of a building can be idealized as a particle (then again, maybe 

you couldn’t care less…).    If so, you are right – it certainly is not a `small’ object.   However, 

because the floors move vertically without rotation, the rigid body equations of motion simply 

reduce to  mF a  and M=0, where the moments are taken about the center of mass of the block.  

The floors behave as though they are particles, even though they are very large. 

2. Real earthquakes involve predominantly horizontal, not vertical motion of the ground.  In 

addition, structural columns resist extensional loading much more strongly than transverse 

loading.  So we should really be analyzing horizontal motion of the building rather than vertical 
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k k
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motion.  However, the free body diagrams for horizontal motion are messy (see if you can draw 

them) and the equations of motion for vertical and horizontal motion turn out to be the same, so 

we consider vertical motion to keep things simple. 

3. This problem could be solved analytically (e.g. using the `dsolve’ feature of MAPLE) – a 

numerical solution is not necessary.  Try this for yourself. 

 

1. Introduce variables to describe the motion: We will use the height of each floor 1 2( , )y y  as the 

variables. 

 

2. Write down the position vector in terms of these variables: We now have to worry about two masses, 

and must write down the position vector of both 

1 1 2 2y y r j r j  

Note that we must measure the position of each mass from a fixed point. 

 

 

3. Differentiate the position vector with respect to time to find the acceleration.  

2
1 1

1 1 2

2
2 2

2 2 2

dy dy

dt dt

dy dy

dt dt

  
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        
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4. Draw a free body diagram. We must draw a free body diagram for each 

mass. The resultant force acting on the bottom and top masses, respectively, are 

 1 1 2 2 22 2S S Smg F F mg F      F j F j  

where 1 2,S SF F  are the forces in the two springs (note that we assume that all 

the springs are in tension – this makes the calculation easier). 

 

The spring forces are equal to the stiffness multiplied by the increase in length 

of the springs 

1 1 2 2( ) ( )S SF k l L F k l L     

 

We will have to find the spring lengths 1 2,l l  in terms of our coordinates 1 2,y y  to solve the problem.   

Geometry shows that 

2 2 1 1 1 0 sinl y y l y d t     

So, finally 

 1 1 0 2 1

2 2 1

2 ( sin ) 2 ( )

2 ( )

mg k y d t L k y y L

mg k y y L

       

    

F j

F j
 

 

5. Write down Newton’s laws of motion.  F=ma for each mass gives 

 

 

2
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1 2 2

2
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2 2
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2 ( )

d y
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dt
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This is two equations of motion – we can substitute for 1 2,l l  and rearrange them as 
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6. Eliminate reactions – this is not needed in this example. 

 

7. Identify initial conditions. We know that, at time t=0 

1 2
1 2/ 0 2 3 / 2 0

dy dy
y L mg k y L mg k

dt dt
       

 

8. Solve the equations of motion. We need to (i) reduce the equations to the standard MATLAB form and 

(ii) write a MATLAB script to solve them. 

 

Converting the equations.  We now need to do two things: (a) remove the second derivatives with respect 

to time, by introducing new variables; and (b) rearrange the equations into the form / ( , )d dt ty f y .  We 

remove the derivatives by introducing 1 2
1 2

dl dl
v v

dt dt
   as additional unknown variables, in the usual 

way.   Our equations of motion can then be expressed as 
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 
     
 

 

 
We can now code MATLAB to solve these equations directly for dy/dt.  A script (which plots the 

position of each floor as a function of time) is shown below. 
function building 

% 
k=100; 

m=1; 

omega=9; 

d=0.1; 

L=10; 

time=20; 

g = 9.81; 
w0 = [L-m*g/k,2*L-3*m*g/(2*k),0,0]; 
[t_values,w_values] = ode45(@eom,[0,time],w0); 
plot(t_values,w_values(:,1:2)); 

  
function dwdt = eom(t,w) 

y1=w(1); 

y2=w(2); 

v1=w(3); 

v2=w(4); 



 
dwdt = [v1;v2;... 

     -2*k*(y1-d*sin(omega*t)-L)/m+2*k*(y2-y1-L)/m;... 

    -g-2*k*(y2-y1-L)/m] 
end 

end 

 

The figures below plot the height of each floor as a function of time, for various earthquake frequencies.  

For special earthquake frequencies (near the two resonant frequencies of the structure) the building 

vibrations are very severe.   As long as the structure is designed so that its resonant frequencies are well 

away from the frequency of a typical earthquake, it will be safe. 

 

We will discuss vibrations in much more detail later in this course. 

           

          
 

 

This problem illustrates a shortcoming of solving problems on the computer without thinking too much 

about them.   The way we set up the problem, it looks as though the solution depends on g, and the 

unstretched spring length L, but in fact this is not the case.  Not being aware of this makes the equations 

of motion much more complicated than they really are, and makes it harder to interpret the results.  Of 

course we could learn by trial and error that the solution is independent of L and g, but a better approach 

is to eliminate these variables from the equations of motion altogether.   

 

There is a standard way to do this – instead of solving for the lengths of the springs y, we solve for the 

deflection of the masses from their static equilibrium positions.   We will discuss this in more general 

terms when we discuss vibration problems later in the course.   But we’ll work through the process here, 

because it’s useful to use the same approach in the mass launcher design project. 



 

The figure illustrates the idea.  The figure 

on the left shows the masses at their static 

equilibrium positions. Here the springs 

have lengths 

1 2/ , / 2l L mg k l L mg k    .   We are 

now going to describe the motion by the 

displacement of each mass from its static 

equilibrium position, 2 2,z z .  We simply 

work through the derivations again with 

these new variables. 

 

The accelerations of the masses don’t 

depend on what we use for the origin 

(provided the origin is fixed, of course), so  
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The free body diagram doesn’t change either, and the forces in the springs are 

still given by 

1 1 2 2( ) ( )S SF k l L F k l L     

 

But now we have to find the spring lengths 1 2,l l  in terms of our coordinates 

1 2,z z  to solve the problem.   Geometry shows that 

1 1 0

2 2 1

/ sin

/ 2

l L mg k z d t

l L mg k z z

   

   
 

 

Newton’s laws of motion now become 
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Finally substituting for 1 2,l l  and simplifying we find that lots of terms magically cancel, and 
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These equations don’t involve L or g.  Furthermore the initial conditions are simply 

 1 2
1 2 0; 0

dz dz
z z

dt dt
     

so the solution for 1 2,z z  must be independent of L and g.   
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Example 4: The dreaded pendulum revisited (apologies…) 

 

You may have lost interest in pendulum problems by now.  Bear with us, however- it 

is a convenient example that illustrates how to solve problems with constraints.  

 

So we re-visit the problem shown in the figure.  This time, we will describe the 

system using (x,y) coordinates of the mass instead of the inclination of the 

cable.   

 

 
1. Introduce variables to describe the motion: We will use the position of the mouse relative to point O 

( , )x y  as the variables.   

 

2. Write down the position vector in terms of these variables:  

x y r i j  

Note that we’ve chosen j to point vertically downwards 

 

3. Differentiate the position vector with respect to time to find the acceleration.  
2 2

2 2

dx dy d x d y

dt dt dt dt
   v i j a i j  

 

4. Draw a free body diagram. We can use the FBD we drew earlier.  The force must 

now be expressed in terms of x and y instead of  , however.  Simple trig shows that 

2 2 2 2
cos sin

y x

x y x y

  

 

 

The resultant force is therefore 

2 2 2 2
sin cos

x y
R R mg R R mg

x y x y

        

 

F i j j i j j  

 

5. Write down Newton’s laws of motion.  F=ma gives 

2 2

2 22 2 2 2

x y d x d y
R R mg m

dt dtx y x y

 
      

 
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F i j j i j  

This is two equations of motion – we can rearrange them as 
2 2

2 22 2 2 2

d x R x d y R y
g

m mdt dtx y x y

    

 

 

 

 

6. Eliminate reactions –We could eliminate R if we wanted – but this time we won’t bother.  Instead, we 

will carry R along as an additional unknown, and use MATLAB to calculate it.   

 

7. If there are more unknown variables than equations of motion, look for constraint equations.  We 

now have three unknowns (x,y,R) but only two equations of motion (eliminating R in step 6 won’t help – 

in this case we will have two unknowns but only one equation of motion).  So we need to look for an 

additional equation somewhere.    
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The reason we’re missing an equation is that we took x,y to be arbitrary – but of course the mouse has to 

remain attached to the cable at all times.   This means that his distance from O is fixed –i.e. 

2 2x y l   

This is the missing equation. 

 

We could, if we wanted, use this equation to eliminate one of our unknown variables (doing the algebra 

by hand).   Instead, however, we will use MATLAB to do this for us.  For this purpose, we need to turn 

the equation into a constraint on the accelerations, instead of the position of the particle.  To get such an 

equation, we can differentiate both sides of the constraint with respect to time 

2 2

2 2 2 2
0

0

d d x dx y dy
x y l

dt dt dt dtx y x y

dx dy
x y

dt dt

    

 

  

 

This is now a constraint on the velocity. Differentiating again gives 
2 22 2

2 2

2 22 2
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0
dx d x dy d y
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dt dtdt dt

d x d y dx dy
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dt dtdt dt
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Again – if you have trouble doing the derivatives, just use MAPLE (don’t forget to specify that x, y are 

functions of time, i.e. enter them as x(t), y(t) when typing the constraint formula into MAPLE). 

 

[Aside – when I first coded this problem I tried to constrain the velocity of the particle, instead of the 

acceleration.   This doesn’t work (as I should have known), and produces some rather interesting 

MATLAB errors – if you are curious, try it and see what happens.  If you are even more curious, you 

might like to think about why you need to constrain accelerations and not velocities.]   
 

7. Identify initial conditions. We know that, at time t=0 

00 0
dx dy

x V y L
dt dt

     

 

8. Solve the equations of motion. We need to (i) reduce the equations to the standard MATLAB form and 

(ii) write a MATLAB script to solve them. 

 

In the usual way, we introduce / , /x yv dx dt v dy dt   as additional unknowns. Our set of unknown 

variables is , , , ,x yx y v v R .   The equations of motion, together with the constraint equation, can be 

expressed as 
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This can be expressed as a matrix equation for an unknown vector [ / , ]d dt Ry  
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 

 

We can now use MATLAB to solve the equations for the unknown time derivatives /d dty , together with 

the reaction force R.   Here’s a MATLAB script that integrates the equations of motion and plots (x,y) as a 

function of time.  Notice that, because we don’t need to integrate R with respect to time, the function 

‘eom’ only needs to return /d dty .    

function pendulum 

  
g = 9.81; 

l=1; 

V0=0.1; 

time=20; 
w0 = [0,l,V0,0]; % Initial conditions 
[t_values,w_values] = ode45(@eom,[0,time],w0); 
plot(t_values,w_values(:,1:2)); 

  
function dwdt = eom(t,w) 
% The vector w contains [x,y,vx,vy]  

x=w(1);y=w(2);vx=w(3);vy=w(4); 

M = eye(5); % This sets up a 5x5 matrix with 1s on all the diags 
M(3,5) = (x/m)/sqrt(x^2+y^2); 
M(4,5) = (y/m)/sqrt(x^2+y^2); 
M(5,3) = x; 
M(5,4) = y; 
M(5,5) = 0; 
f = [vx;vy;0;g;-vx^2-vy^2]; 
sol = M\f; % This solves the matrix equation M*[dydt,R]=f for [dwdt,R] 
dwdt = sol(1:4); % only need to return time derivatives dw/dt  



end 
end 

 

Final remarks: In general, it is best to avoid using constraint equations – it makes the problem harder to 

set up, and harder for MATLAB to solve.   Sometimes they are unavoidable, however – in some cases 

you might not see how to identify a suitable set of independent coordinates; and there are some systems (a 

rolling wheel is the most common example) for which a set of independent coordinates do not exist.  

These are given the fancy name `non-holonomic systems’ – mentioning that you happen to be an expert 

on non-holonomic systems during a romantic candle-light dinner is sure to impress your dates. 

 

 

3.3.4 Case Study - Simple model of a vehicle 

 

As a representative application of the methods outlined in the preceding section, we will set up and solve 

the equations of motion for a very simple idealization of a vehicle.  This happens to be an example of a 

non-holonomic system (sorry we aren’t at a romantic dinner).  Don’t worry if the model looks rather scary 

– this calculation is more advanced than anything you would be expected to do at this stage of your 

career…  Our goal is to illustrate how the method we’ve developed in this section can be applied to a real 

engineering system of interest.   You should be able to follow and understand the procedure.  

 

The figure shows how the vehicle is idealized. Here are a few 

remarks: 

1. We consider only 2D planar motion of the vehicle 

2. For simplicity we assume the vehicle has only two 

wheels, one at the front and one at the rear.  (It’s not 

a motorcycle, however, because we won’t account 

for the vehicle leaning around corners) 

3. The car is idealized as a particle with mass m 

supported on a massless chassis with wheelbase L. 

4. Aerodynamic drag forces are assumed to act directly 

on the particle. 

5. The most complicated and important part of a vehicle dynamics model is the description of how 

the wheels interact with the road.  Here, we will just assume that  

a. The front and rear of the vehicle have to move in a direction perpendicular to each 

wheel’s axle. Reaction forces must act on each wheel parallel to the axle in order to 

enforce this constraint (see the FBD). 

b. In addition, we assume that the vehicle has rear-wheel drive. This is modeled as a 

prescribed force ( )P t  exerted by the ground on the rear wheel, acting parallel to the 

rolling direction of the wheel (see the FBD).  

c. The front wheel is assumed to roll freely and have negligible mass – this means that the 

contact force acting on the wheel must be perpendicular to its rolling direction (see the 

FBD). The vehicle is steered by rotating the front wheel through an angle ( )t  with 

respect to the chassis. 

This is a vastly over-simplified model of wheel/road interaction – for example, it predicts that the 

car can never skid.  If you are interested in extending this calculation to a more realistic model, 

ask us… We’d be happy to give you better equations! 
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1. Introduce variables to describe the motion: We will use the (x,y) coordinates of car and its orientation 

  as the variables. 

 

2. Write down the position vector in terms of these variables: x y r i j  

 

3. Differentiate the position vector with respect to time to find the acceleration.  
2 2

2 2

dx dy d x d y

dt dt dt dt
   v i j a i j  

 

 

4. Draw a free body diagram. The vehicle is subjected to (i) 

a thrust force P and a lateral reaction force 
RR  acting on the 

rear wheel, (ii) a lateral reaction force FR  acting on the front 

wheel, and a drag force DF  acting at the center of mass. 

 

The drag force is related to the vehicle’s velocity by 

D

dx dy
cv cv

dt dt

 
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 
F v i j  

where c is a drag coefficient.  For a more detailed discussion of drag forces see the first example in this 

section. 

 

The resultant force on the vehicle is 
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Because we are modeling the motion of the vehicle’s chassis, which can rotate, we must also consider the 

moments acting on the chassis.  You should be able to verify for yourself that the resultant moment of all 

the forces about the particle is 

( cos )
2

F R

L
R R M k  

 

5. Write down Newton’s laws of motion.  F=ma gives 
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This gives two equations of motion; the condition M=0 for the chassis gives one more.   

 

 
6. Eliminate reactions – It’s easier to eliminate them with MATLAB. 
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7. If there are more unknown variables than equations of motion, look for constraint equations. This is 

the hard part of this application.    We have two unknown reaction forces, so we need to find two 

constraint equations that will determine them.   These are (i) that the rear of the vehicle must move 

perpendicular to the axle of the rear wheel; and (ii) the front of the vehicle must move perpendicular to 

the axle of the front wheel.  Consider the rear wheel: 

1. Note that the position vector of the rear wheel is cos sin
2 2

L L
x y 

   
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2. The velocity follows as sin cos
2 2

dx L d dy L d

dt dt dt dt
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3. Note that sin cos  n i j  is a unit vector parallel to the axle of the rear wheel. 

4. For the rear of the vehicle to move perpendicular to the rear axle, we must have 0 v n . This 

shows that 

sin cos 0
2

dx dy L d

dt dt dt


     

Similarly, for the front wheel, we can show that  

sin( ) cos( ) (sin sin( ) cos cos( )) 0
2

sin( ) cos( ) cos 0
2

dx dy L d

dt dt dt

dx dy L d

dt dt dt


         


    

       

     

 

where we have used the trig formula cos( ) cos cos sin sinA B A B A B   . 

 

We need to re-write these equations as constraints on the acceleration of the vehicle.  To do this, we 

differentiate both constraints with respect to time, to see that 
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7. Identify initial conditions: We will assume that the vehicle starts at rest, with 

0
dx dy d

x y
dt dt dt


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7. Solve the equations of motion.  We need to write the equations of motion in a suitable matrix form for 

MATLAB.  We need to eliminate all the second derivatives with respect to time from the equations of 

motion, by introducing new variables.  To do this, we define 

x y
dx dy d

v v
dt dt dt


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as new variables, and then solve for [ , , , , , ]x yx y v v  .  We also need to eliminate the unknown reactions.   

It is not hard to show that the equations of motion, in matrix form, are 
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Finally, we can type these into MATLAB – here’s a simple script that solves the equations of motion and 

plots the (x,y) coordinates of the car to show its path, and also plots the speed of the car as a function of 

time.  The example simulates a drunk-driver, who steers with steering angle 0.1 0.2sin( )t   , and 

drives with his or her foot to the floor with P=constant.   

 

 
function drivemycar 

  
L=1; 
m=1; 
c=0.1; 
time=120; 
y0 = [0,0,0,0,0,0]; 
options = odeset('RelTol',0.00001); 
[t_vals,w_vals] = ode45(@eom,[0,time],y0,options); 
plot(w_vals(:,1),w_vals(:,2)); 

  
    function [alpha,dadt,P]=driver(t) 
        % This function behaves like the driver of the car - 
        % at time t it returns the steering angle alpha 
        % dalpha/dt and the driving force P 

         
        alpha = 0.1+0.2*sin(t); 
        dadt = 0.2*cos(t); 
        P = 0.2; 
    end 



  

  
function dwdt = eom(t,w) 
% Equations of motion for the vehicle 
% 

     
[alpha,dadt,P] = driver(t); % Find out what the driver is doing 
M = zeros(8); % This sets up a 8x8 matrix full of zeros 
M(1,1) = 1; 
M(2,2) = 1; 
M(3,3) = 1; 
M(4,4) = m; 
M(4,7)=-sin(w(3)+alpha); 
M(4,8)=-sin(w(3)); 
M(5,5)=m; 
M(5,7)=-cos(w(3)+alpha); 
M(5,8)=-cos(w(3)); 
M(6,7)=cos(alpha); 
M(6,8)=-1; 
M(7,4)=sin(w(3)); 
M(7,5)=cos(w(3)); 
M(7,6)=L/2; 
M(8,4)=sin(w(3)+alpha); 
M(8,5)=cos(w(3)+alpha); 
M(8,6)=-L*cos(alpha)/2; 
v = sqrt(w(4)^2+w(5)^2); 
f = [w(4); 
     w(5); 
     w(6); 
    P*cos(w(3))-c*v*w(4); 
   -P*sin(w(3))-c*v*w(5); 
    0; 
   (-cos(w(3))*w(4)+sin(w(3))*w(5))*w(6); 
   (-cos(w(3)+alpha)*w(4)+sin(w(3)+alpha)*w(5))*(w(6)+dadt)-

sin(alpha)*L*w(6)*dadt/2]; 
sol = M\f; % This solves the matrix equation M*[dwdt,R]=f for [dwdt,R] 
dwdt = sol(1:6); % only need to return time derivatives dw/dt  
end 
end 

 

 

3.4 Review of concepts for Chapter 3 
 

3.4.1 Concept checklist 

 

Here are the skills that you should develop based on the material in this chapter: 

 Be able to idealize an engineering design as a set of particles, and know when this idealization 

will give accurate results 

 Choose an appropriate set of geometric variables to describe the motion of a system of particles 

(eg components in a fixed coordinate system; components in a polar coordinate system, etc) 

 Be able to differentiate position vectors (with proper use of the chain rule!) to determine velocity 

and acceleration; and be able to integrate acceleration or velocity to determine position vector. 

 Be familiar with simple harmonic motion and definitions of amplitude, frequency and period 



 Be able to describe motion in normal-tangential and polar coordinates (eg be able to write down 

vector components of velocity and acceleration in terms of speed, radius of curvature of path, or 

coordinates in the cylindrical-polar system). 

 Be able to convert between Cartesian to normal-tangential or polar coordinate descriptions of 

motion 

 Be able to draw a correct free body diagram showing forces acting on system idealized as 

particles 

 Understand and be able to describe mathematically the forces exerted by springs and dampers, 

and draw forces exerted by springs/dampers on a free body diagram. 

 Be able to write down Newton’s laws of motion in rectangular, normal-tangential, and polar 

coordinate systems 

 Be able to obtain an additional moment balance equation for a rigid body moving without rotation 

or rotating about a fixed axis at constant rate. 

 Be able to use Newton’s laws of motion to solve for unknown accelerations or forces in a system 

of particles 

 Use Newton’s laws of motion to derive differential equations governing the motion of a system of 

particles 

 Solve the differential equations of motion analytically using Mupad, for cases where analytical 

solutions are available 

 Be able to re-write second order differential equations as a pair of first-order differential 

equations in a form that MATLAB can solve 

 Write a MATLAB script to solve differential equations governing the motion of a system 

 

Of course, these are all just tricks of the trade.  They are supposed to help you design a system that does 

something useful; or to understand (and ultimately to predict) the behavior of some physical or biological 

system. 

 

 

 

 

3.4.2 Summary of main equations and definitions 
 

 

Position-velocity-acceleration relations in a Cartesian 

Frame 
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The direction of the velocity vector is tangent to its path. 

The magnitude of the velocity vector 2 2 2
x y zv v v   is the distance traveled along the path per  

unit time (speed). 

 

A unit vector tangent to the path can be found as 
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Straight line motion with constant acceleration 
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Here, a is the (constant) acceleration; 0 0,X V  are the position and speed at time t=0. 

 

 

Straight line motion with time/position dependent acceleration 
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Acceleration given as a function of position 
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Separation of variables for one-dimensional motion 
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Simple Harmonic Motion                
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Circular Motion at Constant Speed 
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General Circular Motion 
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Note that the straight-line motion relations can be used to relate , ,   , by exchanging 

, ,x v a      

 

 

Motion along an arbitrary path in normal-tangential coordinates 
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For a path with ( ) ( )x y  r i j  
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Position-velocity-acceleration relations in polar-coordinates 
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Newton’s laws 

 

For a particle mF a  

 

For a rigid body moving without rotation or 

rotating at fixed angular rate about a fixed axis 

0C M  (you must take moments about the 

center of mass) 

 

 

 

 

 

Drawing free body diagrams: 

 

1. Decide which part of a system you will idealize as a particle (you may need more than one 

particle) 

2. Draw the part of the system you have idealized as a particle by itself (very important!).  It is 

important to make sure that your particle is isolated – it can’t be touching something else. 

You may need more than one drawing if you have more than one particle in your system.  

3. Draw on any of the following external forces that apply. Make sure you draw them acting in 

the correct direction, acting on the correct part of the body:  

a. gravity (at the COM);  

b. air resistance or lift forces (and sometimes moments) – various conventions are used 

to locate these forces but in this course we usually put them at the COM and neglect 

moments;  

c. Buoyancy forces (act at the COM of the displaced fluid) 

d. Electrostatic or electromagnetic forces 



r

i

j

e
e r

i

j

N
A

NB
T

B
W



4. Draw the forces exerted by springs attached to the particle.   It is best to assume that springs 

always pull on the point they are connected to, and that the magnitude of the force in the 

spring is 0( )sF k l l  , where l is the length of the spring, and 0l is its unstretched length. 

5. Draw the forces exerted by dashpots or dampers (like springs, assume they pull on the object 

they are connected to, and exert a force magnitude /dF dl dt  where l is the length of the 

dashpot. 

6. Draw forces exerted by cables.  Cables always pull, and exert a force parallel to the direction 

of the cable.  The magnitude of the force has to be left as an unknown. 

7. Draw any unknown reaction forces, with the following rules: 

a. Reaction forces must act at any point on any point of the body that is touching 

something outside the particle (i.e. a part of your system that you did not include in 

your drawing in step 2).      

b. If the connection between the two touching objects prevents them from rotating with 

respect to one another (or, like a motor, makes them rotate with some controllable 

angular speed), you will need to draw both reaction forces and moments.  (Reaction 

moments do sometimes come up in dynamics problems, but they are not very 

common, so think carefully before including them). 

c.  If friction acts at the contact point, and you don’t know whether the two objects slide 

at the contact (or you know they do not slide), draw both a normal and a tangential 

force with unknown magnitudes N,T (or some suitable variable).  The direction of the 

friction force is not important.  DO NOT assume T N . 

d. If friction acts at the contact point, and you know the contact slips,  draw both a 

tangential and a normal force.  You must draw the tangential force so that it opposes 

the direction of sliding (ask a faculty member or TA if you don’t understand this).  If 

slip occurs you can assume T N . 

e. If the contact point is frictionless, draw only a normal force. 

f. If your particle is being touched by a two-force member (no, this is not a gender and 

sexuality class… a two force member is a massless rod, connected through freely 

rotating hinges at both ends.  A massless freely rotating wheel can also be idealized 

as a two-force member) you can assume the reaction force acts parallel to the two-

force member.  

g. If you have more than one particle in your system, make sure that any forces exerted 

by one particle on the other have equal and opposite reactions. 

 

Calculating unknown forces or accelerations using Newton’s laws: 

 

1. Decide how to idealize the system (what are the particles?) 

2. Draw a free body diagram showing the forces acting on each particle 

3. Consider the kinematics of the problem. The goal is to calculate the acceleration of each particle 

in the system – you may be able to start by writing down the position vector and differentiating it, 

or you may be able to relate the accelerations of two particles (eg if two particles move together, 

their accelerations must be equal). 

4. Write down F=ma for each particle. 

5. If you are solving a problem involving a massless frames (see, e.g. Example 3, involving a 

bicycle with negligible mass) you also need to write down C M 0  about the particle. 

6. Solve the resulting equations for any unknown components of force or acceleration (this is just 

like a statics problem, except the right hand side is not zero). 

 



Problems like this will usually ask you to make some design prediction at the end, which might involve 

calculating critical conditions for something to slip, tip, break, etc. 

 At the onset of slip at a contact T N  

 At the critical point where an object tips over, a reaction force somewhere will go to zero.  You 

will have to identify where this point is, find the reaction force, and set it to zero. 

 

 

Deriving equations of motion for a system of particles 

 

1. Introduce a set of variables that can describe the motion of the system.  Don’t worry if this sounds 

vague – it will be clear what this means when we solve specific examples. 

2. Write down the position vector of each particle in the system in terms of these variables 

3. Differentiate the position vector(s), to calculate the velocity and acceleration of each particle in 

terms of your variables; 

4. Draw a free body diagram showing the forces acting on each particle.  You may need to introduce 

variables to describe reaction forces.  Write down the resultant force vector. 

5. Write down Newton’s law mF a  for each particle.  This will generate up to 3 equations of 

motion (one for each vector component) for each particle. 

6. If you wish, you can eliminate any unknown reaction forces from Newton’s laws. If you are 

trying to solve the equations by hand, you should always do this; of you are using MATLAB, it’s 

not usually necessary – you can have MATLAB calculate the reactions for you. The result will be 

a set of differential equations for the variables defined in step (1) 

7. If you find you have fewer equations than unknown variables, you should look for any 

constraints that restrict the motion of the particles.  The constraints must be expressed in terms of 

the unknown accelerations. 

8. Identify the initial conditions for the variables defined in (1).  These are usually the values of the 

unknown variables, their time derivatives, at time t=0. If you happen to know the values of the 

variables at some other instant in time, you can use that too.   If you don’t know their values at 

all, you should just introduce new (unknown) variables to denote the initial conditions.  

9. Solve the differential equations, subject to the initial conditions. 

 

 

Trajectory equations for particle moving near earth’s 

surface with no air resistance 
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Solving differential equations with Mupad: 

 

Example: to solve 
2
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Re-writing a second-order differential equation as a pair of first-order equations for 

MATLAB 

 
Example: to solve 
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we introduce /v dy dt  as an additional variable.   This new equation, together with the original 

ODE can then be written in the following form 

22 n n

vyd

vdt v y 

  
   

     

 

This is now in the form 

( , )
yd

f t
vdt

 
   

 

w
w w  

as required. 


